================================================================= Logtalk - Object oriented extension to Prolog Release 2.27.1 Copyright (c) 1998-2006 Paulo Moura. All Rights Reserved. ================================================================= % start by loading the example: | ?- logtalk_load(logic(loader)). ... % translate a single logic proposition: | ?- translator::translate((p v ~q) => (r & k), Cs). r :- p. k :- p. q; r :- . q; k :- . Cs = [cl([r],[p]),cl([k],[p]),cl([q,r],[]),cl([q,k],[])] yes % translate a single logic proposition printing each translation step: | ?- translator::step_by_step((p v ~q) => (r & k), Cs). Processing proposition: p v ~q=>r&k 1. Remove implications: ~ (p v ~q) v r&k 2. Distribute negation: ~p&q v r&k 3. Remove existential quantifiers: ~p&q v r&k 4. Convert to prenex normal form: ~p&q v r&k 5. Remove universal quantifiers: ~p&q v r&k 6. Convert to conjunctive normal form: (~p v r)&(~p v k)&((q v r)&(q v k)) 7. Convert to clauses: [cl([r],[p]),cl([k],[p]),cl([q,r],[]),cl([q,k],[])] Clauses in Prolog-like notation: r :- p. k :- p. q; r :- . q; k :- . Cs = [cl([r],[p]),cl([k],[p]),cl([q,r],[]),cl([q,k],[])] yes % translate a single logic proposition printing each translation step: | ?- translator::step_by_step(all(X, exists(Y, p(X) v ~q(X) => r(X, Y))), Cs). Processing proposition: all(X, exists(Y, p(X)v~q(X)=>r(X, Y))) 1. Remove implications: all(X, exists(Y, ~ (p(X)v~q(X))v r(X, Y))) 2. Distribute negation: all(X, exists(Y, ~p(X)&q(X)v r(X, Y))) 3. Remove existential quantifiers: all(X, ~p(X)&q(X)v r(X, f1(X))) 4. Convert to prenex normal form: all(X, ~p(X)&q(X)v r(X, f1(X))) 5. Remove universal quantifiers: ~p(X)&q(X)v r(X, f1(X)) 6. Convert to conjunctive normal form: (~p(X)v r(X, f1(X)))& (q(X)v r(X, f1(X))) 7. Convert to clauses: [cl([r(X, f1(X))], [p(X)]), cl([q(X), r(X, f1(X))], [])] Clauses in Prolog-like notation: r(X, f1(X)) :- p(X). q(X); r(X, f1(X)) :- . X = X Y = f1(X) Cs = [cl([r(X, f1(X))], [p(X)]), cl([q(X), r(X, f1(X))], [])] yes % translate a single logic proposition printing each translation step: | ?- translator::step_by_step(all(X, men(X) => mortal(X)), Cs). Processing proposition: all(X, men(X)=>mortal(X)) 1. Remove implications: all(X, ~men(X)v mortal(X)) 2. Distribute negation: all(X, ~men(X)v mortal(X)) 3. Remove existential quantifiers: all(X, ~men(X)v mortal(X)) 4. Convert to prenex normal form: all(X, ~men(X)v mortal(X)) 5. Remove universal quantifiers: ~men(X)v mortal(X) 6. Convert to conjunctive normal form: ~men(X)v mortal(X) 7. Convert to clauses: [cl([mortal(X)], [men(X)])] Clauses in Prolog-like notation: mortal(X) :- men(X). X = X Cs = [cl([mortal(X)], [men(X)])] yes