/************************************************************************* * * * YAP Prolog * * * * Yap Prolog was developed at NCCUP - Universidade do Porto * * * * Copyright L.Damas, V.S.Costa and Universidade do Porto 1985-1997 * * * ************************************************************************** * * * File: arith.yap * * Last rev: * * mods: * * comments: arithmetical optimization * * * *************************************************************************/ % the default mode is on expand_exprs(Old,New) :- (get_value('$c_arith',true) -> Old = on ; Old = off ), '$set_arith_expan'(New). '$set_arith_expan'(on) :- set_value('$c_arith',true). '$set_arith_expan'(off) :- set_value('$c_arith',[]). compile_expressions :- set_value('$c_arith',true). do_not_compile_expressions :- set_value('$c_arith',[]). '$c_built_in'(IN, M, OUT) :- get_value('$c_arith',true), !, '$do_c_built_in'(IN, M, OUT). '$c_built_in'(IN, _, IN). '$do_c_built_in'(G, M, OUT) :- var(G), !, '$do_c_built_in'(call(G), M, OUT). '$do_c_built_in'(Mod:G, _, GN) :- !, '$do_c_built_in'(G, Mod, GN0), (GN0 = (_,_) -> GN = GN0 ; GN = Mod:GN0). '$do_c_built_in'(\+ G, _, OUT) :- nonvar(G), G = (A = B), !, OUT = (A \= B). '$do_c_built_in'(call(G), _, OUT) :- nonvar(G), G = (Mod:G1), !, '$do_c_built_metacall'(G1, Mod, OUT). '$do_c_built_in'(call(G), Mod, OUT) :- var(G), !, '$do_c_built_metacall'(G, Mod, OUT). '$do_c_built_in'(depth_bound_call(G,D), M, OUT) :- !, '$do_c_built_in'(G, M, NG), % make sure we don't have something like (A,B) -> $depth_next(D), A, B. ( '$composed_built_in'(NG) -> OUT = depth_bound_call(NG,D) ; OUT = ('$set_depth_limit_for_next_call'(D),NG) ). '$do_c_built_in'(once(G), M, (yap_hacks:current_choice_point(CP),NG,'$$cut_by'(CP))) :- !, '$do_c_built_in'(G,M,NG0), '$clean_cuts'(NG0, NG). '$do_c_built_in'(forall(Cond,Action), M, \+((NCond, \+(NAction)))) :- !, '$do_c_built_in'(Cond,M,ICond), '$do_c_built_in'(Action,M,IAction), '$clean_cuts'(ICond, NCond), '$clean_cuts'(IAction, NAction). '$do_c_built_in'(ignore(Goal), M, (NGoal -> true ; true)) :- !, '$do_c_built_in'(Goal,M,IGoal), '$clean_cuts'(IGoal, NGoal). '$do_c_built_in'(if(G,A,B), M, (yap_hacks:current_choicepoint(DCP),NG,yap_hacks:cut_at(DCP),NA; NB)) :- !, '$do_c_built_in'(G,M,NG0), '$clean_cuts'(NG0, NG), '$do_c_built_in'(A,M,NA), '$do_c_built_in'(B,M,NB). '$do_c_built_in'((G*->A;B), M, (yap_hacks:current_choicepoint(DCP),NG,yap_hacks:cut_at(DCP),NA; NB)) :- !, '$do_c_built_in'(G,M,NG0), '$clean_cuts'(NG0, NG), '$do_c_built_in'(A,M,NA), '$do_c_built_in'(B,M,NB). '$do_c_built_in'((G*->A), M, (NG,NA)) :- !, '$do_c_built_in'(G,M,NG0), '$clean_cuts'(NG0, NG), '$do_c_built_in'(A,M,NA). '$do_c_built_in'('C'(A,B,C), _, (A=[B|C])) :- !. '$do_c_built_in'(X is Y, M, P) :- primitive(X), !, '$do_c_built_in'(X =:= Y, M, P). '$do_c_built_in'(X is Y, M, (P,A=X)) :- nonvar(X), !, '$do_c_built_in'(A is Y, M, P). '$do_c_built_in'(X is Y, _, P) :- nonvar(Y), % Don't rewrite variables !, ( number(Y) -> P = ( X = Y); % This case reduces to an unification '$expand_expr'(Y, P0, X0), '$drop_is'(X0, X, P0, P) ). '$do_c_built_in'(Comp0, _, R) :- % now, do it for comparisons '$compop'(Comp0, Op, E, F), !, '$compop'(Comp, Op, U, V), '$expand_expr'(E, P, U), '$expand_expr'(F, Q, V), '$do_and'(P, Q, R0), '$do_and'(R0, Comp, R). '$do_c_built_in'(P, _, P). '$do_c_built_metacall'(G1, Mod, '$execute_wo_mod'(G1,Mod)) :- var(Mod), !. '$do_c_built_metacall'(G1, Mod, '$execute_in_mod'(G1,Mod)) :- var(G1), atom(Mod), !. '$do_c_built_metacall'(Mod:G1, _, OUT) :- !, '$do_c_built_metacall'(G1, Mod, OUT). '$do_c_built_metacall'(G1, Mod, '$execute_in_mod'(G1,Mod)) :- atom(Mod), !. '$do_c_built_metacall'(G1, Mod, call(Mod:G1)). '$do_and'(true, P, P) :- !. '$do_and'(P, true, P) :- !. '$do_and'(P, Q, (P,Q)). % V is the result of the simplification, % X the result of the initial expression % and the last argument is how we are writing this result '$drop_is'(V, V1, P0, G) :- var(V), !, % usual case V = V1, P0 = G. '$drop_is'(V, X, P0, P) :- % atoms '$do_and'(P1, X is V, P). % Table of arithmetic comparisons '$compop'(X < Y, < , X, Y). '$compop'(X > Y, > , X, Y). '$compop'(X=< Y,=< , X, Y). '$compop'(X >=Y, >=, X, Y). '$compop'(X=:=Y,=:=, X, Y). '$compop'(X=\=Y,=\=, X, Y). '$composed_built_in'(V) :- var(V), !, fail. '$composed_built_in'((yap_hacks:current_choice_point(_),NG,'$$cut_by'(_))) :- !, '$composed_built_in'(NG). '$composed_built_in'((_,_)). '$composed_built_in'((_;_)). '$composed_built_in'((_|_)). '$composed_built_in'((_->_)). '$composed_built_in'(_:G) :- '$composed_built_in'(G). '$composed_built_in'(\+G) :- '$composed_built_in'(G). '$composed_built_in'(not(G)) :- '$composed_built_in'(G). % expanding an expression: % first argument is the expression not expanded, % second argument the expanded expression % third argument unifies with the result from the expression '$expand_expr'(V, true, V) :- var(V), !. '$expand_expr'([T], E, V) :- !, '$expand_expr'(T, E, V). '$expand_expr'(A, true, A) :- atomic(A), !. '$expand_expr'(T, E, V) :- T =.. [O, A], !, '$expand_expr'(A, Q, X), '$expand_expr'(O, X, V, Q, E). '$expand_expr'(T, E, V) :- T =.. [O, A, B], !, '$expand_expr'(A, Q, X), '$expand_expr'(B, R, Y), '$expand_expr'(O, X, Y, V, Q, S), '$do_and'(R, S, E). % expanding an expression of the form: % O is Op(X), % after having expanded into Q % and giving as result P (the last argument) '$expand_expr'(Op, X, O, Q, Q) :- number(X), !, is( O, Op, X). '$expand_expr'(Op, X, O, Q, P) :- '$unary_op_as_integer'(Op,IOp), '$do_and'(Q, is( O, IOp, X), P). % expanding an expression of the form: % O is Op(X,Y), % after having expanded into Q % and giving as result P (the last argument) % included is some optimization for: % incrementing and decrementing, % the elementar arithmetic operations [+,-,*,//] '$expand_expr'(Op, X, Y, O, Q, Q) :- number(X), number(Y), !, is( O, Op, X, Y). '$expand_expr'(+, X, Y, O, Q, P) :- !, '$preprocess_args_for_commutative'(X, Y, X1, Y1, E), '$do_and'(E, '$plus'(X1,Y1,O), F), '$do_and'(Q, F, P). '$expand_expr'(-, X, Y, O, Q, P) :- var(X), number(Y), Z is -Y, !, '$expand_expr'(+, Z, X, O, Q, P). '$expand_expr'(-, X, Y, O, Q, P) :- !, '$preprocess_args_for_non_commutative'(X, Y, X1, Y1, E), '$do_and'(E, '$minus'(X1,Y1,O), F), '$do_and'(Q, F, P). '$expand_expr'(*, X, Y, O, Q, P) :- !, '$preprocess_args_for_commutative'(X, Y, X1, Y1, E), '$do_and'(E, '$times'(X1,Y1,O), F), '$do_and'(Q, F, P). '$expand_expr'(//, X, Y, O, Q, P) :- nonvar(Y), Y == 0, !, '$binary_op_as_integer'(//,IOp), '$do_and'(Q, is(O,IOp,X,Y), P). '$expand_expr'(//, X, Y, O, Q, P) :- !, '$preprocess_args_for_non_commutative'(X, Y, X1, Y1, E), '$do_and'(E, '$div'(X1,Y1,O), F), '$do_and'(Q, F, P). '$expand_expr'(/\, X, Y, O, Q, P) :- !, '$preprocess_args_for_commutative'(X, Y, X1, Y1, E), '$do_and'(E, '$and'(X1,Y1,O), F), '$do_and'(Q, F, P). '$expand_expr'(\/, X, Y, O, Q, P) :- !, '$preprocess_args_for_commutative'(X, Y, X1, Y1, E), '$do_and'(E, '$or'(X1,Y1,O), F), '$do_and'(Q, F, P). '$expand_expr'(<<, X, Y, O, Q, P) :- var(X), number(Y), Y < 0, Z is -Y, !, '$expand_expr'(>>, X, Z, O, Q, P). '$expand_expr'(<<, X, Y, O, Q, P) :- !, '$preprocess_args_for_non_commutative'(X, Y, X1, Y1, E), '$do_and'(E, '$sll'(X1,Y1,O), F), '$do_and'(Q, F, P). '$expand_expr'(>>, X, Y, O, Q, P) :- var(X), number(Y), Y < 0, Z is -Y, !, '$expand_expr'(<<, X, Z, O, Q, P). '$expand_expr'(>>, X, Y, O, Q, P) :- !, '$preprocess_args_for_non_commutative'(X, Y, X1, Y1, E), '$do_and'(E, '$slr'(X1,Y1,O), F), '$do_and'(Q, F, P). '$expand_expr'(Op, X, Y, O, Q, P) :- '$binary_op_as_integer'(Op,IOp), '$do_and'(Q, is(O,IOp,X,Y), P). '$preprocess_args_for_commutative'(X, Y, X, Y, true) :- var(X), var(Y), !. '$preprocess_args_for_commutative'(X, Y, X, Y, true) :- var(X), integer(Y), \+ '$bignum'(Y), !. '$preprocess_args_for_commutative'(X, Y, X, Z, Z = Y) :- var(X), !. '$preprocess_args_for_commutative'(X, Y, Y, X, true) :- integer(X), \+ '$bignum'(X), var(Y), !. '$preprocess_args_for_commutative'(X, Y, Z, X, Z = Y) :- integer(X), \+ '$bignum'(X), !. '$preprocess_args_for_commutative'(X, Y, Z, W, E) :- '$do_and'(Z = X, Y = W, E). '$preprocess_args_for_non_commutative'(X, Y, X, Y, true) :- var(X), var(Y), !. '$preprocess_args_for_non_commutative'(X, Y, X, Y, true) :- var(X), integer(Y), \+ '$bignum'(Y), !. '$preprocess_args_for_non_commutative'(X, Y, X, Z, Z = Y) :- var(X), !. '$preprocess_args_for_non_commutative'(X, Y, X, Y, true) :- integer(X), \+ '$bignum'(X), var(Y), !. '$preprocess_args_for_non_commutative'(X, Y, X, Z, Z = Y) :- integer(X), \+ '$bignum'(X), !. '$preprocess_args_for_non_commutative'(X, Y, Z, W, E) :- '$do_and'(Z = X, Y = W, E). /* Arithmetics */ between(I,M,J) :- ( var(I) -> '$do_error'(instantiation_error,between(I,M,J)) ; integer(I) -> ( var(M) -> '$do_error'(instantiation_error,between(I,M,J)) ; integer(M) -> ( var(J) -> I =< M, '$between'(I,M,J) ; integer(J) -> J >= I, J =< M ; '$do_error'(type_error(integer, J),between(I,M,J)) ) ; M == inf -> ( var(J) -> '$between_inf'(I,J) ; integer(J) -> J >= I ; '$do_error'(type_error(integer, J),between(I,M,J)) ) ; M == infinity -> ( var(J) -> '$between_inf'(I,J) ; integer(J) -> J >= I ; '$do_error'(type_error(integer, J),between(I,M,J)) ) ; '$do_error'(type_error(integer, M),between(I,M,J)) ) ; '$do_error'(type_error(integer, I),between(I,M,J)) ). '$between'(I,M,I) :- (I == M -> ! ; true ). '$between'(I0,I,J) :- I0 < I, '$plus'(I0, 1, I1), '$between'(I1,I,J). '$between_inf'(I,I). '$between_inf'(I,J) :- '$plus'(I, 1, I1), '$between_inf'(I1,J). % M and N nonnegative integers, N is the successor of M succ(M,N) :- ( var(M) -> ( integer(N), N > 0 -> '$plus'(N,-1,M) ; '$succ_error'(M,N) ) ; integer(M), M >= 0 -> ( var(N) -> '$plus'(M,1,N) ; integer(N), N > 0 -> '$plus'(M,1,N) ; '$succ_error'(M,N) ) ; '$succ_error'(M,N) ). '$succ_error'(M,N) :- var(M), var(N), !, '$do_error'(instantiation_error,succ(M,N)). '$succ_error'(M,N) :- nonvar(M), \+ integer(M), '$do_error'(type_error(integer, M),succ(M,N)). '$succ_error'(M,N) :- nonvar(M), M < 0, '$do_error'(domain_error(not_less_than_zero, M),succ(M,N)). '$succ_error'(M,N) :- nonvar(N), \+ integer(N), '$do_error'(type_error(integer, N),succ(M,N)). '$succ_error'(M,N) :- nonvar(N), N < 0, '$do_error'(domain_error(not_less_than_zero, N),succ(M,N)). plus(X, Y, Z) :- ( var(X) -> ( integer(Y), integer(Z) -> '$minus'(Z,Y,X) ; '$plus_error'(X,Y,Z) ) ; integer(X) -> ( var(Y) -> ( integer(Z) -> '$minus'(Z,X,Y) ; '$plus_error'(X,Y,Z) ) ; integer(Y) -> ( integer(Z) -> '$minus'(Z,Y,X) ; var(Z) -> '$plus'(X,Y,Z) ; '$plus_error'(X,Y,Z) ) ; '$plus_error'(X,Y,Z) ) ; '$plus_error'(X,Y,Z) ). '$plus_error'(X,Y,Z) :- nonvar(X), \+ integer(X), '$do_error'(type_error(integer, X),plus(X,Y,Z)). '$plus_error'(X,Y,Z) :- nonvar(Y), \+ integer(Y), '$do_error'(type_error(integer, Y),plus(X,Y,Z)). '$plus_error'(X,Y,Z) :- nonvar(Z), \+ integer(Z), '$do_error'(type_error(integer, Z),plus(X,Y,Z)). '$plus_error'(X,Y,Z) :- '$do_error'(instantiation_error,plus(X,Y,Z)).