%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % clp(q,r) version 1.3.3 % % % % (c) Copyright 1992,1993,1994,1995 % % Austrian Research Institute for Artificial Intelligence (OFAI) % % Schottengasse 3 % % A-1010 Vienna, Austria % % % % File: arith.pl % % Author: Christian Holzbaur christian@ai.univie.ac.at % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % common code for R,Q, runtime predicates % % linearize evaluation, collect vars % % Todo: +) limited encoding length option % +) 2 stage compilation: a) linearization % b) specialization to R or Q % % l2conj( [], true). l2conj( [X|Xs], Conj) :- ( Xs = [], Conj = X ; Xs = [_|_], Conj = (X,Xc), l2conj( Xs, Xc) ). % ---------------------------------------------------------------------- % % float/1 coercion is allowed only at the outermost level in Q % compile_Q( Term, R, Code) :- linearize( Term, Res, Linear), specialize_Q( Linear, Code, Ct), ( Res = boolean, Ct = [] ; Res = float(R), Ct = [] ; Res = rat(N,D), Ct = [ putq(D,N,R) ] ). % % assumes normalized params and puts a normalized result % compile_Qn( Term, R, Code) :- linearize( Term, Res, Linear), specialize_Qn( Linear, Code, Ct), ( Res = boolean, Ct = [] ; Res = float(R), Ct = [] ; Res = rat(N,D), Ct = [ putq(D,N,R) ] ). compile_case_signum_Qn( Term, Lt,Z,Gt, Code) :- linearize( Term, rat(N,_), Linear), specialize_Qn( Linear, Code, [ compare( Rel, N, 0), ( Rel = <, Lt ; Rel = =, Z ; Rel = >, Gt ) ]). specialize_Qn( []) --> []. specialize_Qn( [Op|Ops]) --> specialize_Qn( Op), specialize_Qn( Ops). % specialize_Qn( op_var(rat(N,D),Var)) --> [ Var=rat(N,D) ]. % <--- here is the difference --- specialize_Qn( op_integer(rat(I,1),I)) --> []. specialize_Qn( op_rat(rat(N,D),N,D)) --> []. specialize_Qn( op_float(rat(N,D),X)) --> [], { float_rat( X, N,D) }. specialize_Qn( apply(R,Func)) --> specialize_Q_fn( Func, R). specialize_Q( []) --> []. specialize_Q( [Op|Ops]) --> specialize_Q( Op), specialize_Q( Ops). % specialize_Q( op_var(rat(N,D),Var)) --> [ getq(Var,N,D) ]. specialize_Q( op_integer(rat(I,1),I)) --> []. specialize_Q( op_rat(rat(N,D),N,D)) --> [], { D > 0 }. specialize_Q( op_float(rat(N,D),X)) --> [], { float_rat( X, N,D) }. specialize_Q( apply(R,Func)) --> specialize_Q_fn( Func, R). specialize_Q_fn( +rat(N,D), rat(N,D)) --> []. specialize_Q_fn( numer(rat(N,_)), rat(N,1)) --> []. specialize_Q_fn( denom(rat(_,D)), rat(D,1)) --> []. specialize_Q_fn( -rat(N0,D), rat(N,D)) --> [ N is -N0 ]. specialize_Q_fn( abs(rat(Nx,Dx)), rat(N,D)) --> [ N is abs(Nx) ], {D=Dx}. specialize_Q_fn( signum(rat(Nx,Dx)), rat(N,D)) --> [ signumq( Nx,Dx, N,D) ]. specialize_Q_fn( floor(rat(Nx,Dx)), rat(N,D)) --> [ floorq( Nx,Dx, N,D) ]. specialize_Q_fn( ceiling(rat(Nx,Dx)), rat(N,D)) --> [ ceilingq( Nx,Dx, N,D) ]. specialize_Q_fn( truncate(rat(Nx,Dx)), rat(N,D)) --> [ truncateq( Nx,Dx, N,D) ]. specialize_Q_fn( round(rat(Nx,Dx)), rat(N,D)) --> [ roundq( Nx,Dx, N,D) ]. specialize_Q_fn( log(rat(Nx,Dx)), rat(N,D)) --> [ logq( Nx,Dx, N,D) ]. specialize_Q_fn( exp(rat(Nx,Dx)), rat(N,D)) --> [ expq( Nx,Dx, N,D) ]. specialize_Q_fn( sin(rat(Nx,Dx)), rat(N,D)) --> [ sinq( Nx,Dx, N,D) ]. specialize_Q_fn( cos(rat(Nx,Dx)), rat(N,D)) --> [ cosq( Nx,Dx, N,D) ]. specialize_Q_fn( tan(rat(Nx,Dx)), rat(N,D)) --> [ tanq( Nx,Dx, N,D) ]. specialize_Q_fn( asin(rat(Nx,Dx)), rat(N,D)) --> [ asinq( Nx,Dx, N,D) ]. specialize_Q_fn( acos(rat(Nx,Dx)), rat(N,D)) --> [ acosq( Nx,Dx, N,D) ]. specialize_Q_fn( atan(rat(Nx,Dx)), rat(N,D)) --> [ atanq( Nx,Dx, N,D) ]. specialize_Q_fn( float(rat(Nx,Dx)), float(F)) --> [ rat_float( Nx,Dx, F) ]. % specialize_Q_fn( rat(Nx,Dx)+rat(Ny,Dy), rat(N,D)) --> [ addq( Nx,Dx, Ny,Dy, N,D) ]. specialize_Q_fn( rat(Nx,Dx)-rat(Ny,Dy), rat(N,D)) --> [ subq( Nx,Dx, Ny,Dy, N,D) ]. specialize_Q_fn( rat(Nx,Dx)*rat(Ny,Dy), rat(N,D)) --> [ mulq( Nx,Dx, Ny,Dy, N,D) ]. specialize_Q_fn( rat(Nx,Dx)/rat(Ny,Dy), rat(N,D)) --> [ divq( Nx,Dx, Ny,Dy, N,D) ]. specialize_Q_fn( exp(rat(Nx,Dx),rat(Ny,Dy)), rat(N,D)) --> [ expq( Nx,Dx, Ny,Dy, N,D) ]. specialize_Q_fn( min(rat(Nx,Dx),rat(Ny,Dy)), rat(N,D)) --> [ minq( Nx,Dx, Ny,Dy, N,D) ]. specialize_Q_fn( max(rat(Nx,Dx),rat(Ny,Dy)), rat(N,D)) --> [ maxq( Nx,Dx, Ny,Dy, N,D) ]. % specialize_Q_fn( rat(Nx,Dx) < rat(Ny,Dy), boolean) --> [ comq( Nx,Dx, Ny,Dy, <) ]. specialize_Q_fn( rat(Nx,Dx) > rat(Ny,Dy), boolean) --> [ comq( Ny,Dy, Nx,Dx, <) ]. specialize_Q_fn( rat(Nx,Dx) =< rat(Ny,Dy), boolean) --> [ comq( Nx,Dx, Ny,Dy, Rel), Rel \== (>) ]. specialize_Q_fn( rat(Nx,Dx) >= rat(Ny,Dy), boolean) --> [ comq( Ny,Dy, Nx,Dx, Rel), Rel \== (>) ]. specialize_Q_fn( rat(Nx,Dx) =\= rat(Ny,Dy), boolean) --> [ comq( Nx,Dx, Ny,Dy, Rel), Rel \== (=) ]. specialize_Q_fn( rat(Nx,Dx) =:= rat(Ny,Dy), boolean) --> % % *normalized* rationals % ( {Nx = Ny} -> [] ; [ Nx = Ny ] ), ( {Dx = Dy} -> [] ; [ Dx = Dy ] ). % ---------------------------------------------------------------------- compile_R( Term, R, Code) :- linearize( Term, Res, Linear), specialize_R( Linear, Code, Ct), ( Res == boolean -> Ct = [], R = boolean ; float(Res) -> Ct = [ R=Res ] ; Ct = [ R is Res ] ). compile_case_signum_R( Term, Lt,Z,Gt, Code) :- eps( Eps, NegEps), linearize( Term, Res, Linear), specialize_R( Linear, Code, [ Rv is Res, ( Rv < NegEps -> Lt ; Rv > Eps -> Gt ; Z ) ]). specialize_R( []) --> []. specialize_R( [Op|Ops]) --> specialize_R( Op), specialize_R( Ops). % specialize_R( op_var(Var,Var)) --> []. specialize_R( op_integer(R,I)) --> [], { R is float(I) }. specialize_R( op_rat(R,N,D)) --> [], { rat_float( N,D, R) }. specialize_R( op_float(F,F)) --> []. specialize_R( apply(R,Func)) --> specialize_R_fn( Func, R). specialize_R_fn( signum(X), S) --> ( {var(X)} -> {Xe=X} ; [ Xe is X ] ), { eps( Eps, NegEps) }, [ ( Xe < NegEps -> S = -1.0 ; Xe > Eps -> S = 1.0 ; S = 0.0 ) ]. specialize_R_fn( +X, X) --> []. specialize_R_fn( -X, -X) --> []. specialize_R_fn( abs(X), abs(X)) --> []. specialize_R_fn( floor(X), float(floor(/*float?*/X))) --> []. specialize_R_fn( ceiling(X), float(ceiling(/*float?*/X))) --> []. specialize_R_fn( truncate(X), float(truncate(/*float?*/X))) --> []. specialize_R_fn( round(X), float(round(/*float?*/X))) --> []. specialize_R_fn( log(X), log(X)) --> []. specialize_R_fn( exp(X), exp(X)) --> []. specialize_R_fn( sin(X), sin(X)) --> []. specialize_R_fn( cos(X), cos(X)) --> []. specialize_R_fn( tan(X), tan(X)) --> []. specialize_R_fn( asin(X), asin(X)) --> []. specialize_R_fn( acos(X), acos(X)) --> []. specialize_R_fn( atan(X), atan(X)) --> []. specialize_R_fn( float(X), float(X)) --> []. % specialize_R_fn( X+Y, X+Y) --> []. specialize_R_fn( X-Y, X-Y) --> []. specialize_R_fn( X*Y, X*Y) --> []. specialize_R_fn( X/Y, X/Y) --> []. specialize_R_fn( exp(X,Y), exp(X,Y)) --> []. specialize_R_fn( min(X,Y), min(X,Y)) --> []. specialize_R_fn( max(X,Y), max(X,Y)) --> []. /**/ % % An absolute eps is of course not very meaningful. % An eps scaled by the magnitude of the operands participating % in the comparison is too expensive to support in Prolog on the % other hand ... % % % -eps 0 +eps % ---------------[----|----]---------------- % < 0 > 0 % <-----------] [-----------> % =< 0 % <---------------------] % >= 0 % [---------------------> % % specialize_R_fn( X < Y, boolean) --> { eps( Eps, NegEps) }, ( {X==0} -> [ Y > Eps ] ; {Y==0} -> [ X < NegEps ] ; [ X-Y < NegEps ] ). specialize_R_fn( X > Y, boolean) --> specialize_R_fn( Y < X, boolean). specialize_R_fn( X =< Y, boolean) --> { eps( Eps, _) }, [ X-Y < Eps ]. specialize_R_fn( X >= Y, boolean) --> specialize_R_fn( Y =< X, boolean). specialize_R_fn( X =:= Y, boolean) --> { eps( Eps, NegEps) }, ( {X==0} -> [ Y >= NegEps, Y =< Eps ] ; {Y==0} -> [ X >= NegEps, X =< Eps ] ; [ Diff is X-Y, Diff =< Eps, Diff >= NegEps ] ). specialize_R_fn( X =\= Y, boolean) --> { eps( Eps, NegEps) }, [ Diff is X-Y, ( Diff < NegEps -> true ; Diff > Eps ) ]. /**/ /** % % b30427, pp.218 % specialize_R_fn( X > Y, boolean) --> specialize_R_fn( Y < X, boolean). specialize_R_fn( X < Y, boolean) --> [ scaled_eps(X,Y,E), Y-X > E ]. specialize_R_fn( X >= Y, boolean) --> specialize_R_fn( Y =< X, boolean). specialize_R_fn( X =< Y, boolean) --> [ scaled_eps(X,Y,E), X-Y =< E ]. % \+ > specialize_R_fn( X =:= Y, boolean) --> [ scaled_eps(X,Y,E), abs(X-Y) =< E ]. specialize_R_fn( X =\= Y, boolean) --> [ scaled_eps(X,Y,E), abs(X-Y) > E ]. scaled_eps( X, Y, Eps) :- exponent( X, Ex), exponent( Y, Ey), arith_eps( E), Max is max(Ex,Ey), ( Max < 0 -> Eps is E/(1<<Max) ; Eps is E*(1<<Max) ). exponent( X, E) :- A is abs(X), float_rat( A, N, D), E is msb(N+1)-msb(D). **/ % ---------------------------------------------------------------------- linearize( Term, Res, Linear) :- linearize( Term, Res, Vs,[], Lin, []), keysort( Vs, Vss), ( Vss = [], Linear = Lin ; Vss = [V|Vt], join_vars( Vt, V, Linear, Lin) ). % % flatten the evaluation, collect variables, shared by Q,R,... % linearize( X, R, [X-R|Vs],Vs) --> {var(X)}, !, [ ]. linearize( X, R, Vs,Vs) --> {integer(X)}, !, [ op_integer(R,X) ]. linearize( X, R, Vs,Vs) --> {float(X)}, !, [ op_float(R,X) ]. linearize( rat(N,D), R, Vs,Vs) --> !, [ op_rat(R,N,D) ]. linearize( Term, R, V0,V1) --> { functor( Term, N, A), functor( Skeleton, N, A) }, linearize_args( A, Term, Skeleton, V0,V1), [ apply(R,Skeleton) ]. linearize_args( 0, _, _, Vs,Vs) --> []. linearize_args( N, T, S, V0,V2) --> { arg( N, T, Arg), arg( N, S, Res), N1 is N-1 }, linearize( Arg, Res, V0,V1), linearize_args( N1, T, S, V1,V2). join_vars( [], Y-Ry) --> [ op_var(Ry,Y) ]. join_vars( [X-Rx|Xs], Y-Ry) --> ( {X==Y} -> {Rx=Ry}, join_vars( Xs, Y-Ry) ; [ op_var(Ry,Y) ], join_vars( Xs, X-Rx) ). % ---------------------------------- runtime system --------------------------- % % C candidate % limit_encoding_length( 0,D, _, 0,D) :- !. % msb ... limit_encoding_length( N,D, Bits, Nl,Dl) :- Shift is min(max(msb(abs(N)),msb(D))-Bits, min(msb(abs(N)),msb(D))), Shift > 0, !, Ns is N>>Shift, Ds is D>>Shift, Gcd is gcd(Ns,Ds), Nl is Ns//Gcd, Dl is Ds//Gcd. limit_encoding_length( N,D, _, N,D). % % No longer backconvert to integer % % putq( 1, N, N) :- !. putq( D, N, rat(N,D)). getq( Exp, N,D) :- var( Exp), !, raise_exception( instantiation_error(getq(Exp,N,D),1)). getq( I, I,1) :- integer(I), !. getq( F, N,D) :- float( F), !, float_rat( F, N,D). getq( rat(N,D), N,D) :- integer( N), integer( D), D > 0, 1 =:= gcd(N,D). % % actually just a joke to have this stuff in Q ... % expq( N,D, N1,D1) :- rat_float( N,D, X), F is exp(X), float_rat( F, N1,D1). logq( N,D, N1,D1) :- rat_float( N,D, X), F is log(X), float_rat( F, N1,D1). sinq( N,D, N1,D1) :- rat_float( N,D, X), F is sin(X), float_rat( F, N1,D1). cosq( N,D, N1,D1) :- rat_float( N,D, X), F is cos(X), float_rat( F, N1,D1). tanq( N,D, N1,D1) :- rat_float( N,D, X), F is tan(X), float_rat( F, N1,D1). asinq( N,D, N1,D1) :- rat_float( N,D, X), F is asin(X), float_rat( F, N1,D1). acosq( N,D, N1,D1) :- rat_float( N,D, X), F is acos(X), float_rat( F, N1,D1). atanq( N,D, N1,D1) :- rat_float( N,D, X), F is atan(X), float_rat( F, N1,D1). % % for integer powers we can do it in Q % expq( Nx,Dx, Ny,Dy, N,D) :- ( Dy =:= 1 -> ( Ny >= 0 -> powq( Ny, Nx,Dx, 1,1, N,D) ; Nabs is -Ny, powq( Nabs, Nx,Dx, 1,1, N1,D1), ( N1 < 0 -> N is -D1, D is -N1 ; N = D1, D = N1 ) ) ; rat_float( Nx,Dx, Fx), rat_float( Ny,Dy, Fy), F is exp(Fx,Fy), float_rat( F, N, D) ). % % positive integer powers of rational % powq( 0, _, _, Nt,Dt, Nt,Dt) :- !. powq( 1, Nx,Dx, Nt,Dt, Nr,Dr) :- !, mulq( Nx,Dx, Nt,Dt, Nr,Dr). powq( N, Nx,Dx, Nt,Dt, Nr,Dr) :- N1 is N >> 1, ( N /\ 1 =:= 0 -> Nt1 = Nt, Dt1 = Dt ; mulq( Nx,Dx, Nt,Dt, Nt1,Dt1) ), mulq( Nx,Dx, Nx,Dx, Nxx,Dxx), powq( N1, Nxx,Dxx, Nt1,Dt1, Nr,Dr). /* % % the choicepoint ruins the party ... % mulq( Na,Da, Nb,Db, Nc,Dc) :- Gcd1 is gcd(Na,Db), ( Gcd1 =:= 1 -> Na1=Na,Db1=Db; Na1 is Na//Gcd1,Db1 is Db//Gcd1 ), Gcd2 is gcd(Nb,Da), ( Gcd2 =:= 1 -> Nb1=Nb,Da1=Da; Nb1 is Nb//Gcd2,Da1 is Da//Gcd2 ), Nc is Na1 * Nb1, Dc is Da1 * Db1. */ mulq( Na,Da, Nb,Db, Nc,Dc) :- Gcd1 is gcd(Na,Db), Na1 is Na//Gcd1, Db1 is Db//Gcd1, Gcd2 is gcd(Nb,Da), Nb1 is Nb//Gcd2, Da1 is Da//Gcd2, Nc is Na1 * Nb1, Dc is Da1 * Db1. /* divq( Na,Da, Nb,Db, Nc,Dc) :- Gcd1 is gcd(Na,Nb), ( Gcd1 =:= 1 -> Na1=Na,Nb1=Nb; Na1 is Na//Gcd1,Nb1 is Nb//Gcd1 ), Gcd2 is gcd(Da,Db), ( Gcd2 =:= 1 -> Da1=Da,Db1=Db; Da1 is Da//Gcd2,Db1 is Db//Gcd2 ), ( Nb1 < 0 -> % keep denom positive !!! Nc is -(Na1 * Db1), Dc is Da1 * (-Nb1) ; Nc is Na1 * Db1, Dc is Da1 * Nb1 ). */ divq( Na,Da, Nb,Db, Nc,Dc) :- Gcd1 is gcd(Na,Nb), Na1 is Na//Gcd1, Nb1 is Nb//Gcd1, Gcd2 is gcd(Da,Db), Da1 is Da//Gcd2, Db1 is Db//Gcd2, ( Nb1 < 0 -> % keep denom positive !!! Nc is -(Na1 * Db1), Dc is Da1 * (-Nb1) ; Nc is Na1 * Db1, Dc is Da1 * Nb1 ). % % divq_11( Nb,Db, Nc,Dc) :- divq( 1,1, Nb,Db, Nc,Dc). % divq_11( Nb,Db, Nc,Dc) :- ( Nb < 0 -> % keep denom positive !!! Nc is -Db, Dc is -Nb ; Nc is Db, Dc is Nb ). 'divq_-11'( Nb,Db, Nc,Dc) :- ( Nb < 0 -> % keep denom positive !!! Nc is Db, Dc is -Nb ; Nc is -Db, Dc is Nb ). /* addq( Na,Da, Nb,Db, Nc,Dc) :- Gcd1 is gcd(Da,Db), ( Gcd1 =:= 1 -> % This is the case (for random input) with % probability 6/(pi**2). Nc is Na*Db + Nb*Da, Dc is Da*Db ; T is Na*(Db//Gcd1) + Nb*(Da//Gcd1), Gcd2 is gcd(T,Gcd1), Nc is T//Gcd2, Dc is (Da//Gcd1) * (Db//Gcd2) ). */ addq( Na,Da, Nb,Db, Nc,Dc) :- Gcd1 is gcd(Da,Db), T is Na*(Db//Gcd1) + Nb*(Da//Gcd1), Gcd2 is gcd(T,Gcd1), Nc is T//Gcd2, Dc is (Da//Gcd1) * (Db//Gcd2). /* subq( Na,Da, Nb,Db, Nc,Dc) :- Gcd1 is gcd(Da,Db), ( Gcd1 =:= 1 -> % This is the case (for random input) with % probability 6/(pi**2). Nc is Na*Db - Nb*Da, Dc is Da*Db ; T is Na*(Db//Gcd1) - Nb*(Da//Gcd1), Gcd2 is gcd(T,Gcd1), Nc is T//Gcd2, Dc is (Da//Gcd1) * (Db//Gcd2) ). */ subq( Na,Da, Nb,Db, Nc,Dc) :- Gcd1 is gcd(Da,Db), T is Na*(Db//Gcd1) - Nb*(Da//Gcd1), Gcd2 is gcd(T,Gcd1), Nc is T//Gcd2, Dc is (Da//Gcd1) * (Db//Gcd2). comq( Na,Da, Nb,Db, S) :- % todo: avoid multiplication by looking a signs first !!! Xa is Na * Db, Xb is Nb * Da, compare( S, Xa, Xb). minq( Na,Da, Nb,Db, N,D) :- comq( Na,Da, Nb,Db, Rel), ( Rel = =, N=Na, D=Da ; Rel = <, N=Na, D=Da ; Rel = >, N=Nb, D=Db ). maxq( Na,Da, Nb,Db, N,D) :- comq( Na,Da, Nb,Db, Rel), ( Rel = =, N=Nb, D=Db ; Rel = <, N=Nb, D=Db ; Rel = >, N=Na, D=Da ). signumq( N,_, S,1) :- compare( Rel, N, 0), rel2sig( Rel, S). rel2sig( <, -1). rel2sig( >, 1). rel2sig( =, 0). % ----------------------------------------------------------------------------- truncateq( N,D, R,1) :- R is N // D. % % returns the greatest integral value less than or % equal to x. This corresponds to IEEE rounding toward nega- % tive infinity % floorq( N,1, N,1) :- !. floorq( N,D, R,1) :- ( N < 0 -> R is N // D - 1 ; R is N // D ). % % returns the least integral value greater than or % equal to x. This corresponds to IEEE rounding toward posi- % tive infinity % ceilingq( N,1, N,1) :- !. ceilingq( N,D, R,1) :- ( N > 0 -> R is N // D + 1 ; R is N // D ). % % rounding towards zero % roundq( N,D, R,1) :- % rat_float( N,D, F), % cheating, can do that in Q % R is integer(round(F)). I is N//D, subq( N,D, I,1, Rn,Rd), Rna is abs(Rn), ( comq( Rna,Rd, 1,2, <) -> R = I ; I >= 0 -> R is I+1 ; R is I-1 ). % ------------------------------- rational -> float ------------------------------- % % The problem here is that SICStus converts BIG fractions N/D into +-nan % if it does not fit into a float % % | ?- X is msb(integer(1.0e+308)). % X = 1023 % rat_float( Nx,Dx, F) :- limit_encoding_length( Nx,Dx, 1023, Nxl,Dxl), F is Nxl / Dxl. % ------------------------------- float -> rational ------------------------------- float_rat( F, N, D) :- float_rat( 100, F, F, 1,0,0,1, N0,D0), % at most 100 iterations ( D0 < 0 -> % sign normalization D is -D0, N is -N0 ; D = D0, N = N0 ). float_rat( 0, _, _, Na,_,Da,_, Na,Da) :- !. float_rat( _, _, X, Na,_,Da,_, Na,Da) :- 0.0 =:= abs(X-Na/Da), !. float_rat( N, F, X, Na,Nb,Da,Db, Nar,Dar) :- I is integer(F), ( I =:= F -> % guard against zero division Nar is Na*I+Nb, % 1.0 -> 1/1 and not 0/1 (first iter.) !!! Dar is Da*I+Db ; Na1 is Na*I+Nb, Da1 is Da*I+Db, F1 is 1/(F-I), N1 is N-1, float_rat( N1, F1, X, Na1,Na,Da1,Da, Nar,Dar) ).