#include #include "BayesNet.h" #include "VarNode.h" #include "Shared.h" #include "StatesIndexer.h" namespace InfAlgorithms { InfAlgs infAlgorithm = InfAlgorithms::VE; //InfAlgs infAlgorithm = InfAlgorithms::BN_BP; //InfAlgs infAlgorithm = InfAlgorithms::FG_BP; //InfAlgs infAlgorithm = InfAlgorithms::CBP; } namespace BpOptions { Schedule schedule = BpOptions::Schedule::SEQ_FIXED; //Schedule schedule = BpOptions::Schedule::SEQ_RANDOM; //Schedule schedule = BpOptions::Schedule::PARALLEL; //Schedule schedule = BpOptions::Schedule::MAX_RESIDUAL; double accuracy = 0.0001; unsigned maxIter = 1000; bool useAlwaysLoopySolver = true; } NumberSpace::ns NSPACE = NumberSpace::NORMAL; unordered_map GraphicalModel::varsInfo_; vector Statistics::netInfo_; vector Statistics::compressInfo_; unsigned Statistics::primaryNetCount_; namespace Util { void toLog (ParamSet& v) { for (unsigned i = 0; i < v.size(); i++) { v[i] = log (v[i]); } } void fromLog (ParamSet& v) { for (unsigned i = 0; i < v.size(); i++) { v[i] = exp (v[i]); } } void normalize (ParamSet& v) { double sum; switch (NSPACE) { case NumberSpace::NORMAL: sum = 0.0; for (unsigned i = 0; i < v.size(); i++) { sum += v[i]; } assert (sum != 0.0); for (unsigned i = 0; i < v.size(); i++) { v[i] /= sum; } break; case NumberSpace::LOGARITHM: sum = addIdenty(); for (unsigned i = 0; i < v.size(); i++) { logSum (sum, v[i]); } assert (sum != -numeric_limits::infinity()); for (unsigned i = 0; i < v.size(); i++) { v[i] -= sum; } } } void pow (ParamSet& v, unsigned expoent) { if (expoent == 1) { return; // optimization } switch (NSPACE) { case NumberSpace::NORMAL: for (unsigned i = 0; i < v.size(); i++) { double value = 1.0; for (unsigned j = 0; j < expoent; j++) { value *= v[i]; } v[i] = value; } break; case NumberSpace::LOGARITHM: for (unsigned i = 0; i < v.size(); i++) { v[i] *= expoent; } } } Param pow (Param p, unsigned expoent) { double value = 1.0; switch (NSPACE) { case NumberSpace::NORMAL: for (unsigned i = 0; i < expoent; i++) { value *= p; } break; case NumberSpace::LOGARITHM: value = p * expoent; } return value; } double getL1Distance (const ParamSet& v1, const ParamSet& v2) { assert (v1.size() == v2.size()); double dist = 0.0; switch (NSPACE) { case NumberSpace::NORMAL: for (unsigned i = 0; i < v1.size(); i++) { dist += abs (v1[i] - v2[i]); } break; case NumberSpace::LOGARITHM: for (unsigned i = 0; i < v1.size(); i++) { dist += abs (exp(v1[i]) - exp(v2[i])); } } return dist; } double getMaxNorm (const ParamSet& v1, const ParamSet& v2) { assert (v1.size() == v2.size()); double max = 0.0; switch (NSPACE) { case NumberSpace::NORMAL: for (unsigned i = 0; i < v1.size(); i++) { double diff = abs (v1[i] - v2[i]); if (diff > max) { max = diff; } } break; case NumberSpace::LOGARITHM: for (unsigned i = 0; i < v1.size(); i++) { double diff = abs (exp(v1[i]) - exp(v2[i])); if (diff > max) { max = diff; } } } return max; } unsigned getNumberOfDigits (int number) { unsigned count = 1; while (number >= 10) { number /= 10; count ++; } return count; } bool isInteger (const string& s) { stringstream ss1 (s); stringstream ss2; int integer; ss1 >> integer; ss2 << integer; return (ss1.str() == ss2.str()); } string parametersToString (const ParamSet& v, unsigned precision) { stringstream ss; ss.precision (precision); ss << "[" ; for (unsigned i = 0; i < v.size() - 1; i++) { ss << v[i] << ", " ; } if (v.size() != 0) { ss << v[v.size() - 1]; } ss << "]" ; return ss.str(); } BayesNet* generateBayesianNetworkTreeWithLevel (unsigned level) { BayesNet* bn = new BayesNet(); Distribution* dist = new Distribution (ParamSet() = {0.1, 0.5, 0.2, 0.7}); BayesNode* root = bn->addNode (0, 2, -1, BnNodeSet() = {}, new Distribution (ParamSet() = {0.1, 0.5})); BnNodeSet prevLevel = { root }; BnNodeSet currLevel; VarId vidCount = 1; for (unsigned l = 1; l < level; l++) { currLevel.clear(); for (unsigned i = 0; i < prevLevel.size(); i++) { currLevel.push_back ( bn->addNode (vidCount, 2, -1, BnNodeSet() = {prevLevel[i]}, dist)); vidCount ++; currLevel.push_back ( bn->addNode (vidCount, 2, -1, BnNodeSet() = {prevLevel[i]}, dist)); vidCount ++; } prevLevel = currLevel; } for (unsigned i = 0; i < prevLevel.size(); i++) { prevLevel[i]->setEvidence (0); } bn->setIndexes(); return bn; } vector getDomainConfigurations (const VarNodes& vars) { // TODO this method must die unsigned nConfs = 1; for (unsigned i = 0; i < vars.size(); i++) { nConfs *= vars[i]->nrStates(); } vector confs (nConfs); for (unsigned i = 0; i < nConfs; i++) { confs[i].resize (vars.size()); } unsigned nReps = 1; for (int i = vars.size() - 1; i >= 0; i--) { unsigned index = 0; while (index < nConfs) { for (unsigned j = 0; j < vars[i]->nrStates(); j++) { for (unsigned r = 0; r < nReps; r++) { confs[index][i] = j; index++; } } } nReps *= vars[i]->nrStates(); } return confs; } vector getJointStateStrings (const VarNodes& vars) { StatesIndexer idx (vars); vector jointStrings; while (idx.valid()) { stringstream ss; for (unsigned i = 0; i < vars.size(); i++) { if (i != 0) ss << ", " ; ss << vars[i]->label() << "=" << vars[i]->states()[(idx[i])]; } jointStrings.push_back (ss.str()); ++ idx; } return jointStrings; } } unsigned Statistics::getSolvedNetworksCounting (void) { return netInfo_.size(); } void Statistics::incrementPrimaryNetworksCounting (void) { primaryNetCount_ ++; } unsigned Statistics::getPrimaryNetworksCounting (void) { return primaryNetCount_; } void Statistics::updateStatistics (unsigned size, bool loopy, unsigned nIters, double time) { netInfo_.push_back (NetInfo (size, loopy, nIters, time)); } void Statistics::printStatistics (void) { cout << getStatisticString(); } void Statistics::writeStatisticsToFile (const char* fileName) { ofstream out (fileName); if (!out.is_open()) { cerr << "error: cannot open file to write at " ; cerr << "Statistics::writeStatisticsToFile()" << endl; abort(); } out << getStatisticString(); out.close(); } void Statistics::updateCompressingStatistics (unsigned nGroundVars, unsigned nGroundFactors, unsigned nClusterVars, unsigned nClusterFactors, unsigned nWithoutNeighs) { compressInfo_.push_back (CompressInfo (nGroundVars, nGroundFactors, nClusterVars, nClusterFactors, nWithoutNeighs)); } string Statistics::getStatisticString (void) { stringstream ss2, ss3, ss4, ss1; ss1 << "running mode: " ; switch (InfAlgorithms::infAlgorithm) { case InfAlgorithms::VE: ss1 << "ve" << endl; break; case InfAlgorithms::BN_BP: ss1 << "bn_bp" << endl; break; case InfAlgorithms::FG_BP: ss1 << "fg_bp" << endl; break; case InfAlgorithms::CBP: ss1 << "cbp" << endl; break; } ss1 << "message schedule: " ; switch (BpOptions::schedule) { case BpOptions::Schedule::SEQ_FIXED: ss1 << "sequential fixed" << endl; break; case BpOptions::Schedule::SEQ_RANDOM: ss1 << "sequential random" << endl; break; case BpOptions::Schedule::PARALLEL: ss1 << "parallel" << endl; break; case BpOptions::Schedule::MAX_RESIDUAL: ss1 << "max residual" << endl; break; } ss1 << "max iterations: " << BpOptions::maxIter << endl; ss1 << "accuracy " << BpOptions::accuracy << endl; if (BpOptions::useAlwaysLoopySolver) { ss1 << "always loopy solver: yes" << endl; } else { ss1 << "always loopy solver: no" << endl; } ss1 << endl << endl; ss2 << "---------------------------------------------------" << endl; ss2 << " Network information" << endl; ss2 << "---------------------------------------------------" << endl; ss2 << left; ss2 << setw (15) << "Network Size" ; ss2 << setw (9) << "Loopy" ; ss2 << setw (15) << "Iterations" ; ss2 << setw (15) << "Solving Time" ; ss2 << endl; unsigned nLoopyNets = 0; unsigned nUnconvergedRuns = 0; double totalSolvingTime = 0.0; for (unsigned i = 0; i < netInfo_.size(); i++) { ss2 << setw (15) << netInfo_[i].size; if (netInfo_[i].loopy) { ss2 << setw (9) << "yes"; nLoopyNets ++; } else { ss2 << setw (9) << "no"; } if (netInfo_[i].nIters == 0) { ss2 << setw (15) << "n/a" ; } else { ss2 << setw (15) << netInfo_[i].nIters; if (netInfo_[i].nIters > BpOptions::maxIter) { nUnconvergedRuns ++; } } ss2 << setw (15) << netInfo_[i].time; totalSolvingTime += netInfo_[i].time; ss2 << endl; } ss2 << endl << endl; unsigned c1 = 0, c2 = 0, c3 = 0, c4 = 0; if (compressInfo_.size() > 0) { ss3 << "---------------------------------------------------" << endl; ss3 << " Compression information" << endl; ss3 << "---------------------------------------------------" << endl; ss3 << left; ss3 << "Ground Cluster Ground Cluster Neighborless" << endl; ss3 << "Vars Vars Factors Factors Vars" << endl; for (unsigned i = 0; i < compressInfo_.size(); i++) { ss3 << setw (9) << compressInfo_[i].nGroundVars; ss3 << setw (10) << compressInfo_[i].nClusterVars; ss3 << setw (10) << compressInfo_[i].nGroundFactors; ss3 << setw (10) << compressInfo_[i].nClusterFactors; ss3 << setw (10) << compressInfo_[i].nWithoutNeighs; ss3 << endl; c1 += compressInfo_[i].nGroundVars - compressInfo_[i].nWithoutNeighs; c2 += compressInfo_[i].nClusterVars; c3 += compressInfo_[i].nGroundFactors - compressInfo_[i].nWithoutNeighs; c4 += compressInfo_[i].nClusterFactors; if (compressInfo_[i].nWithoutNeighs != 0) { c2 --; c4 --; } } ss3 << endl << endl; } ss4 << "primary networks: " << primaryNetCount_ << endl; ss4 << "solved networks: " << netInfo_.size() << endl; ss4 << "loopy networks: " << nLoopyNets << endl; ss4 << "unconverged runs: " << nUnconvergedRuns << endl; ss4 << "total solving time: " << totalSolvingTime << endl; if (compressInfo_.size() > 0) { double pc1 = (1.0 - (c2 / (double)c1)) * 100.0; double pc2 = (1.0 - (c4 / (double)c3)) * 100.0; ss4 << setprecision (5); ss4 << "variable compression: " << pc1 << "%" << endl; ss4 << "factor compression: " << pc2 << "%" << endl; } ss4 << endl << endl; ss1 << ss4.str() << ss2.str() << ss3.str(); return ss1.str(); }