/************************************************ BDDs in CLP(BN) A variable is represented by the N possible cases it can take V = v(Va, Vb, Vc) The generic formula is V <- X, Y Va <- P*X1*Y1 + Q*X2*Y2 + ... **************************************************/ :- module(clpbn_bdd, [bdd/3, set_solver_parameter/2, init_bdd_solver/4, run_bdd_solver/3, finalize_bdd_solver/1, check_if_bdd_done/1 ]). :- use_module(library('clpbn/dists'), [dist/4, get_dist_domain/2, get_dist_domain_size/2, get_dist_params/2 ]). :- use_module(library('clpbn/display'), [clpbn_bind_vals/3]). :- use_module(library('clpbn/aggregates'), [check_for_agg_vars/2]). :- use_module(library(atts)). :- use_module(library(hacks)). :- use_module(library(lists)). :- use_module(library(dgraphs)). :- use_module(library(bdd)). :- use_module(library(rbtrees)). :- dynamic network_counting/1. :- attribute order/1. check_if_bdd_done(_Var). bdd([[]],_,_) :- !. bdd([QueryVars], AllVars, AllDiffs) :- init_bdd_solver(_, AllVars, _, BayesNet), run_bdd_solver([QueryVars], LPs, BayesNet), finalize_bdd_solver(BayesNet), clpbn_bind_vals([QueryVars], [LPs], AllDiffs). init_bdd_solver(_, AllVars0, _, bdd(Term, Leaves, Tops)) :- % check_for_agg_vars(AllVars0, AllVars1), sort_vars(AllVars0, AllVars, Leaves), order_vars(AllVars, 0), rb_new(Vars0), rb_new(Pars0), init_tops(Leaves,Tops), get_vars_info(AllVars, Vars0, _Vars, Pars0, _Pars, Leaves, Tops, Term, []). order_vars([], _). order_vars([V|AllVars], I0) :- put_atts(V, [order(I0)]), I is I0+1, order_vars(AllVars, I). init_tops([],[]). init_tops(_.Leaves,_.Tops) :- init_tops(Leaves,Tops). sort_vars(AllVars0, AllVars, Leaves) :- dgraph_new(Graph0), build_graph(AllVars0, Graph0, Graph), dgraph_leaves(Graph, Leaves), dgraph_top_sort(Graph, AllVars). build_graph([], Graph, Graph). build_graph(V.AllVars0, Graph0, Graph) :- clpbn:get_atts(V, [dist(_DistId, Parents)]), !, dgraph_add_vertex(Graph0, V, Graph1), add_parents(Parents, V, Graph1, GraphI), build_graph(AllVars0, GraphI, Graph). build_graph(_V.AllVars0, Graph0, Graph) :- build_graph(AllVars0, Graph0, Graph). add_parents([], _V, Graph, Graph). add_parents(V0.Parents, V, Graph0, GraphF) :- dgraph_add_edge(Graph0, V0, V, GraphI), add_parents(Parents, V, GraphI, GraphF). get_vars_info([], Vs, Vs, Ps, Ps, _, _) --> []. get_vars_info([V|MoreVs], Vs, VsF, Ps, PsF, Lvs, Outs) --> { clpbn:get_atts(V, [dist(DistId, Parents)]) }, !, %{writeln(v:DistId:Parents)}, [DIST], { get_var_info(V, DistId, Parents, Vs, Vs2, Ps, Ps1, Lvs, Outs, DIST) }, get_vars_info(MoreVs, Vs2, VsF, Ps1, PsF, Lvs, Outs). get_vars_info([_|MoreVs], Vs0, VsF, Ps0, PsF, VarsInfo, Lvs, Outs) :- get_vars_info(MoreVs, Vs0, VsF, Ps0, PsF, VarsInfo, Lvs, Outs). % % let's have some fun with avg % get_var_info(V, avg(Domain), Parents0, Vs, Vs2, Ps, Ps, Lvs, Outs, DIST) :- !, reorder_vars(Parents0, Parents), length(Domain, DSize), run_though_avg(V, DSize, Domain, Parents, Vs, Vs2, Lvs, Outs, DIST). % bup_avg(V, DSize, Domain, Parents, Vs, Vs2, Lvs, Outs, DIST). % standard random variable get_var_info(V, DistId, Parents, Vs, Vs2, Ps, Ps1, Lvs, Outs, DIST) :- % clpbn:get_atts(V, [key(K)]), writeln(V:K:DistId:Parents), check_p(DistId, Parms, _ParmVars, Ps, Ps1), unbound_parms(Parms, ParmVars), check_v(V, DistId, DIST, Vs, Vs1), DIST = info(V, Tree, Ev, Values, Formula, ParmVars, Parms), % get a list of form [[P00,P01], [P10,P11], [P20,P21]] get_parents(Parents, PVars, Vs1, Vs2), cross_product(Values, Ev, PVars, ParmVars, Formula0), % (numbervars(Formula0,0,_),writeln(formula0:Ev:Formula0), fail ; true), get_evidence(V, Tree, Ev, Formula0, Formula, Lvs, Outs). %, (numbervars(Formula,0,_),writeln(formula:Formula), fail ; true) reorder_vars(Vs, OVs) :- add_pos(Vs, PVs), keysort(PVs, SVs), remove_key(SVs, OVs). add_pos([], []). add_pos([V|Vs], [K-V|PVs]) :- get_atts(V,[order(K)]), add_pos(Vs, PVs). remove_key([], []). remove_key([_-V|SVs], [V|OVs]) :- remove_key(SVs, OVs). %%%%%%%%%%%%%%%%%%%%%%%%% % % use top-down to generate average % run_though_avg(V, 3, Domain, Parents, Vs, Vs2, Lvs, Outs, DIST) :- check_v(V, avg(Domain,Parents), DIST, Vs, Vs1), DIST = info(V, Tree, Ev, [V0,V1,V2], Formula, [], []), get_parents(Parents, PVars, Vs1, Vs2), length(Parents, N), generate_3tree(F00, PVars, 0, 0, 0, N, N0, N1, N2, R, (N1+2*N2 =< N/2), (N1+2*(N2+R) =< N/2)), simplify_exp(F00, F0), % generate_3tree(F1, PVars, 0, 0, 0, N, N0, N1, N2, R, ((N1+2*(N2+R) > N/2, N1+2*N2 < (3*N)/2))), generate_3tree(F20, PVars, 0, 0, 0, N, N0, N1, N2, R, (N1+2*(N2+R) >= (3*N)/2), N1+2*N2 >= (3*N)/2), % simplify_exp(F20, F2), F20=F2, Formula0 = [V0=F0*Ev0,V2=F2*Ev2,V1=not(F0+F2)*Ev1], Ev = [Ev0,Ev1,Ev2], get_evidence(V, Tree, Ev, Formula0, Formula, Lvs, Outs). generate_3tree(OUT, _, I00, I10, I20, IR0, N0, N1, N2, R, _Exp, ExpF) :- IR is IR0-1, satisf(I00, I10, I20, IR, N0, N1, N2, R, ExpF), !, OUT = 1. generate_3tree(OUT, [[P0,P1,P2]], I00, I10, I20, IR0, N0, N1, N2, R, Exp, _ExpF) :- IR is IR0-1, ( satisf(I00+1, I10, I20, IR, N0, N1, N2, R, Exp) -> L0 = [P0|L1] ; L0 = L1 ), ( satisf(I00, I10+1, I20, IR, N0, N1, N2, R, Exp) -> L1 = [P1|L2] ; L1 = L2 ), ( satisf(I00, I10, I20+1, IR, N0, N1, N2, R, Exp) -> L2 = [P2] ; L2 = [] ), to_disj(L0, OUT). generate_3tree(OUT, [[P0,P1,P2]|Ps], I00, I10, I20, IR0, N0, N1, N2, R, Exp, ExpF) :- IR is IR0-1, ( satisf(I00+1, I10, I20, IR, N0, N1, N2, R, Exp) -> I0 is I00+1, generate_3tree(O0, Ps, I0, I10, I20, IR, N0, N1, N2, R, Exp, ExpF) -> L0 = [P0*O0|L1] ; L0 = L1 ), ( satisf(I00, I10+1, I20, IR0, N0, N1, N2, R, Exp) -> I1 is I10+1, generate_3tree(O1, Ps, I00, I1, I20, IR, N0, N1, N2, R, Exp, ExpF) -> L1 = [P1*O1|L2] ; L1 = L2 ), ( satisf(I00, I10, I20+1, IR0, N0, N1, N2, R, Exp) -> I2 is I20+1, generate_3tree(O2, Ps, I00, I10, I2, IR, N0, N1, N2, R, Exp, ExpF) -> L2 = [P2*O2] ; L2 = [] ), to_disj(L0, OUT). satisf(I0, I1, I2, IR, N0, N1, N2, R, Exp) :- \+ \+ ( I0 = N0, I1=N1, I2=N2, IR=R, call(Exp) ). not_satisf(I0, I1, I2, IR, N0, N1, N2, R, Exp) :- \+ ( I0 = N0, I1=N1, I2=N2, IR=R, call(Exp) ). %%%%%%%%%%%%%%%%%%%%%%%%% % % use bottom-up dynamic programming to generate average % bup_avg(V, Size, Domain, Parents, Vs, Vs2, Lvs, Outs, DIST) :- check_v(V, avg(Domain,Parents), DIST, Vs, Vs1), DIST = info(V, Tree, Ev, OVs, Formula, [], []), get_parents(Parents, PVars, Vs1, Vs2), % generate_sums(PVars, Size, Max, Sums, F0), bin_sums(PVars, Sums, F00), reverse(F00,F0), length(Parents, N), Max is (Size-1)*N, % This should be true % easier to do recursion on lists Sums =.. [_|LSums], generate_avg(0, Size, 0, Max, LSums, OVs, Ev, F1, []), reverse(F0, RF0), get_evidence(V, Tree, Ev, F1, F2, Lvs, Outs), append(RF0, F2, Formula). bin_sums(Vs, Sums, F) :- vs_to_sums(Vs, Sums0), writeln(init:Sums0), bin_sums(Sums0, Sums, F, []). vs_to_sums([], []). vs_to_sums([V|Vs], [Sum|Sums0]) :- Sum =.. [sum|V], vs_to_sums(Vs, Sums0). bin_sums([Sum], Sum) --> !. bin_sums(LSums, Sums) --> pack_bins(LSums, Sums1), bin_sums(Sums1, Sums). pack_bins([], []) --> []. pack_bins([Sum], [Sum]) --> []. pack_bins([Sum1,Sum2|LSums], [Sum|NSums]) --> sum(Sum1, Sum2, Sum), pack_bins(LSums, NSums). sum(Sum1, Sum2, Sum) --> { functor(Sum1, _, M1), functor(Sum2, _, M2), Max is M1+M2-2, Max1 is Max+1, Max0 is M2-1, functor(Sum, sum, Max1), Sum1 =.. [_|PVals] }, expand_sums(PVals, 0, Max0, Max1, M2, Sum2, Sum). generate_sums([PVals], Size, Max, Sum, []) :- !, Max is Size-1, Sum =.. [sum|PVals]. generate_sums([PVals|Parents], Size, Max, NewSums, F) :- generate_sums(Parents, Size, Max0, Sums, F0), Max is Max0+(Size-1), Max1 is Max+1, functor(NewSums, sum, Max1), expand_sums(PVals, 0, Max0, Max1, Size, Sums, NewSums, F, F0). % % outer loop: generate array of sums at level j= Sum[j0...jMax] % expand_sums(_Parents, Max, _, Max, _Size, _Sums, _NewSums, F0, F0) :- !. expand_sums(Parents, I0, Max0, Max, Size, Sums, NewSums, [O=SUM|F], F0) :- I is I0+1, arg(I, NewSums, O), sum_all(Parents, 0, I0, Max0, Sums, List), to_disj(List, SUM), expand_sums(Parents, I, Max0, Max, Size, Sums, NewSums, F, F0). % %inner loop: find all parents that contribute to A_ji, % that is generate Pk*Sum_(j-1)l and k+l st k+l = i % sum_all([], _, _, _, _, []). sum_all([V|Vs], Pos, I, Max0, Sums, [V*S0|List]) :- J is I-Pos, J >= 0, J =< Max0, !, J1 is J+1, arg(J1, Sums, S0), Pos1 is Pos+1, sum_all(Vs, Pos1, I, Max0, Sums, List). sum_all([_V|Vs], Pos, I, Max0, Sums, List) :- Pos1 is Pos+1, sum_all(Vs, Pos1, I, Max0, Sums, List). gen_arg(J, Sums, Max, S0) :- gen_arg(0, Max, J, Sums, S0). gen_arg(Max, Max, J, Sums, S0) :- !, I is Max+1, arg(I, Sums, A), ( Max = J -> S0 = A ; S0 = not(A)). gen_arg(I0, Max, J, Sums, S) :- I is I0+1, arg(I, Sums, A), ( I0 = J -> S = A*S0 ; S = not(A)*S0), gen_arg(I, Max, J, Sums, S0). generate_avg(Size, Size, _J, _Max, [], [], [], F, F). generate_avg(I0, Size, J0, Max, LSums, [O|OVs], [Ev|Evs], [O=Ev*Disj|F], F0) :- I is I0+1, Border is (I*Max)/Size, fetch_for_avg(J0, Border, J, LSums, MySums, RSums), to_disj(MySums, Disj), generate_avg(I, Size, J, Max, RSums, OVs, Evs, F, F0). fetch_for_avg(J, Border, J, RSums, [], RSums) :- J > Border, !. fetch_for_avg(J0, Border, J, [S|LSums], [S|MySums], RSums) :- J1 is J0+1, fetch_for_avg(J1, Border, J, LSums, MySums, RSums). to_disj([], 0). to_disj([V], V). to_disj([V,V1|Vs], Out) :- to_disj2([V1|Vs], V, Out). to_disj2([V], V0, V0+V). to_disj2([V,V1|Vs], V0, Out) :- to_disj2([V1|Vs], V0+V, Out). % % look for parameters in the rb-tree, or add a new. % distid is the key % check_p(DistId, Parms, ParmVars, Ps, Ps) :- rb_lookup(DistId, theta(Parms, ParmVars), Ps), !. check_p(DistId, Parms, ParmVars, Ps, PsF) :- get_dist_params(DistId, Parms0), length(Parms0, L0), get_dist_domain_size(DistId, Size), L1 is L0 div Size, L is L0-L1, initial_maxes(L1, Multipliers), copy(L, Multipliers, NextMults, NextMults, Parms0, Parms, ParmVars), %writeln(t:Size:Parms0:Parms:ParmVars), rb_insert(Ps, DistId, theta(Parms, ParmVars), PsF). % % we are using switches by two % initial_maxes(0, []) :- !. initial_maxes(Size, [1.0|Multipliers]) :- !, Size1 is Size-1, initial_maxes(Size1, Multipliers). copy(0, [], [], _, _Parms0, [], []) :- !. copy(N, [], [], Ms, Parms0, Parms, ParmVars) :-!, copy(N, Ms, NewMs, NewMs, Parms0, Parms, ParmVars). copy(N, D.Ds, ND.NDs, New, El.Parms0, NEl.Parms, V.ParmVars) :- N1 is N-1, (El == 0.0 -> NEl = 0, ND = D, V = NEl ;El == 1.0 -> NEl = 1, ND = 0.0, V = NEl ;El == 0 -> NEl = 0, ND = D, V = NEl ;El =:= 1 -> NEl = 1, ND = 0.0, V = NEl ; NEl is El/D, ND is D-El, V = NEl ), copy(N1, Ds, NDs, New, Parms0, Parms, ParmVars). unbound_parms([], []). unbound_parms(_.Parms, _.ParmVars) :- unbound_parms(Parms, ParmVars). check_v(V, _, INFO, Vs, Vs) :- rb_lookup(V, INFO, Vs), !. check_v(V, DistId, INFO, Vs0, Vs) :- get_dist_domain_size(DistId, Size), length(Values, Size), length(Ev, Size), INFO = info(V, _Tree, Ev, Values, _Formula, _, _), rb_insert(Vs0, V, INFO, Vs). get_parents([], [], Vs, Vs). get_parents(V.Parents, Values.PVars, Vs0, Vs) :- clpbn:get_atts(V, [dist(DistId, _)]), check_v(V, DistId, INFO, Vs0, Vs1), INFO = info(V, _Parent, _Ev, Values, _, _, _), get_parents(Parents, PVars, Vs1, Vs). % % construct the formula, this is the key... % cross_product(Values, Ev, PVars, ParmVars, Formulas) :- arrangements(PVars, Arranges), apply_parents_first(Values, Ev, ParmCombos, ParmCombos, Arranges, Formulas, ParmVars). % % if we have the parent variables with two values, we get % [[XP,YP],[XP,YN],[XN,YP],[XN,YN]] % arrangements([], [[]]). arrangements([L1|Ls],O) :- arrangements(Ls, LN), expand(L1, LN, O, []). expand([], _LN) --> []. expand([H|L1], LN) --> concatenate_all(H, LN), expand(L1, LN). concatenate_all(_H, []) --> []. concatenate_all(H, L.LN) --> [[H|L]], concatenate_all(H, LN). % % core of algorithm % % Values -> Output Vars for BDD % Es -> Evidence variables % Previous -> top of difference list with parameters used so far % P0 -> end of difference list with parameters used so far % Pvars -> Parents % Eqs -> Output Equations % Pars -> Output Theta Parameters % apply_parents_first([Value], [E], Previous, [], PVars, [Value=Disj*E], Parameters) :- !, apply_last_parent(PVars, Previous, Disj), flatten(Previous, Parameters). apply_parents_first([Value|Values], [E|Ev], Previous, P0, PVars, (Value=Disj*E).Formulas, Parameters) :- P0 = [TheseParents|End], apply_first_parent(PVars, Disj, TheseParents), apply_parents_second(Values, Ev, Previous, End, PVars, Formulas, Parameters). apply_parents_second([Value], [E], Previous, [], PVars, [Value=Disj*E], Parameters) :- !, apply_last_parent(PVars, Previous, Disj), flatten(Previous, Parameters). apply_parents_second([Value|Values], [E|Ev], Previous, P0, PVars, (Value=Disj*E).Formulas, Parameters) :- apply_middle_parent(PVars, Previous, Disj, TheseParents), % this must be done after applying middle parents because of the var % test. P0 = [TheseParents|End], apply_parents_second(Values, Ev, Previous, End, PVars, Formulas, Parameters). apply_first_parent([Parents], Conj, [Theta]) :- !, parents_to_conj(Parents,Theta,Conj). apply_first_parent(Parents.PVars, Conj+Disj, Theta.TheseParents) :- parents_to_conj(Parents,Theta,Conj), apply_first_parent(PVars, Disj, TheseParents). apply_middle_parent([Parents], Other, Conj, [ThetaPar]) :- !, skim_for_theta(Other, Theta, _, ThetaPar), parents_to_conj(Parents,Theta,Conj). apply_middle_parent(Parents.PVars, Other, Conj+Disj, ThetaPar.TheseParents) :- skim_for_theta(Other, Theta, Remaining, ThetaPar), parents_to_conj(Parents,(Theta),Conj), apply_middle_parent(PVars, Remaining, Disj, TheseParents). apply_last_parent([Parents], Other, Conj) :- !, parents_to_conj(Parents,(Theta),Conj), skim_for_theta(Other, Theta, _, _). apply_last_parent(Parents.PVars, Other, Conj+Disj) :- parents_to_conj(Parents,(Theta),Conj), skim_for_theta(Other, Theta, Remaining, _), apply_last_parent(PVars, Remaining, Disj). % % % simplify stuff, removing process that is cancelled by 0s % parents_to_conj([], Theta, Theta) :- !. parents_to_conj(Ps, Theta, Theta*Conj) :- parents_to_conj2(Ps, Conj). parents_to_conj2([P],P) :- !. parents_to_conj2(P.Ps,P*Conj) :- parents_to_conj2(Ps,Conj). % % first case we haven't reached the end of the list so we need % to create a new parameter variable % skim_for_theta([[P|Other]|V], not(P)*New, [Other|_], New) :- var(V), !. % % last theta, it is just negation of the other ones % skim_for_theta([[P|Other]], not(P), [Other], _) :- !. % % recursive case, build-up % skim_for_theta([[P|Other]|More], not(P)*Ps, [Other|Left], New ) :- skim_for_theta(More, Ps, Left, New ). get_evidence(V, Tree, Ev, F0, F, Leaves, Finals) :- clpbn:get_atts(V, [evidence(Pos)]), !, zero_pos(0, Pos, Ev), insert_output(Leaves, V, Finals, Tree, Outs, SendOut), get_outs(F0, F, SendOut, Outs). % hidden deterministic node, can be removed. get_evidence(V, _Tree, Ev, F0, [], _Leaves, _Finals) :- clpbn:get_atts(V, [key(K)]), functor(K, Name, 2), ( Name = 'AVG' ; Name = 'MAX' ; Name = 'MIN' ), !, one_list(Ev), eval_outs(F0). %% no evidence !!! get_evidence(V, Tree, _Values, F0, F1, Leaves, Finals) :- insert_output(Leaves, V, Finals, Tree, Outs, SendOut), get_outs(F0, F1, SendOut, Outs). zero_pos(_, _Pos, []). zero_pos(Pos, Pos, 1.Values) :- !, I is Pos+1, zero_pos(I, Pos, Values). zero_pos(I0, Pos, 0.Values) :- I is I0+1, zero_pos(I, Pos, Values). one_list([]). one_list(1.Ev) :- one_list(Ev). % % insert a node with the disj of all alternatives, this is only done if node ends up to be in the output % insert_output([], _V, [], _Out, _Outs, []). insert_output(V._Leaves, V0, [Top|_], Top, Outs, [Top = Outs]) :- V == V0, !. insert_output(_.Leaves, V, _.Finals, Top, Outs, SendOut) :- insert_output(Leaves, V, Finals, Top, Outs, SendOut). get_outs([V=F], [V=NF|End], End, V) :- !, % writeln(f0:F), simplify_exp(F,NF). get_outs((V=F).Outs, (V=NF).NOuts, End, (F0 + V)) :- % writeln(f0:F), simplify_exp(F,NF), get_outs(Outs, NOuts, End, F0). eval_outs([]). eval_outs((V=F).Outs) :- simplify_exp(F,NF), V = NF, eval_outs(Outs). %simplify_exp(V,V) :- !. simplify_exp(V,V) :- var(V), !. simplify_exp(S1+S2,NS) :- !, simplify_exp(S1, SS1), simplify_exp(S2, SS2), simplify_sum(SS1, SS2, NS). simplify_exp(S1*S2,NS) :- !, simplify_exp(S1, SS1), simplify_exp(S2, SS2), simplify_prod(SS1, SS2, NS). simplify_exp(not(S),NS) :- !, simplify_exp(S, SS), simplify_not(SS, NS). simplify_exp(S,S). simplify_sum(V1, V2, O) :- ( var(V1) -> ( var(V2) -> ( V1 == V2 -> O = V1 ; O = V1+V2 ) ; /* var(V1) , var(V2) */ ( V2 == 0 -> O = V1 ; V2 == 1 -> O = 1 ; O = V1+V2 ) /* var(V1) , nonvar(V2) */ ) ; ( var(V2) -> ( V1 == 0 -> O = V2 ; V1 == 1 -> O = 1 ; O = V1+V2 ) ; /* nonvar(V1) , var(V2) */ ( V2 == 0 -> O = V1 ; V2 == 1 -> O = 1 ; V1 == 0 -> O = V2 ; V1 == 1 -> O = 1; O = V1+V2 ) /* nonvar(V1) , nonvar(V2) */ ) ). simplify_prod(V1, V2, O) :- ( var(V1) -> ( var(V2) -> ( V1 == V2 -> O = V1 ; O = V1*V2 ) ; /* var(V1) , var(V2) */ ( V2 == 0 -> O = 0 ; V2 == 1 -> O = V1 ; O = V1*V2 ) /* var(V1) , nonvar(V2) */ ) ; ( var(V2) -> ( V1 == 0 -> O = 0 ; V1 == 1 -> O = V2 ; O = V1*V2 ) ; /* nonvar(V1) , var(V2) */ ( V2 == 0 -> O = 0 ; V2 == 1 -> O = V1 ; V1 == 0 -> O = 0 ; V1 == 1 -> O = V2; V1 == V2 -> O = V1 ; O = V1*V2 ) /* nonvar(V1) , nonvar(V2) */ ) ). simplify_not(V, not(V)) :- var(V), !. simplify_not(0, 1) :- !. simplify_not(1, 0) :- !. simplify_not(SS, not(SS)). run_bdd_solver([[V]], LPs, bdd(Term, _Leaves, Nodes)) :- build_out_node(Nodes, Node), findall(Prob, get_prob(Term, Node, V, Prob),TermProbs), sumlist(TermProbs, Sum), writeln(TermProbs:Sum), normalise(TermProbs, Sum, LPs). build_out_node([_Top], []). build_out_node([T,T1|Tops], [Top = T*Top]) :- build_out_node2(T1.Tops, Top). build_out_node2([Top], Top). build_out_node2([T,T1|Tops], T*Top) :- build_out_node2(T1.Tops, Top). get_prob(Term, Node, V, SP) :- bind_all(Term, Node, Bindings, V, AllParms, AllParmValues), % reverse(AllParms, RAllParms), term_variables(AllParms, NVs), build_bdd(Bindings, NVs, AllParms, AllParmValues, Bdd), bdd_to_probability_sum_product(Bdd, SP), bdd_close(Bdd). build_bdd(Bindings, NVs, VTheta, Theta, Bdd) :- bdd_from_list(Bindings, NVs, Bdd), bdd_size(Bdd, Len), % number_codes(Len,Codes), % atom_codes(Name,Codes), % bdd_print(Bdd, Name), writeln(length=Len), VTheta = Theta. bind_all([], End, End, _V, [], []). bind_all(info(V, _Tree, Ev, _Values, Formula, ParmVars, Parms).Term, End, BindsF, V0, ParmVars.AllParms, Parms.AllTheta) :- V0 == V, !, set_to_one_zeros(Ev), bind_formula(Formula, BindsF, BindsI), bind_all(Term, End, BindsI, V0, AllParms, AllTheta). bind_all(info(_V, _Tree, Ev, _Values, Formula, ParmVars, Parms).Term, End, BindsF, V0, ParmVars.AllParms, Parms.AllTheta) :- set_to_ones(Ev),!, bind_formula(Formula, BindsF, BindsI), bind_all(Term, End, BindsI, V0, AllParms, AllTheta). % evidence: no need to add any stuff. bind_all(info(_V, _Tree, _Ev, _Values, Formula, ParmVars, Parms).Term, End, BindsF, V0, ParmVars.AllParms, Parms.AllTheta) :- bind_formula(Formula, BindsF, BindsI), bind_all(Term, End, BindsI, V0, AllParms, AllTheta). bind_formula([], L, L). bind_formula(B.Formula, B.BsF, Bs0) :- bind_formula(Formula, BsF, Bs0). set_to_one_zeros([1|Values]) :- set_to_zeros(Values). set_to_one_zeros([0|Values]) :- set_to_one_zeros(Values). set_to_zeros([]). set_to_zeros(0.Values) :- set_to_zeros(Values). set_to_ones([]). set_to_ones(1.Values) :- set_to_ones(Values). normalise([], _Sum, []). normalise(P.TermProbs, Sum, NP.LPs) :- NP is P/Sum, normalise(TermProbs, Sum, LPs). finalize_bdd_solver(_).