%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Author: Jon Sneyers % Email: jon@cs.kuleuven.ac.be % Copyright: K.U.Leuven 2004 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% :- module(guard_entailment, [ entails_guard/2, simplify_guards/5 ]). %:- use_module(library(chr)). :- use_module(library(lists)). :- use_module(hprolog). :- use_module(builtins). option(debug,off). option(optimize,full). :- constraints known/1,test/1,cleanup/0,variables/1. % knowing the same thing twice is redundant idempotence @ known(G) \ known(G) <=> true. %-------------------------------------- % Rules to check if the argument of % test/1 is entailed by known stuff %-------------------------------------- % everything follows from an inconsistent theory fail_implies_everything @ known(fail) \ test(X) <=> true. % if it's known, it's entailed trivial_entailment @ known(G) \ test(G) <=> true. varfirst_nmatch @ test(X\==A) <=> nonvar(X) | test(A\==X). distribute_nmatch @ test(X\==A) <=> nonvar(A),functor(A,Fu,Ar) | A =.. [F|AArgs], length(XArgs,Ar), B =.. [Fu|XArgs], add_args_nmatch(XArgs,AArgs,ArgCond), C = (\+ functor(X,Fu,Ar) ; (functor(X,Fu,Ar),X=B,ArgCond)), test(C). % eq implies leq eq_implies_leq1 @ known(X=:=Y) \ test(X=<Y) <=> true. eq_implies_leq2 @ known(X=:=Z) \ test(X=<Y) <=> number(Y), number(Z), Z=<Y |true. eq_implies_leq3 @ known(X=:=Z) \ test(Y=<X) <=> number(Y), number(Z), Y=<Z |true. % stronger inequality implies a weaker one leq_implies_leq1 @ known(X=<Z) \ test(X=<Y) <=> number(Y), number(Z), Z=<Y |true. leq_implies_leq2 @ known(X=<Y) \ test(Z=<Y) <=> number(X), number(Z), Z=<X | true. % X =< Z implies X =\= Y for all Y > Z leq_implies_neq1 @ known(X=<Z) \ test(X=\=Y) <=> number(Y), number(Z), Y>Z | true. leq_implies_neq2 @ known(X=<Y) \ test(Y=\=Z) <=> number(X), number(Z), Z<X | true. %-------------------------------------- % Rules to translate some stuff %-------------------------------------- % we only want =<, =:= and =\= known_g2l @ known(X>Y) <=> known(Y<X). known_geq2leq @ known(X>=Y) <=> known(Y=<X). known_l2leq_neq @ known(X<Y) <=> known(X=<Y), known(X=\=Y). known_is2eq @ known(X is Y) <=> known(X=:=Y). test_g2l @ test(X>Y) <=> test(Y<X). test_geq2leq @test(X>=Y) <=> test(Y=<X). test_l2leq_neq @test(X<Y) <=> test(((X=<Y),(X=\=Y))). test_is2eq @ test(X is Y) <=> test(X=:=Y). % propagate == and \== to =:= and =\= (which is a weaker statement) match2eq1 @ known(X==Y) ==> number(X) | known(X=:=Y). match2eq2 @known(X==Y) ==> number(Y) | known(X=:=Y). nmatch2neq1 @ known(X\==Y) ==> number(X) | known(X=\=Y). nmatch2neq2 @ known(X\==Y) ==> number(Y) | known(X=\=Y). %-------------------------------------- % Rules to extend the known stuff %-------------------------------------- % if we derived inconsistency, all other knowledge is redundant fail_is_better_than_anything_else @ known(fail) \ known(_) <=> true. % conjunctions conj @ known((A,B)) <=> known(A), known(B). % no need to remember trivial stuff forget_trivial01 @ known(X=:=X) <=> true. forget_trivial02 @ known(X==X) <=> true. forget_trivial03 @ known(X=<X) <=> true. forget_trivial04 @ known(X=X) <=> true. %-------------------------------------- % Rules for = and \= (and functor) %-------------------------------------- unify_vars1 @ known(X=Y) <=> var(X) | X=Y. unify_vars2 @ known(X=Y) <=> var(Y) | X=Y. %functor @ known(functor(X,F,A)) <=> var(X),ground(F),ground(A) | functor(X,F,A). inconsistency4 @ known(X\=Y) <=> var(X),var(Y),X=Y | known(fail). inconsistency4 @ known(X\=Y) <=> ground(X),ground(Y),X=Y | known(fail). functor @ variables(V),known(functor(X,F,A)) <=> var(X), ground(F), ground(A) | functor(X,F,A), X =.. [_|Args], append(Args,V,NewV), variables(NewV). functor_inconsistency1 @ known(functor(X,F1,A1)) <=> nonvar(X), \+ functor(X,F1,A1) | known(fail). negfunctor_trivial @ known(\+ functor(X,F1,A1)) <=> nonvar(X), functor(X,F1,A1) | known(fail). functor_inconsistency2 @ known(functor(X,F1,A1)), known(functor(X,F2,A2)) <=> nonvar(F1),nonvar(A1),nonvar(F2),nonvar(A2) % (F1 \= F2 ; A1 \= A2) is entailed by idempotence | known(fail). nunify_inconsistency @ known(X\=X) <=> known(fail). nonvar_unification @ known(X=Y) <=> nonvar(X), nonvar(Y),functor(X,F,A) | ( functor(Y,F,A),X=Y -> true ; known(fail) ). nunify_expand @ known(X\=Y) <=> var(X),nonvar(Y), functor(Y,F,A), A>0 | length(Args,A), Y =.. [F|YArgs], Y1 =.. [F|Args], add_args_nunif(YArgs,Args,Nunif), C = (\+ functor(X,F,A) ; (X = Y1, Nunif )), known(C). nunify_expand2 @ known(X\=Y) <=> nonvar(X),nonvar(Y), functor(X,F,A) | (functor(Y,F,A) -> X =.. [F|XArgs], Y =.. [F|YArgs], add_args_nunif(XArgs,YArgs,Nunif), known(Nunif) ; true ). nunify_symmetry @ known(X\=Y) ==> known(Y\=X). %-------------------------------------- % Rules for =< %-------------------------------------- groundleq2 @ known(X=<Y) <=> number(X), number(Y), X>Y | known(fail). % only keep the strictest inequality remove_redundant_leq1 @ known(X=<Y) \ known(X=<Z) <=> number(Y), number(Z), Y=<Z | true. remove_redundant_leq1 @ known(Z=<Y) \ known(X=<Y) <=> number(X), number(Z), X=<Z | true. leq_antisymmetry @ known(X=<Y), known(Y=<X) <=> known(X=:=Y). leq_transitivity @ known(X=<Y), known(Y=<Z) ==> known(X=<Z). strict_leq_transitivity @ known(X=<Y),known(X=\=Y),known(Y=<Z),known(Y=\=Z) ==> known(X=\=Z). %-------------------------------------- % Rules for =:= (and =\=) %-------------------------------------- groundeq2 @ known(X=:=Y) <=> number(X), number(Y), X=\=Y | known(fail). groundneq2 @ known(X=\=Y) <=> number(X), number(Y), X=:=Y | known(fail). neq_inconsistency @ known(X=\=X) <=> known(fail). inconsistency @ known(X=:=Y), known(X=\=Y) <=> known(fail). eq_transitivity @ known(X=:=Y), known(Y=:=Z) ==> X \== Z | known(X=:=Z). eq_symmetry @ known(X=:=Y) ==> known(Y=:=X). neq_symmetry @ known(X=\=Y) ==> known(Y=\=X). %-------------------------------------- % Rules for number/1, float/1, integer/1 %-------------------------------------- notnumber @ known(number(X)) <=> nonvar(X), \+ number(X) | known(fail). notfloat @ known(float(X)) <=> nonvar(X), \+ float(X)| known(fail). notinteger @ known(integer(X)) <=> nonvar(X), \+ integer(X) | known(fail). int2number @ known(integer(X)) ==> known(number(X)). float2number @ known(float(X)) ==> known(number(X)). %-------------------------------------- % Rules for \+ %-------------------------------------- inconsistency2 @ known(X), known(\+ X) <=> known(fail). %-------------------------------------- % Rules for == and \== %-------------------------------------- inconsistency3 @ known(X\==Y), known(X==Y) <=> known(fail). eq_transitivity2 @ known(X==Y), known(Y==Z) ==> known(X==Z). neq_substitution @ known(X==Y), known(Y\==Z) ==> known(X\==Z). eq_symmetry2 @ known(X==Y) ==> known(Y==X). neq_symmetry2 @ known(X\==Y) ==> known(Y\==X). neq_inconsistency @ known(X\==X) ==> known(fail). functorsmatch@ known(X\==Y) <=> nonvar(X), nonvar(Y), functor(X,F,A) | (functor(Y,F,A) -> X =.. [F|XArgs], Y =.. [F|YArgs], add_args_nmatch(XArgs,YArgs,ArgCond), known(ArgCond) ; true ). eq_implies_unif @ known(X==Y) ==> known(X=Y). %-------------------------------------- % Rules for var/1 and nonvar/1 %-------------------------------------- ground2nonvar @ known(ground(X)) ==> known(nonvar(X)). compound2nonvar @ known(compound(X)) ==> known(nonvar(X)). atomic2nonvar @ known(atomic(X)) ==> known(nonvar(X)). number2nonvar @ known(number(X)) ==> known(nonvar(X)). atom2nonvar @ known(atom(X)) ==> known(nonvar(X)). var_inconsistency @ known(var(X)), known(nonvar(X)) <=> known(fail). %-------------------------------------- % Rules for disjunctions %-------------------------------------- %ad-hoc disjunction optimization: simplify_disj1 @ known(A) \ known((\+ A; B)) <=> known(B). simplify_disj1b @ known(A) \ known((\+ A, C; B)) <=> known(B). simplify_disj1c @ known(\+ A) \ known((A; B)) <=> known(B). simplify_disj1d @ known(\+ A) \ known((A, C; B)) <=> known(B). simplify_disj2 @ known((fail; B)) <=> known(B). simplify_disj3 @ known((B ; fail)) <=> known(B). simplify_disj4 @ known(functor(X,F1,A1)) \ known((\+ functor(X,F,A); B)) <=> % F1 \== F or A1 \== A true. % the disjunction does not provide any additional information simplify_disj5 @ known((\+ functor(X,F,A); B)) <=> nonvar(X), functor(X,F,A) | known(B). simplify_disj6 @ known((\+ functor(X,F,A); B)) <=> nonvar(X), \+ functor(X,F,A) | true. % the disjunction does not provide any additional information test_simplify_disj1 @test((fail;B)) <=> test(B). test_simplify_disj2 @test((B;fail)) <=> test(B). %-------------------------------------- % Rules to test unifications %-------------------------------------- trivial_unif @ test(X=Y) <=> X=Y | X=Y. testgroundunif @ test(X=A) <=> ground(X),ground(A) | X=A. varfirst @ test(X=A) <=> nonvar(X),var(A) | test(A=X). distribute_unif @ variables(V) \ test(X=A) <=> var(X),nonvar(A), functor(A,F,Arit),Arit>0, A =.. [F|AArgs],\+ all_unique_vars(AArgs,V) | C=(functor(X,F,Arit),X=A), test(C). distribute_unif2 @ test(X=A) <=> var(X),nonvar(A), functor(A,F,Arit),%Arit>0, A =.. [F|AArgs] % , all_unique_vars(AArgs) | C=functor(X,F,Arit), test(C). distribute_unif3 @ test(X=A) <=> nonvar(X),nonvar(A),functor(A,F,Arit), A =.. [F|AArgs] | functor(X,F,Arit), X =.. [F|XArgs], add_args_unif(XArgs,AArgs,ArgCond), test(ArgCond). testvarunif @ variables(V) \ test(X=A) <=> \+ (memberchk_eq(A,V),memberchk_eq(X,V)) | X=A. testvarunif @ variables(V) \ test(functor(X,F,A)) <=> var(X),ground(F),ground(A),\+ memberchk_eq(X,V) | functor(X,F,A). % X is a singleton variable % trivial truths true_is_true @ test(true) <=> true. trivial01 @ test(X==Y) <=> X==Y | true. trivial02 @ test(X=:=Y) <=> X==Y | true. trivial03 @ test(X=<Y) <=> X==Y | true. trivial04 @ test(X=<Y) <=> ground(X), ground(Y), X=<Y | true. trivial05 @ test(X=<Y) <=> ground(X), ground(Y), X>Y | fail. trivial06 @ test(X=:=Y) <=> ground(X), ground(Y), X=:=Y | true. trivial07 @ test(X=:=Y) <=> ground(X), ground(Y), X=\=Y | fail. trivial08 @ test(X=\=Y) <=> ground(X), ground(Y), X=\=Y | true. trivial09 @ test(X=\=Y) <=> ground(X), ground(Y), X=:=Y | fail. trivial10 @ test(functor(X,F1,A1)) <=> nonvar(X), functor(X,F1,A1) | true. trivial11 @ test(functor(X,F1,A1)) <=> nonvar(X) | fail. trivial12 @ test(ground(X)) <=> ground(X) | true. trivial13 @ test(number(X)) <=> number(X) | true. trivial14 @ test(float(X)) <=> float(X) | true. trivial15 @ test(integer(X)) <=> integer(X) | true. trivial16 @ test(number(X)) <=> nonvar(X) | fail. trivial17 @ test(float(X)) <=> nonvar(X) | fail. trivial18 @ test(integer(X)) <=> nonvar(X) | fail. trivial19 @ test(\+ functor(X,F1,A1)) <=> nonvar(X), functor(X,F1,A1) | fail. trivial20 @ test(\+ functor(X,F1,A1)) <=> nonvar(X) | true. trivial21 @ test(\+ ground(X)) <=> ground(X) | fail. trivial22 @ test(\+ number(X)) <=> number(X) | fail. trivial23 @ test(\+ float(X)) <=> float(X) | fail. trivial24 @ test(\+ integer(X)) <=> integer(X) | fail. trivial25 @ test(\+ number(X)) <=> nonvar(X) | true. trivial26 @ test(\+ float(X)) <=> nonvar(X) | true. trivial27 @ test(\+ integer(X)) <=> nonvar(X) | true. test_conjunction @ test((A,B)) <=> test(A), known(A), test(B). test_disjunction @ test((A;B)) <=> true | negate_b(A,NotA),negate_b(B,NotB), (known(NotB),test(A) ; known(NotA),test(B)). % disjunctions in the known stuff --> both options should entail the goals % delay disjunction unfolding until everything is added, perhaps we can % find entailed things without using the disjunctions disjunction @ test(X), known((A;B)) <=> true | \+ try(A,X),!, negate_b(A,NotA), known(NotA), \+ try(B,X). % not entailed or entailment not detected could_not_prove_entailment @ test(_) <=> fail. clean_store1 @ cleanup \ known(_) <=> true. clean_store2 @ cleanup \ variables(_) <=> true. clean_store3 @ cleanup <=> true. %-------------------------------------- % End of CHR part %-------------------------------------- entails_guard(List,Guard) :- copy_term_nat((List,Guard),(CopyList,CopyGuard)), term_variables(CopyList,CLVars), variables(CLVars), entails_guard2(CopyList), !,test(CopyGuard),!, cleanup. entails_guard2([]). entails_guard2([A|R]) :- known(A), entails_guard2(R). simplify_guards(List,Body,GuardList,SimplifiedGuards,NewBody) :- % write(starting),nl, copy_term_nat((List,GuardList),(CopyList,CopyGuard)), term_variables(CopyList,CLVars), % write(variables(CLVars)),nl, variables(CLVars), % write(gonna_add(CopyList)),nl, entails_guard2(CopyList), % write(ok_gonna_add),nl, !, % write(gonna_simplify(CopyGuard)),nl, simplify(CopyGuard,L), % write(ok_gonna_simplify(CopyGuard,L)),nl, simplified(GuardList,L,SimplifiedGuards,Body,NewBody), % write(ok_done),nl, !, cleanup. simplified([],[],[],B,B). simplified([G|RG],[keep|RL],[G|RSG],B,NB) :- simplified(RG,RL,RSG,B,NB). simplified([G|RG],[fail|RL],fail,B,B). simplified([G|RG],[true|RL],[X|RSG],B,NB) :- builtins:binds_b(G,GVars), term_variables(RG,RGVars), intersect_eq(GVars,RGVars,SharedWithRestOfGuard),!, ( SharedWithRestOfGuard = [] -> term_variables(B,BVars), intersect_eq(GVars,BVars,SharedWithBody),!, ( SharedWithBody = [] -> X=true, % e.g. c(X) <=> Y=X | true. NB=NB2 ; X=true, % e.g. c(X) <=> Y=X | writeln(Y). NB=(G,NB2) ) ; X=G, % e.g. c(X) <=> Y=X,p(Y) | true. NB=NB2 ), simplified(RG,RL,RSG,B,NB2). simplify([],[]). simplify([G|R],[SG|RS]) :- ( \+ try(true,G) -> SG = true ; builtins:negate_b(G,NotG), (\+ try(true,NotG) -> SG = fail ; SG = keep ) ), known(G), simplify(R,RS). %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% AUXILIARY PREDICATES %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% try(A,X) :- (known(A) -> true ; format(' ERROR: entailment checker: this is not supposed to happen.\n',[]) ), (test(X) -> fail ; true). lookup([],[],_,_) :- fail. lookup([K|R],[V|R2],X,Y) :- (X == K -> Y=V ; lookup(R,R2,X,Y) ). add_args_unif([],[],true). add_args_unif([X|RX],[Y|RY],(X=Y,RC)) :- add_args_unif(RX,RY,RC). add_args_nunif([],[],fail). add_args_nunif([X|RX],[Y|RY],(X\=Y;RC)) :- add_args_nunif(RX,RY,RC). add_args_nmatch([],[],fail). add_args_nmatch([X|RX],[Y|RY],(X\==Y;RC)) :- add_args_nmatch(RX,RY,RC). all_unique_vars(T,V) :- all_unique_vars(T,V,[]). all_unique_vars([],V,C). all_unique_vars([V|R],Vars,C) :- var(V), \+ memberchk_eq(V,Vars), \+ memberchk_eq(V,C), all_unique_vars(R,[V|C]).