/************************************************************************* * * * YAP Prolog * * * * Yap Prolog was developed at NCCUP - Universidade do Porto * * * * Copyright L.Damas, V.S.Costa and Universidade do Porto 1985-1997 * * * ************************************************************************** * * * File: arith1.c * * Last rev: * * mods: * * comments: arithmetical expression evaluation * * * *************************************************************************/ #ifdef SCCS static char SccsId[] = "%W% %G%"; #endif /* * This file implements unary arithmetic operations in YAP * */ #include "Yap.h" #include "Yatom.h" #include "YapHeap.h" #include "eval.h" static Term float_to_int(Float v) { #if USE_GMP Int i = (Int)v; if (i-v == 0.0) { return MkIntegerTerm(i); } else { return Yap_gmp_float_to_big(v); } #else return MkIntegerTerm(v); #endif } #define RBIG_FL(v) return(float_to_int(v)) typedef struct init_un_eval { char *OpName; arith1_op f; } InitUnEntry; /* Some compilers just don't get it */ #ifdef __MINGW32__ #undef HAVE_ASINH #undef HAVE_ACOSH #undef HAVE_ATANH #undef HAVE_FINITE #endif #if !HAVE_ASINH #define asinh(F) (log((F)+sqrt((F)*(F)+1))) #endif #if !HAVE_ACOSH #define acosh(F) (log((F)+sqrt((F)*(F)-1))) #endif #if !HAVE_ATANH #define atanh(F) (log((1+(F))/(1-(F)))/2) #endif static inline Float get_float(Term t) { if (IsFloatTerm(t)) { return FloatOfTerm(t); } if (IsIntTerm(t)) { return IntOfTerm(t); } if (IsLongIntTerm(t)) { return LongIntOfTerm(t); } #ifdef USE_GMP if (IsBigIntTerm(t)) { return Yap_gmp_to_float(t); } #endif return 0.0; } /* WIN32 machines do not necessarily have rint. This will do for now */ #if HAVE_RINT #define my_rint(X) rint(X) #else static double my_rint(double x) { double y, z; Int n; if (x >= 0) { y = x + 0.5; z = floor(y); n = (Int) z; if (y == z && n % 2) return(z-1); } else { y = x - 0.5; z = ceil(y); n = (Int) z; if (y == z && n % 2) return(z+1); } return(z); } #endif static Int msb(Int inp) /* calculate the most significant bit for an integer */ { /* the obvious solution: do it by using binary search */ Int out = 0; int off = sizeof(CELL)*4; if (inp < 0) { return Yap_ArithError(DOMAIN_ERROR_NOT_LESS_THAN_ZERO, MkIntegerTerm(inp), "msb/1 received %d", inp); } while (off) { Int limit = ((CELL)1) << (off); if (inp >= limit) { out += off; inp >>= off; } off >>= 1; } return(out); } static Int lsb(Int inp) /* calculate the least significant bit for an integer */ { /* the obvious solution: do it by using binary search */ Int out = 0; if (inp < 0) { return Yap_ArithError(DOMAIN_ERROR_NOT_LESS_THAN_ZERO, MkIntegerTerm(inp), "msb/1 received %d", inp); } if (inp==0) return 0L; #if SIZEOF_LONG_INT == 8 if (!(inp & 0xffffffffLL)) {inp >>= 32; out += 32;} #endif if (!(inp & 0xffffL)) {inp >>= 16; out += 16;} if (!(inp & 0xffL)) {inp >>= 8; out += 8;} if (!(inp & 0xfL)) {inp >>= 4; out += 4;} if (!(inp & 0x3L)) {inp >>= 2; out += 2;} if (!(inp & ((CELL)0x1))) out++; return out; } static Int popcount(Int inp) /* calculate the least significant bit for an integer */ { /* the obvious solution: do it by using binary search */ Int c = 0, j = 0, m = ((CELL)1); if (inp < 0) { return Yap_ArithError(DOMAIN_ERROR_NOT_LESS_THAN_ZERO, MkIntegerTerm(inp), "popcount/1 received %d", inp); } if (inp==0) return 0L; for(j=0,c=0; j<sizeof(inp)*8; j++, m<<=1) { if ( inp&m ) c++; } return c; } static Term eval1(Int fi, Term t) { arith1_op f = fi; switch (f) { case op_uplus: return t; case op_uminus: switch (ETypeOfTerm(t)) { case long_int_e: { #ifdef USE_GMP Int i = IntegerOfTerm(t); if (i == Int_MIN) { return Yap_gmp_neg_int(i); } else #endif RINT(-IntegerOfTerm(t)); } case double_e: RFLOAT(-FloatOfTerm(t)); case big_int_e: #ifdef USE_GMP return Yap_gmp_neg_big(t); #endif default: RERROR(); } case op_unot: switch (ETypeOfTerm(t)) { case long_int_e: RINT(~IntegerOfTerm(t)); case double_e: return Yap_ArithError(TYPE_ERROR_INTEGER, t, "\\(%f)", FloatOfTerm(t)); case big_int_e: #ifdef USE_GMP return Yap_gmp_unot_big(t); #endif default: RERROR(); } case op_exp: RFLOAT(exp(get_float(t))); case op_log: { Float dbl = get_float(t); if (dbl >= 0) { RFLOAT(log(dbl)); } else { return Yap_ArithError(DOMAIN_ERROR_NOT_LESS_THAN_ZERO, t, "log(%f)", dbl); } } case op_log10: { Float dbl = get_float(t); if (dbl >= 0) { RFLOAT(log10(dbl)); } else { return Yap_ArithError(DOMAIN_ERROR_NOT_LESS_THAN_ZERO, t, "log(%f)", dbl); } } case op_sqrt: { Float dbl = get_float(t), out; out = sqrt(dbl); #if HAVE_ISNAN if (isnan(out)) { return Yap_ArithError(DOMAIN_ERROR_OUT_OF_RANGE, t, "acos(%f)", dbl); } #endif RFLOAT(out); } case op_sin: { Float dbl = get_float(t), out; out = sin(dbl); RFLOAT(out); } case op_cos: { Float dbl = get_float(t), out; out = cos(dbl); RFLOAT(out); } case op_tan: { Float dbl = get_float(t), out; out = tan(dbl); RFLOAT(out); } case op_sinh: { Float dbl = get_float(t), out; out = sinh(dbl); RFLOAT(out); } case op_cosh: { Float dbl = get_float(t), out; out = cosh(dbl); RFLOAT(out); } case op_tanh: { Float dbl = get_float(t), out; out = tanh(dbl); RFLOAT(out); } case op_asin: { Float dbl, out; dbl = get_float(t); out = asin(dbl); #if HAVE_ISNAN if (isnan(out)) { return Yap_ArithError(EVALUATION_ERROR_UNDEFINED, t, "asin(%f)", dbl); } #endif RFLOAT(out); } case op_acos: { Float dbl, out; dbl = get_float(t); out = acos(dbl); #if HAVE_ISNAN if (isnan(out)) { return Yap_ArithError(EVALUATION_ERROR_UNDEFINED, t, "acos(%f)", dbl); } #endif RFLOAT(out); } case op_atan: { Float dbl, out; dbl = get_float(t); out = atan(dbl); #if HAVE_ISNAN if (isnan(out)) { return Yap_ArithError(DOMAIN_ERROR_OUT_OF_RANGE, t, "atanh(%f)", dbl); } #endif RFLOAT(out); } case op_asinh: { Float dbl, out; dbl = get_float(t); out = asinh(dbl); #if HAVE_ISNAN if (isnan(out)) { return Yap_ArithError(DOMAIN_ERROR_OUT_OF_RANGE, t, "atanh(%f)", dbl); } #endif RFLOAT(out); } case op_acosh: { Float dbl, out; dbl = get_float(t); out = acosh(dbl); #if HAVE_ISNAN if (isnan(out)) { return Yap_ArithError(DOMAIN_ERROR_OUT_OF_RANGE, t, "atanh(%f)", dbl); } #endif RFLOAT(out); } case op_atanh: { Float dbl, out; dbl = get_float(t); out = atanh(dbl); #if HAVE_ISNAN if (isnan(out)) { return Yap_ArithError(DOMAIN_ERROR_OUT_OF_RANGE, t, "atanh(%f)", dbl); } #endif RFLOAT(out); } case op_lgamma: { Float dbl; dbl = get_float(t); #if HAVE_LGAMMA RFLOAT(lgamma(dbl)); #else RERROR(); #endif } case op_erf: { Float dbl = get_float(t), out; #if HAVE_ERF out = erf(dbl); RFLOAT(out); #else RERROR(); #endif } case op_erfc: { Float dbl = get_float(t), out; #if HAVE_ERF out = erfc(dbl); RFLOAT(out); #else RERROR(); #endif } /* floor(x) maximum integer greatest or equal to X There are really two built-ins: SICStus converts from int/big/float -> float ISO only converts from float -> int/big */ case op_floor: { Float dbl; switch (ETypeOfTerm(t)) { case long_int_e: return t; case double_e: dbl = FloatOfTerm(t); break; case big_int_e: #ifdef USE_GMP return Yap_gmp_floor(t); #endif default: RERROR(); } #if HAVE_ISNAN if (isnan(dbl)) { return Yap_ArithError(DOMAIN_ERROR_OUT_OF_RANGE, t, "integer(%f)", dbl); } #endif #if HAVE_ISINF if (isinf(dbl)) { return Yap_ArithError(EVALUATION_ERROR_INT_OVERFLOW, MkFloatTerm(dbl), "integer\ (%f)",dbl); } #endif RBIG_FL(floor(dbl)); } case op_ceiling: { Float dbl; switch (ETypeOfTerm(t)) { case long_int_e: return t; case double_e: dbl = FloatOfTerm(t); break; case big_int_e: #ifdef USE_GMP return Yap_gmp_ceiling(t); #endif default: RERROR(); } #if HAVE_ISNAN if (isnan(dbl)) { return Yap_ArithError(DOMAIN_ERROR_OUT_OF_RANGE, t, "integer(%f)", dbl); } #endif #if HAVE_ISINF if (isinf(dbl)) { return Yap_ArithError(EVALUATION_ERROR_INT_OVERFLOW, MkFloatTerm(dbl), "integer\ (%f)",dbl); } #endif RBIG_FL(ceil(dbl)); } case op_round: { Float dbl; switch (ETypeOfTerm(t)) { case long_int_e: return t; case double_e: dbl = FloatOfTerm(t); break; case big_int_e: #ifdef USE_GMP return Yap_gmp_round(t); #endif default: RERROR(); } #if HAVE_ISNAN if (isnan(dbl)) { return Yap_ArithError(DOMAIN_ERROR_OUT_OF_RANGE, t, "integer(%f)", dbl); } #endif #if HAVE_ISINF if (isinf(dbl)) { return Yap_ArithError(EVALUATION_ERROR_INT_OVERFLOW, MkFloatTerm(dbl), "integer\ (%f)",dbl); } #endif RBIG_FL(my_rint(dbl)); } case op_truncate: case op_integer: { Float dbl; switch (ETypeOfTerm(t)) { case long_int_e: return t; case double_e: dbl = FloatOfTerm(t); break; case big_int_e: #ifdef USE_GMP return Yap_gmp_trunc(t); #endif default: RERROR(); } #if HAVE_ISNAN if (isnan(dbl)) { return Yap_ArithError(DOMAIN_ERROR_OUT_OF_RANGE, t, "integer(%f)", dbl); } #endif #if HAVE_ISINF if (isinf(dbl)) { return Yap_ArithError(EVALUATION_ERROR_INT_OVERFLOW, MkFloatTerm(dbl), "integer (%f)",dbl); } #endif if (dbl < 0.0) RBIG_FL(ceil(dbl)); else RBIG_FL(floor(dbl)); } case op_float: switch (ETypeOfTerm(t)) { case long_int_e: RFLOAT(IntegerOfTerm(t)); case double_e: return t; case big_int_e: #ifdef USE_GMP RFLOAT(Yap_gmp_to_float(t)); #endif default: RERROR(); } case op_rational: switch (ETypeOfTerm(t)) { case long_int_e: return t; #ifdef USE_GMP case double_e: return Yap_gmp_float_to_rational(FloatOfTerm(t)); #endif case big_int_e: return t; default: RERROR(); } case op_rationalize: switch (ETypeOfTerm(t)) { case long_int_e: return t; #ifdef USE_GMP case double_e: return Yap_gmp_float_rationalize(FloatOfTerm(t)); #endif case big_int_e: return t; default: RERROR(); } case op_abs: switch (ETypeOfTerm(t)) { case long_int_e: RINT(labs(IntegerOfTerm(t))); case double_e: RFLOAT(fabs(FloatOfTerm(t))); case big_int_e: #ifdef USE_GMP return Yap_gmp_abs_big(t); #endif default: RERROR(); } case op_msb: switch (ETypeOfTerm(t)) { case long_int_e: RINT(msb(IntegerOfTerm(t))); case double_e: return Yap_ArithError(TYPE_ERROR_INTEGER, t, "msb(%f)", FloatOfTerm(t)); case big_int_e: #ifdef USE_GMP return Yap_gmp_msb(t); #endif default: RERROR(); } case op_lsb: switch (ETypeOfTerm(t)) { case long_int_e: RINT(lsb(IntegerOfTerm(t))); case double_e: return Yap_ArithError(TYPE_ERROR_INTEGER, t, "lsb(%f)", FloatOfTerm(t)); case big_int_e: #ifdef USE_GMP return Yap_gmp_lsb(t); #endif default: RERROR(); } case op_popcount: switch (ETypeOfTerm(t)) { case long_int_e: RINT(popcount(IntegerOfTerm(t))); case double_e: return Yap_ArithError(TYPE_ERROR_INTEGER, t, "popcount(%f)", FloatOfTerm(t)); case big_int_e: #ifdef USE_GMP return Yap_gmp_popcount(t); #endif default: RERROR(); } case op_ffracp: switch (ETypeOfTerm(t)) { case long_int_e: if (yap_flags[LANGUAGE_MODE_FLAG] == 1) { /* iso */ return Yap_ArithError(TYPE_ERROR_FLOAT, t, "X is float_fractional_part(%f)", IntegerOfTerm(t)); } else { RFLOAT(0.0); } case double_e: { Float dbl; dbl = FloatOfTerm(t); RFLOAT(dbl-ceil(dbl)); } break; case big_int_e: #ifdef USE_GMP return Yap_gmp_float_fractional_part(t); #endif default: RERROR(); } case op_fintp: switch (ETypeOfTerm(t)) { case long_int_e: return Yap_ArithError(TYPE_ERROR_FLOAT, t, "X is float_integer_part(%f)", IntegerOfTerm(t)); case double_e: RFLOAT(rint(FloatOfTerm(t))); break; case big_int_e: #ifdef USE_GMP return Yap_gmp_float_integer_part(t); #endif default: RERROR(); } case op_sign: switch (ETypeOfTerm(t)) { case long_int_e: { Int x = IntegerOfTerm(t); RINT((x > 0 ? 1 : (x < 0 ? -1 : 0))); } case double_e: { Float dbl = FloatOfTerm(t); RINT((dbl > 0.0 ? 1 : (dbl < 0.0 ? -1 : 0))); } case big_int_e: #ifdef USE_GMP return Yap_gmp_sign(t); #endif default: RERROR(); } case op_random1: switch (ETypeOfTerm(t)) { case long_int_e: RINT(Yap_random()*IntegerOfTerm(t)); case double_e: return Yap_ArithError(TYPE_ERROR_INTEGER, t, "random(%f)", FloatOfTerm(t)); case big_int_e: #ifdef USE_GMP return Yap_gmp_mul_float_big(Yap_random(), t); #endif default: RERROR(); } } RERROR(); } Term Yap_eval_unary(Int f, Term t) { return eval1(f,t); } static InitUnEntry InitUnTab[] = { {"+", op_uplus}, {"-", op_uminus}, {"\\", op_unot}, {"exp", op_exp}, {"log", op_log}, {"log10", op_log10}, {"sqrt", op_sqrt}, {"sin", op_sin}, {"cos", op_cos}, {"tan", op_tan}, {"sinh", op_sinh}, {"cosh", op_cosh}, {"tanh", op_tanh}, {"asin", op_asin}, {"acos", op_acos}, {"atan", op_atan}, {"asinh", op_asinh}, {"acosh", op_acosh}, {"atanh", op_atanh}, {"floor", op_floor}, {"ceiling", op_ceiling}, {"round", op_round}, {"truncate", op_truncate}, {"integer", op_integer}, {"float", op_float}, {"abs", op_abs}, {"msb", op_msb}, {"lsb", op_lsb}, {"popcount", op_popcount}, {"float_fractional_part", op_ffracp}, {"float_integer_part", op_fintp}, {"sign", op_sign}, {"lgamma", op_lgamma}, {"erf",op_erf}, {"erfc",op_erfc}, {"rational",op_rational}, {"rationalize",op_rationalize}, {"random", op_random1} }; static Int p_unary_is( USES_REGS1 ) { /* X is Y */ Term t = Deref(ARG2); Term top; if (IsVarTerm(t)) { Yap_Error(INSTANTIATION_ERROR, ARG2, "X is Y"); return FALSE; } top = Yap_Eval(Deref(ARG3)); if (!Yap_FoundArithError(top, ARG3)) { return FALSE; } if (IsIntTerm(t)) { Term tout = Yap_FoundArithError(eval1(IntegerOfTerm(t), top), Deref(ARG3)); if (!tout) return FALSE; return Yap_unify_constant(ARG1,tout); } if (IsAtomTerm(t)) { Atom name = AtomOfTerm(t); ExpEntry *p; Term out; if (EndOfPAEntr(p = RepExpProp(Yap_GetExpProp(name, 1)))) { Term ti[2]; /* error */ ti[0] = t; ti[1] = MkIntTerm(1); t = Yap_MkApplTerm(FunctorSlash, 2, ti); Yap_Error(TYPE_ERROR_EVALUABLE, t, "functor %s/%d for arithmetic expression", RepAtom(name)->StrOfAE,1); P = FAILCODE; return(FALSE); } if (!(out=Yap_FoundArithError(eval1(p->FOfEE, top),Deref(ARG3)))) return FALSE; return Yap_unify_constant(ARG1,out); } return(FALSE); } static Int p_unary_op_as_integer( USES_REGS1 ) { /* X is Y */ Term t = Deref(ARG1); if (IsVarTerm(t)) { Yap_Error(INSTANTIATION_ERROR,t, "X is Y"); return(FALSE); } if (IsIntTerm(t)) { return Yap_unify_constant(ARG2,t); } if (IsAtomTerm(t)) { Atom name = AtomOfTerm(t); ExpEntry *p; if (EndOfPAEntr(p = RepExpProp(Yap_GetExpProp(name, 1)))) { return Yap_unify(ARG1,ARG2); } return Yap_unify_constant(ARG2,MkIntTerm(p->FOfEE)); } return(FALSE); } void Yap_InitUnaryExps(void) { unsigned int i; ExpEntry *p; for (i = 0; i < sizeof(InitUnTab)/sizeof(InitUnEntry); ++i) { AtomEntry *ae = RepAtom(Yap_LookupAtom(InitUnTab[i].OpName)); if (ae == NULL) { Yap_Error(OUT_OF_HEAP_ERROR,TermNil,"at InitUnaryExps"); return; } WRITE_LOCK(ae->ARWLock); if (Yap_GetExpPropHavingLock(ae, 1)) { WRITE_UNLOCK(ae->ARWLock); break; } p = (ExpEntry *) Yap_AllocAtomSpace(sizeof(ExpEntry)); p->KindOfPE = ExpProperty; p->ArityOfEE = 1; p->ENoOfEE = 1; p->FOfEE = InitUnTab[i].f; AddPropToAtom(ae, (PropEntry *)p); WRITE_UNLOCK(ae->ARWLock); } Yap_InitCPred("is", 3, p_unary_is, TestPredFlag | SafePredFlag); Yap_InitCPred("$unary_op_as_integer", 2, p_unary_op_as_integer, TestPredFlag|SafePredFlag);} /* This routine is called from Restore to make sure we have the same arithmetic operators */ int Yap_ReInitUnaryExps(void) { return TRUE; }