/************************************************************************* * * * YAP Prolog * * * * Yap Prolog was developed at NCCUP - Universidade do Porto * * * * Copyright L.Damas, V.S.Costa and Universidade do Porto 1985-1997 * * * ************************************************************************** * * * File: rheap.c * * Last rev: * * mods: * * comments: walk through heap code * * * *************************************************************************/ #ifdef SCCS static char SccsId[] = "@(#)rheap.c 1.3 3/15/90"; #endif #define Atomics 0 #define Funcs 1 #if DEBUG_RESTORE2 static char *op_names[_std_top + 1] = { #define OPCODE(OP,TYPE) #OP #include "YapOpcodes.h" #undef OPCODE }; #endif /* DEBUG_RESTORE2 */ /* Now, everything on its place so you must adjust the pointers */ /* restore the failcodes */ static void restore_codes(void) { heap_regs->heap_top = AddrAdjust(OldHeapTop); #ifdef YAPOR heap_regs->getworkfirsttimecode.opc = Yap_opcode(_getwork_first_time); heap_regs->getworkcode.opc = Yap_opcode(_getwork); INIT_YAMOP_LTT(&(heap_regs->getworkcode), 0); heap_regs->getworkcode_seq.opc = Yap_opcode(_getwork_seq); INIT_YAMOP_LTT(&(heap_regs->getworkcode_seq), 0); #endif /* YAPOR */ #ifdef TABLING heap_regs->tablecompletioncode.opc = Yap_opcode(_table_completion); heap_regs->tableanswerresolutioncode.opc = Yap_opcode(_table_answer_resolution); #ifdef YAPOR INIT_YAMOP_LTT(&(heap_regs->tablecompletioncode), 0); INIT_YAMOP_LTT(&(heap_regs->tableanswerresolutioncode), 0); #endif /* YAPOR */ #endif /* TABLING */ heap_regs->failcode = Yap_opcode(_op_fail); heap_regs->failcode_1 = Yap_opcode(_op_fail); heap_regs->failcode_2 = Yap_opcode(_op_fail); heap_regs->failcode_3 = Yap_opcode(_op_fail); heap_regs->failcode_4 = Yap_opcode(_op_fail); heap_regs->failcode_5 = Yap_opcode(_op_fail); heap_regs->failcode_6 = Yap_opcode(_op_fail); heap_regs->env_for_trustfail_code.op = Yap_opcode(_call); heap_regs->trustfailcode = Yap_opcode(_trust_fail); heap_regs->env_for_yes_code.op = Yap_opcode(_call); heap_regs->yescode.opc = Yap_opcode(_Ystop); heap_regs->undef_op = Yap_opcode(_undef_p); heap_regs->index_op = Yap_opcode(_index_pred); heap_regs->fail_op = Yap_opcode(_op_fail); heap_regs->nocode.opc = Yap_opcode(_Nstop); #ifdef YAPOR INIT_YAMOP_LTT(&(heap_regs->nocode), 1); #endif /* YAPOR */ #ifdef YAPOR INIT_YAMOP_LTT(&(heap_regs->rtrycode), 1); #endif /* YAPOR */ ((yamop *)(&heap_regs->rtrycode))->opc = Yap_opcode(_retry_and_mark); if (((yamop *)(&heap_regs->rtrycode))->u.ld.d != NIL) ((yamop *)(&heap_regs->rtrycode))->u.ld.d = PtoOpAdjust(((yamop *)(&heap_regs->rtrycode))->u.ld.d); { int arity; arity = heap_regs->clausecode.arity; if (heap_regs->clausecode.clause != NIL) heap_regs->clausecode.clause = PtoOpAdjust(heap_regs->clausecode.clause); if (arity) { heap_regs->clausecode.func = FuncAdjust(heap_regs->clausecode.func); } else { /* an atom */ heap_regs->clausecode.func = (Functor)AtomAdjust((Atom)(heap_regs->clausecode.func)); } } /* restore consult stack. It consists of heap pointers, so it is easy to fix. */ heap_regs->consultlow = ConsultObjAdjust(heap_regs->consultlow); heap_regs->consultbase = ConsultObjAdjust(heap_regs->consultbase); heap_regs->consultsp = ConsultObjAdjust(heap_regs->consultsp); { /* we assume all pointers have the same size */ register consult_obj *pt = heap_regs->consultsp; while (pt < heap_regs->consultlow+heap_regs->consultcapacity) { pt->p = PropAdjust(pt->p); pt ++; } } #if USE_THREADED_CODE heap_regs->op_rtable = (opentry *) CodeAddrAdjust((CODEADDR)(heap_regs->op_rtable)); #endif if (heap_regs->atprompt != NIL) { heap_regs->atprompt = AtomAdjust(heap_regs->atprompt); } if (heap_regs->char_conversion_table != NULL) { heap_regs->char_conversion_table = (char *) AddrAdjust((ADDR)heap_regs->char_conversion_table); } if (heap_regs->char_conversion_table2 != NULL) { heap_regs->char_conversion_table2 = (char *) AddrAdjust((ADDR)heap_regs->char_conversion_table2); } if (heap_regs->dead_clauses != NULL) { heap_regs->dead_clauses = (Clause *) AddrAdjust((ADDR)(heap_regs->dead_clauses)); } /* vsc: FIXME !!!!! */ if (heap_regs->db_queues != NULL) { heap_regs->db_queues = (struct idb_queue *) AddrAdjust((ADDR)(heap_regs->db_queues)); } if (heap_regs->db_queues_cache != NULL) { heap_regs->db_queues_cache = (struct idb_queue *) AddrAdjust((ADDR)(heap_regs->db_queues_cache)); } heap_regs->retry_recorded_code = PtoOpAdjust(heap_regs->retry_recorded_code); heap_regs->retry_recorded_k_code = PtoOpAdjust(heap_regs->retry_recorded_k_code); heap_regs->retry_drecorded_code = PtoOpAdjust(heap_regs->retry_drecorded_code); heap_regs->retry_c_recordedp_code = PtoOpAdjust(heap_regs->retry_c_recordedp_code); if (heap_regs->IntKeys != NULL) { heap_regs->IntKeys = (Prop *)AddrAdjust((ADDR)(heap_regs->IntKeys)); { UInt i; for (i = 0; i < heap_regs->int_keys_size; i++) { if (heap_regs->IntKeys[i] != NIL) { Prop p0 = heap_regs->IntKeys[i] = PropAdjust(heap_regs->IntKeys[i]); RestoreEntries(RepProp(p0)); } } } } if (heap_regs->IntBBKeys != NULL) { heap_regs->IntBBKeys = (Prop *)AddrAdjust((ADDR)(heap_regs->IntBBKeys)); { UInt i; for (i = 0; i < heap_regs->int_bb_keys_size; i++) { if (heap_regs->IntBBKeys[i] != NIL) { Prop p0 = heap_regs->IntBBKeys[i] = PropAdjust(heap_regs->IntBBKeys[i]); RestoreEntries(RepProp(p0)); } } } } { /* adjust atoms in atom table */ unsigned int i = 0; for (i = 0; i < heap_regs->no_of_modules; i++) { heap_regs->module_name[i] = AtomTermAdjust(heap_regs->module_name[i]); if (heap_regs->module_pred[i]) { heap_regs->module_pred[i] = PtoPredAdjust(heap_regs->module_pred[i]); } } } heap_regs->atom_abol = AtomAdjust(heap_regs->atom_abol); heap_regs->atom_append = AtomAdjust(heap_regs->atom_append); heap_regs->atom_array = AtomAdjust(heap_regs->atom_array); heap_regs->atom_assert = AtomAdjust(heap_regs->atom_assert); heap_regs->atom_alarm = AtomAdjust(heap_regs->atom_alarm); heap_regs->atom_b = AtomAdjust(heap_regs->atom_b); heap_regs->atom_break = AtomAdjust(heap_regs->atom_break); heap_regs->atom_call = AtomAdjust(heap_regs->atom_call); heap_regs->atom_catch = AtomAdjust(heap_regs->atom_catch); heap_regs->atom_comma = AtomAdjust(heap_regs->atom_comma); heap_regs->atom_cpu_time = AtomAdjust(heap_regs->atom_cpu_time); heap_regs->atom_csult = AtomAdjust(heap_regs->atom_csult); heap_regs->atom_cut = AtomAdjust(heap_regs->atom_cut); heap_regs->atom_cut_by = AtomAdjust(heap_regs->atom_cut_by); #ifdef EUROTRA #ifdef SFUNC heap_regs->atom_dollar_undef = AtomAdjust(heap_regs->atom_dollar_undef); #endif #endif heap_regs->atom_e = AtomAdjust(heap_regs->atom_e); heap_regs->atom_e_q = AtomAdjust(heap_regs->atom_e_q); heap_regs->atom_eof = AtomAdjust(heap_regs->atom_eof); #ifdef EUROTRA heap_regs->atom_f_b = AtomAdjust(heap_regs->atom_f_b); #endif heap_regs->atom_fail = AtomAdjust(heap_regs->atom_fail); heap_regs->atom_false = AtomAdjust(heap_regs->atom_false); heap_regs->atom_fast = AtomAdjust(heap_regs->atom_fast); heap_regs->atom_g_t = AtomAdjust(heap_regs->atom_g_t); heap_regs->atom_gc = AtomAdjust(heap_regs->atom_gc); heap_regs->atom_gc_margin = AtomAdjust(heap_regs->atom_gc_margin); heap_regs->atom_gc_trace = AtomAdjust(heap_regs->atom_gc_trace); heap_regs->atom_gc_verbose = AtomAdjust(heap_regs->atom_gc_verbose); heap_regs->atom_gc_very_verbose = AtomAdjust(heap_regs->atom_gc_very_verbose); heap_regs->atom_global = AtomAdjust(heap_regs->atom_global); heap_regs->atom_heap_used = AtomAdjust(heap_regs->atom_heap_used); heap_regs->atom_index = AtomAdjust(heap_regs->atom_index); heap_regs->atom_inf = AtomAdjust(heap_regs->atom_inf); heap_regs->atom_l_t = AtomAdjust(heap_regs->atom_l_t); heap_regs->atom_local = AtomAdjust(heap_regs->atom_local); heap_regs->atom_meta_call = AtomAdjust(heap_regs->atom_meta_call); heap_regs->atom_minus = AtomAdjust(heap_regs->atom_minus); heap_regs->atom_nan = AtomAdjust(heap_regs->atom_nan); heap_regs->atom_otherwise = AtomAdjust(heap_regs->atom_otherwise); heap_regs->atom_pi = AtomAdjust(heap_regs->atom_pi); heap_regs->atom_plus = AtomAdjust(heap_regs->atom_plus); heap_regs->atom_portray = AtomAdjust(heap_regs->atom_portray); heap_regs->atom_profile = AtomAdjust(heap_regs->atom_profile); heap_regs->atom_random = AtomAdjust(heap_regs->atom_random); heap_regs->atom_read = AtomAdjust(heap_regs->atom_read); heap_regs->atom_repeat = AtomAdjust(heap_regs->atom_repeat); heap_regs->atom_restore_regs = AtomAdjust(heap_regs->atom_restore_regs); #if HAVE_SIGACTION heap_regs->atom_sig_pending = AtomAdjust(heap_regs->atom_sig_pending); #endif heap_regs->atom_stack_free = AtomAdjust(heap_regs->atom_stack_free); heap_regs->atom_true = AtomAdjust(heap_regs->atom_true); heap_regs->atom_user = AtomAdjust(heap_regs->atom_user); heap_regs->atom_usr_err = AtomAdjust(heap_regs->atom_usr_err); heap_regs->atom_usr_in = AtomAdjust(heap_regs->atom_usr_in); heap_regs->atom_usr_out = AtomAdjust(heap_regs->atom_usr_out); heap_regs->atom_version_number = AtomAdjust(heap_regs->atom_version_number); heap_regs->atom_write = AtomAdjust(heap_regs->atom_write); #ifdef USE_SOCKET heap_regs->functor_af_inet = FuncAdjust(heap_regs->functor_af_inet); heap_regs->functor_af_local = FuncAdjust(heap_regs->functor_af_local); heap_regs->functor_af_unix = FuncAdjust(heap_regs->functor_af_unix); #endif heap_regs->functor_alt_not = FuncAdjust(heap_regs->functor_alt_not); heap_regs->functor_arrow = FuncAdjust(heap_regs->functor_arrow); heap_regs->functor_assert = FuncAdjust(heap_regs->functor_assert); #ifdef COROUTINING heap_regs->functor_att_goal = FuncAdjust(heap_regs->functor_att_goal); #endif heap_regs->functor_braces = FuncAdjust(heap_regs->functor_braces); heap_regs->functor_call = FuncAdjust(heap_regs->functor_call); heap_regs->functor_cut_by = FuncAdjust(heap_regs->functor_cut_by); heap_regs->functor_comma = FuncAdjust(heap_regs->functor_comma); heap_regs->functor_csult = FuncAdjust(heap_regs->functor_csult); heap_regs->functor_eq = FuncAdjust(heap_regs->functor_eq); heap_regs->functor_execute_in_mod = FuncAdjust(heap_regs->functor_execute_in_mod); heap_regs->functor_execute_within = FuncAdjust(heap_regs->functor_execute_within); heap_regs->functor_g_atom = FuncAdjust(heap_regs->functor_g_atom); heap_regs->functor_g_atomic = FuncAdjust(heap_regs->functor_g_atomic); heap_regs->functor_g_compound = FuncAdjust(heap_regs->functor_g_compound); heap_regs->functor_g_float = FuncAdjust(heap_regs->functor_g_float); heap_regs->functor_g_integer = FuncAdjust(heap_regs->functor_g_integer); heap_regs->functor_g_number = FuncAdjust(heap_regs->functor_g_number); heap_regs->functor_g_primitive = FuncAdjust(heap_regs->functor_g_primitive); heap_regs->functor_g_var = FuncAdjust(heap_regs->functor_g_var); heap_regs->functor_last_execute_within = FuncAdjust(heap_regs->functor_last_execute_within); heap_regs->functor_list = FuncAdjust(heap_regs->functor_list); heap_regs->functor_module = FuncAdjust(heap_regs->functor_module); #ifdef MULTI_ASSIGNMENT_VARIABLES heap_regs->functor_mutable = FuncAdjust(heap_regs->functor_mutable); #endif heap_regs->functor_not = FuncAdjust(heap_regs->functor_not); heap_regs->functor_or = FuncAdjust(heap_regs->functor_or); heap_regs->functor_portray = FuncAdjust(heap_regs->functor_portray); heap_regs->functor_query = FuncAdjust(heap_regs->functor_query); heap_regs->functor_spy = FuncAdjust(heap_regs->functor_spy); heap_regs->functor_stream = FuncAdjust(heap_regs->functor_stream); heap_regs->functor_stream_pos = FuncAdjust(heap_regs->functor_stream_pos); heap_regs->functor_stream_eOS = FuncAdjust(heap_regs->functor_stream_eOS); heap_regs->functor_change_module = FuncAdjust(heap_regs->functor_change_module); heap_regs->functor_current_module = FuncAdjust(heap_regs->functor_current_module); heap_regs->functor_u_minus = FuncAdjust(heap_regs->functor_u_minus); heap_regs->functor_u_plus = FuncAdjust(heap_regs->functor_u_plus); heap_regs->functor_v_bar = FuncAdjust(heap_regs->functor_v_bar); heap_regs->functor_var = FuncAdjust(heap_regs->functor_var); #ifdef EUROTRA heap_regs->term_dollar_u = AtomTermAdjust(heap_regs->term_dollar_u); #endif heap_regs->term_prolog = AtomTermAdjust(heap_regs->term_prolog); heap_regs->term_refound_var = AtomTermAdjust(heap_regs->term_refound_var); if (heap_regs->dyn_array_list != NULL) { heap_regs->dyn_array_list = (struct array_entry *)AddrAdjust((ADDR)heap_regs->dyn_array_list); } if (heap_regs->file_aliases != NULL) { heap_regs->yap_streams = (struct stream_desc *)AddrAdjust((ADDR)heap_regs->yap_streams); } if (heap_regs->file_aliases != NULL) { heap_regs->file_aliases = (struct AliasDescS *)AddrAdjust((ADDR)heap_regs->file_aliases); } heap_regs->yap_lib_dir = (char *)AddrAdjust((ADDR)heap_regs->yap_lib_dir); heap_regs->pred_goal_expansion = (PredEntry *)AddrAdjust((ADDR)heap_regs->pred_goal_expansion); heap_regs->pred_meta_call = (PredEntry *)AddrAdjust((ADDR)heap_regs->pred_meta_call); heap_regs->pred_dollar_catch = (PredEntry *)AddrAdjust((ADDR)heap_regs->pred_dollar_catch); heap_regs->pred_throw = (PredEntry *)AddrAdjust((ADDR)heap_regs->pred_throw); heap_regs->pred_handle_throw = (PredEntry *)AddrAdjust((ADDR)heap_regs->pred_handle_throw); if (heap_regs->dyn_array_list != NULL) heap_regs->dyn_array_list = PtoArrayEAdjust(heap_regs->dyn_array_list); if (heap_regs->undef_code != NULL) heap_regs->undef_code = (PredEntry *)PtoHeapCellAdjust((CELL *)(heap_regs->undef_code)); if (heap_regs->creep_code != NULL) heap_regs->creep_code = (PredEntry *)PtoHeapCellAdjust((CELL *)(heap_regs->creep_code)); if (heap_regs->spy_code != NULL) heap_regs->spy_code = (PredEntry *)PtoHeapCellAdjust((CELL *)(heap_regs->spy_code)); #ifdef COROUTINING if (heap_regs->wake_up_code != NULL) heap_regs->wake_up_code = (PredEntry *)PtoHeapCellAdjust((CELL *)(heap_regs->wake_up_code)); heap_regs->mutable_list = AbsAppl(PtoGloAdjust(RepAppl(heap_regs->mutable_list))); heap_regs->atts_mutable_list = AbsAppl(PtoGloAdjust(RepAppl(heap_regs->atts_mutable_list))); #endif if (heap_regs->last_wtime != NULL) heap_regs->last_wtime = (void *)PtoHeapCellAdjust((CELL *)(heap_regs->last_wtime)); heap_regs->db_erased_marker = DBRefAdjust(heap_regs->db_erased_marker); } /* Restoring the heap */ /* Converts a structure of the DB, as it was saved in the heap */ /* uses a variable base */ static void ConvDBStruct(Term Struct, char *tbase, CELL size) { CELL *TermP; Functor f; int Arity, i; TermP = (CELL *)(tbase + (CELL)RepAppl(Struct)); f = (Functor)(*TermP); if (IsExtensionFunctor(f)) { return; } f = FuncAdjust(f); *(Functor *)TermP = f; Arity = ArityOfFunctor(f); TermP++; for (i = 0; i < Arity; i++) { register Term t = *TermP; if (IsVarTerm(t)) { /* do nothing */ } else if (IsAtomTerm(t)) { /* these are the only ones that may actually need to be changed */ *TermP = AtomTermAdjust(t); } else if (IsApplTerm(t)) { CELL offset = (CELL)RepAppl(t); if (offset > size) { *TermP = AbsAppl(CellPtoHeapAdjust(RepAppl(t))); } else { ConvDBStruct(t, tbase, size); } } else if (IsPairTerm(t)) { ConvDBList(t, tbase, size); } TermP++; } } /* Converts a list of the DB, as it was saved in the heap */ /* uses a variable base */ static void ConvDBList(Term List, char *tbase, CELL size) { CELL *TermP; int i; TermP = (CELL *)(tbase + (CELL) RepPair(List)); for (i = 0; i < 2; i++) { register Term t = *TermP; if (IsVarTerm(t)) { /* do nothing */ } else if (IsAtomTerm(t)) *TermP = AtomTermAdjust(t); else if (IsPairTerm(t)) ConvDBList(t, tbase, size); else if (IsApplTerm(t)) { CELL offset = (CELL)RepAppl(t); if (offset > size) { *TermP = AbsAppl(CellPtoHeapAdjust(RepAppl(t))); } else { ConvDBStruct(t, tbase, size); } } TermP++; } } /* adjusts terms stored in the data base, when they have no variables */ static Term AdjustDBTerm(Term trm) { Term *p; if (IsAtomTerm(trm)) return (AtomTermAdjust(trm)); if (IsPairTerm(trm)) { p = PtoHeapCellAdjust(RepPair(trm)); *p = AdjustDBTerm(*p); ++p; *p = AdjustDBTerm(*p); return (AbsPair(p-1)); } if (IsApplTerm(trm)) { Functor f; Term *p0 = p = PtoHeapCellAdjust(RepAppl(trm)); f = (Functor)*p; if (!IsExtensionFunctor(f)) { int Arity, i; f = FuncAdjust(f); *p = (Term)f; Arity = ArityOfFunctor(f); p++; for (i = 0; i < Arity; ++i) { *p = AdjustDBTerm(*p); p++; } } return (AbsAppl(p0)); } return (trm); } static void RestoreDBEntry(DBRef dbr) { #ifdef DEBUG_RESTORE YP_fprintf(errout, "Restoring at %x", dbr); if (dbr->Flags & DBAtomic) YP_fprintf(errout, " an atomic term\n"); else if (dbr->Flags & DBNoVars) YP_fprintf(errout, " with no vars\n"); else if (dbr->Flags & DBComplex) YP_fprintf(errout, " complex term\n"); else if (dbr->Flags & DBIsRef) YP_fprintf(errout, " a ref\n"); else YP_fprintf(errout, " a var\n"); #endif dbr->Parent = (DBProp)AddrAdjust((ADDR)(dbr->Parent)); if (dbr->Code != NIL) dbr->Code = PtoOpAdjust(dbr->Code); if (dbr->Flags & DBAtomic) { if (IsAtomTerm(dbr->Entry)) dbr->Entry = AtomTermAdjust(dbr->Entry); } else if (dbr->Flags & DBNoVars) dbr->Entry = (CELL) AdjustDBTerm((Term) dbr->Entry); else if (dbr->Flags & DBComplex) { if (IsApplTerm((Term) dbr->Entry)) ConvDBStruct((Term) dbr->Entry, CharP(dbr->Contents-1), dbr->NOfCells*sizeof(CELL)); else ConvDBList((Term) dbr->Entry, CharP(dbr->Contents-1), dbr->NOfCells*sizeof(CELL)); } if (dbr->Prev != NULL) dbr->Prev = DBRefAdjust(dbr->Prev); if (dbr->Next != NULL) dbr->Next = DBRefAdjust(dbr->Next); if (dbr->Flags & DBWithRefs) { DBRef *cp; DBRef tm; cp = (DBRef *) ((CODEADDR) dbr + Yap_SizeOfBlock(CodePtr(dbr))); while ((tm = *--cp) != 0) *cp = DBRefAdjust(tm); } #ifdef DEBUG_RESTORE2 YP_fprintf(errout, "Recomputing masks\n"); #endif recompute_mask(dbr); } /* Restores a DB structure, as it was saved in the heap */ static void RestoreDB(DBEntry *pp) { register DBRef dbr; if (pp->First != NULL) pp->First = DBRefAdjust(pp->First); if (pp->Last != NULL) pp->Last = DBRefAdjust(pp->Last); #ifndef KEEP_ENTRY_AGE if (pp->FirstNEr != NULL) pp->FirstNEr = DBRefAdjust(pp->FirstNEr); #endif if (pp->ArityOfDB) pp->FunctorOfDB = FuncAdjust(pp->FunctorOfDB); else pp->FunctorOfDB = (Functor) AtomAdjust((Atom)(pp->FunctorOfDB)); dbr = pp->First; /* While we have something in the data base, restore it */ while (dbr) { RestoreDBEntry(dbr); dbr = dbr->Next; } } /* Restores a DB structure, as it was saved in the heap */ static void RestoreBB(BlackBoardEntry *pp) { if (pp->Element) { register DBRef dbr; pp->Element = DBRefAdjust(pp->Element); #ifdef DEBUG_RESTORE YP_fprintf(errout, "Restoring at %x", dbr); if (dbr->Flags & DBAtomic) YP_fprintf(errout, " an atomic term\n"); else if (dbr->Flags & DBNoVars) YP_fprintf(errout, " with no vars\n"); else if (dbr->Flags & DBComplex) YP_fprintf(errout, " complex term\n"); else if (dbr->Flags & DBIsRef) YP_fprintf(errout, " a ref\n"); else YP_fprintf(errout, " a var\n"); #endif dbr = pp->Element; RestoreDBEntry(dbr); } pp->KeyOfBB = AtomAdjust(pp->KeyOfBB); } /* Restores a prolog clause, in its compiled form */ static void RestoreClause(Clause *Cl, int mode) /* * Cl points to the start of the code, IsolFlag tells if we have a single * clause for this predicate or not */ { yamop *pc; OPREG cl_type = FirstArgOfClType(Cl->ClFlags); if (mode == ASSEMBLING_CLAUSE) { if (cl_type == ApplCl || (cl_type == ListCl && HeadOfClType(cl_type) == ApplCl)) { #ifdef DEBUG_RESTORE2 YP_fprintf(errout, "at %p, appl: %lx -> %lx", Cl, Cl->u.ClValue, (CELL)FuncAdjust((Functor)(Cl->u.ClValue))); #endif Cl->u.ClValue = (CELL)FuncAdjust((Functor)(Cl->u.ClValue)); } else if ((cl_type == AtCl || (cl_type == ListCl && HeadOfClType(cl_type) == AtCl)) && IsAtomTerm(Cl->u.ClValue)) { #ifdef DEBUG_RESTORE2 if (IsAtomTerm(Cl->u.ClValue)) YP_fprintf(errout, "at %p, atom: %lx -> %lx", Cl, Cl->u.ClValue, AtomTermAdjust(Cl->u.ClValue)); #endif Cl->u.ClValue = AtomTermAdjust(Cl->u.ClValue); } } /* TO DO: log update semantics */ /* Get the stored operator */ pc = Cl->ClCode; do { op_numbers op = Yap_op_from_opcode(pc->opc); pc->opc = Yap_opcode(op); #ifdef DEBUG_RESTORE2 YP_fprintf(errout, "%s\n", op_names[op]); #endif switch (op) { case _Ystop: case _Nstop: #ifdef DEBUG_RESTORE2 YP_fprintf(errout, "left OK\n"); #endif return; /* instructions type ld */ case _try_me: case _retry_me: case _trust_me: case _profiled_retry_me: case _profiled_trust_me: case _count_retry_me: case _count_trust_me: case _try_me0: case _retry_me0: case _trust_me0: case _try_me1: case _retry_me1: case _trust_me1: case _try_me2: case _retry_me2: case _trust_me2: case _try_me3: case _retry_me3: case _trust_me3: case _try_me4: case _retry_me4: case _trust_me4: case _spy_or_trymark: case _try_and_mark: case _profiled_retry_and_mark: case _count_retry_and_mark: case _retry_and_mark: case _try_clause: case _retry: case _trust: case _retry_first: case _trust_first: case _retry_tail: case _trust_tail: case _retry_head: case _trust_head: #ifdef YAPOR case _getwork: case _getwork_seq: case _sync: #endif #ifdef TABLING case _table_try_me_single: case _table_try_me: case _table_retry_me: case _table_trust_me: case _table_answer_resolution: case _table_completion: #endif pc->u.ld.p = PtoPredAdjust(pc->u.ld.p); pc->u.ld.d = PtoOpAdjust(pc->u.ld.d); pc = NEXTOP(pc,ld); break; /* instructions type l */ case _enter_profiling: case _count_call: case _retry_profiled: case _count_retry: case _try_logical_pred: case _trust_logical_pred: case _execute: case _dexecute: case _jump: case _move_back: case _skip: case _try_in: case _jump_if_var: pc->u.l.l = PtoOpAdjust(pc->u.l.l); pc = NEXTOP(pc,l); break; /* instructions type EC */ case _alloc_for_logical_pred: pc->u.EC.ClBase = PtoOpAdjust(pc->u.EC.ClBase); pc = NEXTOP(pc,EC); break; /* instructions type e */ case _trust_fail: case _op_fail: case _cut: case _cut_t: case _cut_e: case _procceed: case _allocate: case _deallocate: case _write_void: case _write_list: case _write_l_list: #if !defined(YAPOR) case _or_last: #endif case _pop: case _index_pred: case _undef_p: case _spy_pred: case _p_equal: case _p_dif: case _p_eq: case _p_functor: #ifdef YAPOR case _getwork_first_time: #endif #ifdef TABLING case _trie_do_var: case _trie_trust_var: case _trie_try_var: case _trie_retry_var: case _trie_do_val: case _trie_trust_val: case _trie_try_val: case _trie_retry_val: case _trie_do_atom: case _trie_trust_atom: case _trie_try_atom: case _trie_retry_atom: case _trie_do_list: case _trie_trust_list: case _trie_try_list: case _trie_retry_list: case _trie_do_struct: case _trie_trust_struct: case _trie_try_struct: case _trie_retry_struct: #endif pc = NEXTOP(pc,e); break; /* instructions type x */ case _save_b_x: case _comit_b_x: case _get_list: case _put_list: case _write_x_var: case _write_x_val: case _write_x_loc: case _p_atom_x: case _p_atomic_x: case _p_integer_x: case _p_nonvar_x: case _p_number_x: case _p_var_x: case _p_db_ref_x: case _p_primitive_x: case _p_compound_x: case _p_float_x: case _p_cut_by_x: pc->u.x.x = XAdjust(pc->u.x.x); pc = NEXTOP(pc,x); break; /* instructions type y */ case _save_b_y: case _comit_b_y: case _write_y_var: case _write_y_val: case _write_y_loc: case _p_atom_y: case _p_atomic_y: case _p_integer_y: case _p_nonvar_y: case _p_number_y: case _p_var_y: case _p_db_ref_y: case _p_primitive_y: case _p_compound_y: case _p_float_y: case _p_cut_by_y: pc->u.y.y = YAdjust(pc->u.y.y); pc = NEXTOP(pc,y); break; /* instructions type sla */ case _fcall: case _call: case _p_execute: case _p_execute_within: case _p_last_execute_within: #ifdef YAPOR case _or_last: #endif if (pc->u.sla.bmap != NULL) { pc->u.sla.bmap = CellPtoHeapAdjust(pc->u.sla.bmap); } pc->u.sla.sla_u.p = PtoPredAdjust(pc->u.sla.sla_u.p); pc->u.sla.p0 = PtoPredAdjust(pc->u.sla.p0); pc = NEXTOP(pc,sla); break; /* instructions type sla, but for disjunctions */ case _either: case _or_else: if (pc->u.sla.bmap != NULL) { pc->u.sla.bmap = CellPtoHeapAdjust(pc->u.sla.bmap); } pc->u.sla.sla_u.l = PtoOpAdjust(pc->u.sla.sla_u.l); pc->u.sla.p0 = PtoPredAdjust(pc->u.sla.p0); pc = NEXTOP(pc,sla); break; /* instructions type sla, but for functions */ case _call_cpred: case _call_usercpred: pc->u.sla.sla_u.p = PtoPredAdjust(pc->u.sla.sla_u.p); pc->u.sla.p0 = PtoPredAdjust(pc->u.sla.p0); if (pc->u.sla.bmap != NULL) { pc->u.sla.bmap = CellPtoHeapAdjust(pc->u.sla.bmap); } pc = NEXTOP(pc,sla); break; /* instructions type xx */ case _get_x_var: case _get_x_val: case _glist_valx: case _gl_void_varx: case _gl_void_valx: case _put_x_var: case _put_x_val: pc->u.xx.xr = XAdjust(pc->u.xx.xr); pc->u.xx.xl = XAdjust(pc->u.xx.xl); pc = NEXTOP(pc,xx); break; /* instructions type yx */ case _get_y_var: case _get_y_val: case _put_y_var: case _put_y_val: case _put_unsafe: pc->u.yx.x = XAdjust(pc->u.yx.x); pc->u.yx.y = YAdjust(pc->u.yx.y); pc = NEXTOP(pc,yx); break; /* instructions type xc */ case _get_atom: case _put_atom: case _get_float: case _get_longint: case _get_bigint: pc->u.xc.x = XAdjust(pc->u.xc.x); { Term t = pc->u.xc.c; if (IsAtomTerm(t)) pc->u.xc.c = AtomTermAdjust(t); else if (IsApplTerm(t)) pc->u.xc.c = BlobTermAdjust(t); } pc = NEXTOP(pc,xc); break; /* instructions type xf */ case _get_struct: case _put_struct: pc->u.xf.x = XAdjust(pc->u.xf.x); pc->u.xf.f = FuncAdjust(pc->u.xf.f); pc = NEXTOP(pc,xf); break; /* instructions type xy */ case _glist_valy: case _gl_void_vary: case _gl_void_valy: pc->u.xy.x = XAdjust(pc->u.xy.x); pc->u.xy.y = YAdjust(pc->u.xy.y); pc = NEXTOP(pc,xy); break; /* instructions type ox */ case _unify_x_var: case _unify_x_var_write: case _unify_l_x_var: case _unify_l_x_var_write: case _unify_x_val_write: case _unify_x_val: case _unify_l_x_val_write: case _unify_l_x_val: case _unify_x_loc_write: case _unify_x_loc: case _unify_l_x_loc_write: case _unify_l_x_loc: case _save_pair_x_write: case _save_pair_x: case _save_appl_x_write: case _save_appl_x: pc->u.ox.opcw = Yap_opcode(Yap_op_from_opcode(pc->u.ox.opcw)); pc->u.ox.x = XAdjust(pc->u.ox.x); pc = NEXTOP(pc,ox); break; /* instructions type oxx */ case _unify_x_var2: case _unify_x_var2_write: case _unify_l_x_var2: case _unify_l_x_var2_write: pc->u.oxx.opcw = Yap_opcode(Yap_op_from_opcode(pc->u.oxx.opcw)); pc->u.oxx.xl = XAdjust(pc->u.oxx.xl); pc->u.oxx.xr = XAdjust(pc->u.oxx.xr); pc = NEXTOP(pc,oxx); break; /* instructions type oy */ case _unify_y_var: case _unify_y_var_write: case _unify_l_y_var: case _unify_l_y_var_write: case _unify_y_val_write: case _unify_y_val: case _unify_l_y_val_write: case _unify_l_y_val: case _unify_y_loc_write: case _unify_y_loc: case _unify_l_y_loc_write: case _unify_l_y_loc: case _save_pair_y_write: case _save_pair_y: case _save_appl_y_write: case _save_appl_y: pc->u.oy.opcw = Yap_opcode(Yap_op_from_opcode(pc->u.oy.opcw)); pc->u.oy.y = YAdjust(pc->u.oy.y); pc = NEXTOP(pc,oy); break; /* instructions type o */ case _unify_void_write: case _unify_void: case _unify_l_void_write: case _unify_l_void: case _unify_list_write: case _unify_list: case _unify_l_list_write: case _unify_l_list: pc->u.o.opcw = Yap_opcode(Yap_op_from_opcode(pc->u.o.opcw)); pc = NEXTOP(pc,o); break; /* instructions type os */ case _unify_n_voids_write: case _unify_n_voids: case _unify_l_n_voids_write: case _unify_l_n_voids: pc->u.os.opcw = Yap_opcode(Yap_op_from_opcode(pc->u.os.opcw)); pc = NEXTOP(pc,os); break; /* instructions type oc */ case _unify_atom_write: case _unify_atom: case _unify_l_atom_write: case _unify_l_atom: case _unify_float: case _unify_l_float: case _unify_longint: case _unify_l_longint: case _unify_bigint: case _unify_l_bigint: pc->u.oc.opcw = Yap_opcode(Yap_op_from_opcode(pc->u.oc.opcw)); { Term t = pc->u.oc.c; if (IsAtomTerm(t)) pc->u.oc.c = AtomTermAdjust(t); else if (IsApplTerm(t)) pc->u.oc.c = BlobTermAdjust(t); } pc = NEXTOP(pc,oc); break; /* instructions type osc */ case _unify_n_atoms_write: case _unify_n_atoms: pc->u.osc.opcw = Yap_opcode(Yap_op_from_opcode(pc->u.osc.opcw)); { Term t = pc->u.osc.c; if (IsAtomTerm(t)) pc->u.osc.c = AtomTermAdjust(t); } pc = NEXTOP(pc,osc); break; /* instructions type of */ case _unify_struct_write: case _unify_struct: case _unify_l_struc_write: case _unify_l_struc: pc->u.of.opcw = Yap_opcode(Yap_op_from_opcode(pc->u.of.opcw)); pc->u.of.f = FuncAdjust(pc->u.of.f); pc = NEXTOP(pc,of); break; /* instructions type s */ case _write_n_voids: case _pop_n: #ifdef TABLING case _table_new_answer: #endif pc = NEXTOP(pc,s); break; /* instructions type c */ case _write_atom: { Term t = pc->u.c.c; if (IsAtomTerm(t)) pc->u.c.c = AtomTermAdjust(t); else if (IsApplTerm(t)) pc->u.c.c = BlobTermAdjust(t); } pc = NEXTOP(pc,c); break; /* instructions type sc */ case _write_n_atoms: { Term t = pc->u.sc.c; if (IsAtomTerm(t)) pc->u.sc.c = AtomTermAdjust(t); } pc = NEXTOP(pc,sc); break; /* instructions type f */ case _write_struct: case _write_l_struc: pc->u.f.f = FuncAdjust(pc->u.f.f); pc = NEXTOP(pc,f); break; /* instructions type sdl */ case _call_c_wfail: pc->u.sdl.p = PtoPredAdjust(pc->u.sdl.p); pc->u.sdl.l = PtoOpAdjust(pc->u.sdl.l); pc = NEXTOP(pc,sdl); break; /* instructions type lds */ case _try_c: case _try_userc: /* don't need to do no nothing here, initstaff will do it for us */ pc->u.lds.p = PtoPredAdjust(pc->u.lds.p); pc = NEXTOP(pc,lds); break; case _retry_c: case _retry_userc: /* don't need to do no nothing here, initstaff will do it for us pc->u.lds.d = CCodeAdjust(pc->u.lds.d); */ pc->u.lds.p = PtoPredAdjust(pc->u.lds.p); pc = NEXTOP(pc,lds); break; /* instructions type ldl */ case _trust_in: case _trust_first_in: case _trust_tail_in: case _trust_head_in: pc->u.ldl.p = PtoPredAdjust(pc->u.ldl.p); pc->u.ldl.d = PtoOpAdjust(pc->u.ldl.d); pc->u.ldl.bl = PtoOpAdjust(pc->u.ldl.bl); pc = NEXTOP(pc,ldl); break; /* instructions type llll */ case _switch_on_type: case _switch_list_nl: case _switch_on_head: pc->u.llll.l1 = PtoOpAdjust(pc->u.llll.l1); pc->u.llll.l2 = PtoOpAdjust(pc->u.llll.l2); pc->u.llll.l3 = PtoOpAdjust(pc->u.llll.l3); pc->u.llll.l4 = PtoOpAdjust(pc->u.llll.l4); pc = NEXTOP(pc,llll); break; /* instructions type lll */ case _switch_on_nonv: case _switch_nv_list: pc->u.lll.l1 = PtoOpAdjust(pc->u.lll.l1); pc->u.lll.l2 = PtoOpAdjust(pc->u.lll.l2); pc->u.lll.l3 = PtoOpAdjust(pc->u.lll.l3); pc = NEXTOP(pc,lll); break; /* instructions type cll */ case _if_not_then: { Term t = pc->u.cll.c; if (IsAtomTerm(t)) pc->u.cll.c = AtomTermAdjust(t); } pc->u.cll.l1 = PtoOpAdjust(pc->u.cll.l1); pc->u.cll.l2 = PtoOpAdjust(pc->u.cll.l2); pc = NEXTOP(pc,cll); break; /* instructions type ollll */ case _switch_list_nl_prefetch: pc->u.ollll.pop = Yap_opcode(Yap_op_from_opcode(pc->u.ollll.pop)); pc->u.ollll.l1 = PtoOpAdjust(pc->u.ollll.l1); pc->u.ollll.l2 = PtoOpAdjust(pc->u.ollll.l2); pc->u.ollll.l3 = PtoOpAdjust(pc->u.ollll.l3); pc->u.ollll.l4 = PtoOpAdjust(pc->u.ollll.l4); pc = NEXTOP(pc,ollll); break; /* switch_on_func */ case _switch_on_func: { int i, j; CELL *oldcode, *startcode; i = pc->u.s.s; startcode = oldcode = (CELL *)NEXTOP(pc,s); for (j = 0; j < i; j++) { Functor oldfunc = (Functor)(oldcode[0]); CODEADDR oldjmp = (CODEADDR)(oldcode[1]); if (oldfunc != NULL) { oldcode[0] = (CELL)FuncAdjust(oldfunc); } oldcode[1] = (CELL)CodeAddrAdjust(oldjmp); oldcode += 2; } rehash(startcode, i, Funcs); pc = (yamop *)oldcode; } break; /* switch_on_cons */ case _switch_on_cons: { int i, j; CELL *oldcode; #if !USE_OFFSETS CELL *startcode; #endif i = pc->u.s.s; #if !USE_OFFSETS startcode = #endif oldcode = (CELL *)NEXTOP(pc,s); for (j = 0; j < i; j++) { #if !USE_OFFSETS Term oldatom = oldcode[0]; #endif CODEADDR oldjmp = (CODEADDR)(oldcode[1]); #if !USE_OFFSETS if (oldatom != 0x0) { oldcode[0] = AtomTermAdjust(oldatom); } #endif oldcode[1] = (CELL)CodeAddrAdjust(oldjmp); oldcode += 2; } #if !USE_OFFSETS rehash(startcode, i, Atomics); #endif pc = (yamop *)oldcode; } break; /* instructions type fll */ case _go_on_func: pc->u.fll.f = FuncAdjust(pc->u.fll.f); pc->u.fll.l1 = CodeAddrAdjust(pc->u.fll.l1); pc->u.fll.l2 = CodeAddrAdjust(pc->u.fll.l2); pc = NEXTOP(pc,fll); break; /* instructions type cll */ case _go_on_cons: if (IsAtomTerm(pc->u.cll.c)) pc->u.cll.c = AtomTermAdjust(pc->u.cll.c); pc->u.cll.l1 = PtoOpAdjust(pc->u.cll.l1); pc->u.cll.l2 = PtoOpAdjust(pc->u.cll.l2); pc = NEXTOP(pc,cll); break; /* instructions type sl */ case _if_func: { int i, j; CELL *oldcode; i = pc->u.s.s; pc->u.sl.l = PtoOpAdjust(pc->u.sl.l); oldcode = (CELL *)NEXTOP(pc,sl); for (j = 0; j < i; ++j) { Functor oldfunc = (Functor)(oldcode[0]); CODEADDR oldjmp = (CODEADDR)(oldcode[1]); if (oldfunc != NULL) { oldcode[0] = (CELL)FuncAdjust(oldfunc); } oldcode[1] = (CELL)CodeAddrAdjust(oldjmp); oldcode += 2; pc = (yamop *)oldcode; } } break; case _if_cons: { int i, j; CELL *oldcode; i = pc->u.sl.s; pc->u.sl.l = PtoOpAdjust(pc->u.sl.l); oldcode = (CELL *)NEXTOP(pc,sl); for (j = 0; j < i; ++j) { #if !USE_OFFSETS Term oldatom = oldcode[0]; #endif CODEADDR oldjmp = (CODEADDR)(oldcode[1]); #if !USE_OFFSETS if (oldatom != 0x0) { oldcode[0] = AtomTermAdjust(oldatom); } #endif oldcode[1] = (CELL)CodeAddrAdjust(oldjmp); oldcode += 2; } pc = (yamop *)oldcode; } break; /* instructions type slll */ case _switch_last: case _switch_l_list: pc->u.slll.p = PtoPredAdjust(pc->u.slll.p); pc->u.slll.l1 = PtoOpAdjust(pc->u.slll.l1); pc->u.slll.l2 = PtoOpAdjust(pc->u.slll.l2); pc->u.slll.l3 = PtoOpAdjust(pc->u.slll.l3); pc = NEXTOP(pc,slll); break; /* instructions type xxx */ case _p_plus_vv: case _p_minus_vv: case _p_times_vv: case _p_div_vv: case _p_and_vv: case _p_or_vv: case _p_sll_vv: case _p_slr_vv: case _p_arg_vv: case _p_func2s_vv: case _p_func2f_xx: pc->u.xxx.x = XAdjust(pc->u.xxx.x); pc->u.xxx.x1 = XAdjust(pc->u.xxx.x1); pc->u.xxx.x2 = XAdjust(pc->u.xxx.x2); pc = NEXTOP(pc,xxx); break; /* instructions type xxc */ case _p_plus_vc: case _p_minus_cv: case _p_times_vc: case _p_div_cv: case _p_and_vc: case _p_or_vc: case _p_sll_vc: case _p_slr_vc: case _p_func2s_vc: pc->u.xxc.x = XAdjust(pc->u.xxc.x); pc->u.xxc.xi = XAdjust(pc->u.xxc.xi); pc = NEXTOP(pc,xxc); break; case _p_div_vc: case _p_sll_cv: case _p_slr_cv: case _p_arg_cv: pc->u.xcx.x = XAdjust(pc->u.xcx.x); pc->u.xcx.xi = XAdjust(pc->u.xcx.xi); pc = NEXTOP(pc,xcx); break; case _p_func2s_cv: pc->u.xcx.x = XAdjust(pc->u.xcx.x); if (IsAtomTerm(pc->u.xcx.c)) pc->u.xcx.c = AtomTermAdjust(pc->u.xcx.c); pc->u.xcx.xi = XAdjust(pc->u.xcx.xi); pc = NEXTOP(pc,xcx); break; /* instructions type xyx */ case _p_func2f_xy: pc->u.xyx.x = XAdjust(pc->u.xyx.x); pc->u.xyx.x1 = XAdjust(pc->u.xyx.x1); pc->u.xyx.y2 = YAdjust(pc->u.xyx.y2); pc = NEXTOP(pc,xyx); break; /* instructions type yxx */ case _p_plus_y_vv: case _p_minus_y_vv: case _p_times_y_vv: case _p_div_y_vv: case _p_and_y_vv: case _p_or_y_vv: case _p_sll_y_vv: case _p_slr_y_vv: case _p_arg_y_vv: case _p_func2s_y_vv: case _p_func2f_yx: pc->u.yxx.y = YAdjust(pc->u.yxx.y); pc->u.yxx.x1 = XAdjust(pc->u.yxx.x1); pc->u.yxx.x2 = XAdjust(pc->u.yxx.x2); pc = NEXTOP(pc,yxx); break; /* instructions type yyx */ case _p_func2f_yy: pc->u.yyx.y1 = YAdjust(pc->u.yyx.y1); pc->u.yyx.y2 = YAdjust(pc->u.yyx.y2); pc->u.yyx.x = XAdjust(pc->u.yyx.x); pc = NEXTOP(pc,yyx); break; /* instructions type yxc */ case _p_plus_y_vc: case _p_minus_y_cv: case _p_times_y_vc: case _p_div_y_vc: case _p_div_y_cv: case _p_and_y_vc: case _p_or_y_vc: case _p_sll_y_vc: case _p_slr_y_vc: case _p_func2s_y_vc: pc->u.yxc.y = YAdjust(pc->u.yxc.y); pc->u.yxc.xi = XAdjust(pc->u.yxc.xi); pc = NEXTOP(pc,yxc); break; /* instructions type ycx */ case _p_sll_y_cv: case _p_slr_y_cv: case _p_arg_y_cv: pc->u.ycx.y = YAdjust(pc->u.ycx.y); pc->u.ycx.xi = XAdjust(pc->u.ycx.xi); pc = NEXTOP(pc,ycx); break; /* instructions type lxx */ case _p_func2s_y_cv: pc->u.ycx.y = YAdjust(pc->u.ycx.y); if (IsAtomTerm(pc->u.ycx.c)) pc->u.ycx.c = AtomTermAdjust(pc->u.ycx.c); pc->u.ycx.xi = XAdjust(pc->u.ycx.xi); pc = NEXTOP(pc,ycx); break; /* instructions type lxx */ case _call_bfunc_xx: pc->u.lxx.p = PtoPredAdjust(pc->u.lxx.p); pc->u.lxx.x1 = XAdjust(pc->u.lxx.x1); pc->u.lxx.x2 = XAdjust(pc->u.lxx.x2); pc = NEXTOP(pc,lxx); break; /* instructions type lxy */ case _call_bfunc_yx: case _call_bfunc_xy: pc->u.lxy.p = PtoPredAdjust(pc->u.lxy.p); pc->u.lxy.x = XAdjust(pc->u.lxy.x); pc->u.lxy.y = YAdjust(pc->u.lxy.y); pc = NEXTOP(pc,lxy); break; case _call_bfunc_yy: pc->u.lyy.p = PtoPredAdjust(pc->u.lyy.p); pc->u.lyy.y1 = YAdjust(pc->u.lyy.y1); pc->u.lyy.y2 = YAdjust(pc->u.lyy.y2); pc = NEXTOP(pc,lyy); break; } } while (TRUE); } /* * Restores a group of clauses for the same predicate, starting with First * and ending with Last, First may be equal to Last */ static void CleanClauses(yamop *First, yamop *Last) { yamop *cl = First; do { RestoreClause(ClauseCodeToClause(cl), ASSEMBLING_CLAUSE); if (cl == Last) return; cl = NextClause(cl); } while (TRUE); } static void restore_static_array(StaticArrayEntry *ae) { Int sz = -ae->ArrayEArity; switch (ae->ArrayType) { case array_of_ints: case array_of_doubles: case array_of_chars: case array_of_uchars: return; case array_of_ptrs: { AtomEntry **base = (AtomEntry **)AddrAdjust((ADDR)(ae->ValueOfVE.ptrs)); Int i; ae->ValueOfVE.ptrs = base; if (ae != NULL) { for (i=0; i<sz; i++) { AtomEntry *reg = *base; if (reg == NULL) { base++; } else if (IsOldCode((CELL)reg)) { *base++ = AtomEntryAdjust(reg); } else if (IsOldLocalInTR((CELL)reg)) { *base++ = (AtomEntry *)LocalAddrAdjust((ADDR)reg); } else if (IsOldGlobal((CELL)reg)) { *base++ = (AtomEntry *)GlobalAddrAdjust((ADDR)reg); } else if (IsOldDelay((CELL)reg)) { *base++ = (AtomEntry *)DelayAddrAdjust((ADDR)reg); } else if (IsOldTrail((CELL)reg)) { *base++ = (AtomEntry *)TrailAddrAdjust((ADDR)reg); } else { /* oops */ base++; } } } } return; case array_of_atoms: { Term *base = (Term *)AddrAdjust((ADDR)(ae->ValueOfVE.atoms)); Int i; ae->ValueOfVE.atoms = base; if (ae != 0L) { for (i=0; i<sz; i++) { Term reg = *base; if (reg == 0L) { base++; } else { *base++ = AtomTermAdjust(reg); } } } } return; case array_of_dbrefs: { Term *base = (Term *)AddrAdjust((ADDR)(ae->ValueOfVE.dbrefs)); Int i; ae->ValueOfVE.dbrefs = base; if (ae != 0L) { for (i=0; i<sz; i++) { Term reg = *base; if (reg == 0L) { base++; } else { *base++ = AbsAppl(PtoHeapCellAdjust(RepAppl(reg))); } } } } return; case array_of_terms: { DBRef *base = (DBRef *)AddrAdjust((ADDR)(ae->ValueOfVE.terms)); Int i; ae->ValueOfVE.terms = base; if (ae != 0L) { for (i=0; i<sz; i++) { DBRef reg = *base; if (reg == NULL) { base++; } else { *base++ = reg = DBRefAdjust(reg); RestoreDBEntry(reg); } } } } return; } } /* * Clean all the code for a particular predicate, this can get a bit tricky, * because of the indexing code */ static void CleanCode(PredEntry *pp) { CELL flag; /* Init takes care of the first 2 cases */ if (pp->ArityOfPE) pp->FunctorOfPred = FuncAdjust(pp->FunctorOfPred); else pp->FunctorOfPred = (Functor)AtomAdjust((Atom)(pp->FunctorOfPred)); if (pp->OwnerFile) pp->OwnerFile = AtomAdjust(pp->OwnerFile); pp->OpcodeOfPred = Yap_opcode(Yap_op_from_opcode(pp->OpcodeOfPred)); if (pp->PredFlags & (AsmPredFlag|CPredFlag)) { /* assembly */ if (pp->CodeOfPred) { pp->CodeOfPred = PtoOpAdjust(pp->CodeOfPred); CleanClauses(pp->CodeOfPred, pp->CodeOfPred); } } else { yamop *FirstC, *LastC; /* Prolog code */ if (pp->cs.p_code.FirstClause) pp->cs.p_code.FirstClause = PtoOpAdjust(pp->cs.p_code.FirstClause); if (pp->cs.p_code.LastClause) pp->cs.p_code.LastClause = PtoOpAdjust(pp->cs.p_code.LastClause); pp->CodeOfPred =PtoOpAdjust(pp->CodeOfPred); pp->cs.p_code.TrueCodeOfPred = PtoOpAdjust(pp->cs.p_code.TrueCodeOfPred); if (pp->NextPredOfModule) pp->NextPredOfModule = PtoPredAdjust(pp->NextPredOfModule); flag = pp->PredFlags; FirstC = pp->cs.p_code.FirstClause; LastC = pp->cs.p_code.LastClause; /* We just have a fail here */ if (FirstC == NIL && LastC == NIL) { return; } #ifdef DEBUG_RESTORE2 YP_fprintf(errout, "at %lx Correcting clauses from %lx to %lx\n", *(OPCODE *) FirstC, FirstC, LastC); #endif CleanClauses(FirstC, LastC); if (flag & (DynamicPredFlag|IndexedPredFlag)) { #ifdef DEBUG_RESTORE2 YP_fprintf(errout, "Correcting dynamic/indexed code\n"); #endif RestoreClause(ClauseCodeToClause(pp->cs.p_code.TrueCodeOfPred), ASSEMBLING_INDEX); } } /* we are pointing at ourselves */ } /* * Restores all of the entries, for a particular atom, we only have problems * if we find code or data bases */ static void RestoreEntries(PropEntry *pp) { while (!EndOfPAEntr(pp)) { switch(pp->KindOfPE) { case FunctorProperty: { FunctorEntry *fe = (FunctorEntry *)pp; Prop p0; fe->NextOfPE = PropAdjust(fe->NextOfPE); fe->NameOfFE = AtomAdjust(fe->NameOfFE); p0 = fe->PropsOfFE = PropAdjust(fe->PropsOfFE); while (!EndOfPAEntr(p0)) { CleanCode(RepPredProp(p0)); p0 = RepPredProp(p0)->NextOfPE = PropAdjust(RepPredProp(p0)->NextOfPE); } } break; case ValProperty: { ValEntry *ve = (ValEntry *)pp; Term tv = ve->ValueOfVE; ve->NextOfPE = PropAdjust(ve->NextOfPE); if (IsAtomTerm(tv)) ve->ValueOfVE = AtomTermAdjust(tv); } break; case ArrayProperty: { ArrayEntry *ae = (ArrayEntry *)pp; ae->NextOfPE = PropAdjust(ae->NextOfPE); if (ae->ArrayEArity < 0) { restore_static_array((StaticArrayEntry *)ae); } else { if (ae->NextArrayE != NULL) ae->NextArrayE = PtoArrayEAdjust(ae->NextArrayE); if (IsVarTerm(ae->ValueOfVE)) RESET_VARIABLE(&(ae->ValueOfVE)); else { CELL *ptr = RepAppl(ae->ValueOfVE); /* in fact it should just be a pointer to the global, but we'll be conservative. Notice that the variable should have been reset in restore_program mode. */ if (IsOldGlobalPtr(ptr)) { ae->ValueOfVE = AbsAppl(PtoGloAdjust(ptr)); } else if (IsOldCodeCellPtr(ptr)) { ae->ValueOfVE = AbsAppl(PtoHeapCellAdjust(ptr)); } else if (IsOldLocalInTRPtr(ptr)) { ae->ValueOfVE = AbsAppl(PtoLocAdjust(ptr)); } else if (IsOldDelayPtr(ptr)) { ae->ValueOfVE = AbsAppl(PtoDelayAdjust(ptr)); } else if (IsOldTrailPtr(ptr)) { ae->ValueOfVE = AbsAppl(CellPtoTRAdjust(ptr)); } } } } break; case PEProp: { PredEntry *pe = (PredEntry *) pp; pe->NextOfPE = PropAdjust(pe->NextOfPE); CleanCode(pe); } break; case DBProperty: case LogUpdDBProperty: case CodeLogUpdDBProperty: case CodeDBProperty: #ifdef DEBUG_RESTORE2 YP_fprintf(errout, "Correcting data base clause at %p\n", pp); #endif { DBEntry *de = (DBEntry *) pp; de->NextOfPE = PropAdjust(de->NextOfPE); if (HDiff) RestoreDB(de); } break; case BBProperty: { BlackBoardEntry *bb = (BlackBoardEntry *) pp; bb->NextOfPE = PropAdjust(bb->NextOfPE); if (HDiff) RestoreBB(bb); } break; case ExpProperty: case OpProperty: case ModProperty: pp->NextOfPE = PropAdjust(pp->NextOfPE); break; default: /* OOPS */ Yap_Error(SYSTEM_ERROR, TermNil, "Invalid Atom Property %d at %p", pp->KindOfPE, pp); return; } pp = RepProp(pp->NextOfPE); } }