/************************************************************************* * * * YAP Prolog * * * * Yap Prolog was developed at NCCUP - Universidade do Porto * * * * Copyright L.Damas, V.S.Costa and Universidade do Porto 1985-1997 * * * ************************************************************************** * * * File: arith2.c * * Last rev: * * mods: * * comments: arithmetical expression evaluation * * * *************************************************************************/ #ifdef SCCS static char SccsId[] = "%W% %G%"; #endif /** @file arith2.c @addtogroup arithmetic_operators These are the binary numeric operators currently supported by YAP. - <b> _X_+ _Y_ [ISO]</b><p> Sum. - <b> _X_- _Y_ [ISO]</b><p> Difference. - <b> _X_\* _Y_ [ISO]</b><p> Product. - <b> _X_/ _Y_ [ISO]</b><p> Quotient. - <b> _X_// _Y_ [ISO]</b><p> Integer quotient. - <b> _X_ mod _Y_ [ISO]</b><p> @anchor mod_2 Integer module operator, always positive. - <b> _X_ rem _Y_ [ISO]</b><p> @anchor rem_2 Integer remainder, similar to `mod` but always has the same sign as `X`. - <b> _X_ div _Y_ [ISO]</b><p> @anchor div_2 Integer division, as if defined by `( _X_ - _X_ mod _Y_)// _Y_`. - <b> max( _X_, _Y_) [ISO]</b><p> @anchor max_2 The greater value of _X_ and _Y_. - <b> min( _X_, _Y_) [ISO]</b><p> @anchor min_2 The lesser value of _X_ and _Y_. - <b> _X_ ^ _Y_ [ISO]</b><p> _X_ raised to the power of _Y_, (from the C-Prolog syntax). - <b> exp( _X_, _Y_)</b><p> @anchor exp_2 _X_ raised to the power of _Y_, (from the Quintus Prolog syntax). - <b> _X_ \*\* _Y_ [ISO]</b><p> _X_ raised to the power of _Y_ (from ISO). - <b> _X_ /\\ _Y_ [ISO]</b><p> Integer bitwise conjunction. - <b> _X_ \\/ _Y_ [ISO]</b><p> Integer bitwise disjunction. - <b> _X_ # _Y_</b><p> Integer bitwise exclusive disjunction. - <b> _X_ \>\< _Y_</b><p> Integer bitwise exclusive disjunction. - <b> xor( _X_ , _Y_) [ISO]</b><p> @anchor xor_2 Integer bitwise exclusive disjunction. - <b> _X_ \<\< _Y_</b><p> Integer bitwise left logical shift of _X_ by _Y_ places. - <b> _X_ \>\> _Y_ [ISO]</b><p> Integer bitwise right logical shift of _X_ by _Y_ places. - <b> gcd( _X_, _Y_)</b><p> @anchor gcd_2 The greatest common divisor of the two integers _X_ and _Y_. - <b> atan( _X_, _Y_)</b><p> @anchor atan_2 Four-quadrant arc tangent. Also available as `atan2/2`. - <b> atan2( _X_, _Y_) [ISO]</b><p> @anchor atan2_2 Four-quadrant arc tangent. - <b> _X_ rdiv _Y_ [ISO]</b><p> @anchor rdiv_2 Rational division. */ #include "Yap.h" #include "Yatom.h" #include "YapHeap.h" #include "eval.h" #include "arith2.h" typedef struct init_un_eval { char *OpName; arith2_op f; } InitBinEntry; static Term p_mod(Term t1, Term t2 USES_REGS) { switch (ETypeOfTerm(t1)) { case (CELL)long_int_e: switch (ETypeOfTerm(t2)) { case (CELL)long_int_e: /* two integers */ { Int i1 = IntegerOfTerm(t1); Int i2 = IntegerOfTerm(t2); Int mod; if (i2 == 0) return Yap_ArithError(EVALUATION_ERROR_ZERO_DIVISOR, t2, "X is " Int_FORMAT " mod 0", i1); if (i1 == Int_MIN && i2 == -1) { return MkIntTerm(0); } mod = i1%i2; if (mod && (mod ^ i2) < 0) mod += i2; RINT(mod); } case (CELL)double_e: return Yap_ArithError(TYPE_ERROR_INTEGER, t2, "mod/2"); case (CELL)big_int_e: #ifdef USE_GMP return Yap_gmp_mod_int_big(IntegerOfTerm(t1), t2); #endif default: RERROR(); break; } case (CELL)double_e: return Yap_ArithError(TYPE_ERROR_INTEGER, t2, "mod/2"); case (CELL)big_int_e: #ifdef USE_GMP switch (ETypeOfTerm(t2)) { case long_int_e: /* modulo between bignum and integer */ { Int i2 = IntegerOfTerm(t2); if (i2 == 0) return Yap_ArithError(EVALUATION_ERROR_ZERO_DIVISOR, t2, "X is ... mod 0"); return Yap_gmp_mod_big_int(t1, i2); } case (CELL)big_int_e: /* two bignums */ return Yap_gmp_mod_big_big(t1, t2); case double_e: return Yap_ArithError(TYPE_ERROR_INTEGER, t2, "mod/2"); default: RERROR(); } #endif default: RERROR(); } } static Term p_div2(Term t1, Term t2 USES_REGS) { switch (ETypeOfTerm(t1)) { case (CELL)long_int_e: switch (ETypeOfTerm(t2)) { case (CELL)long_int_e: /* two integers */ { Int i1 = IntegerOfTerm(t1); Int i2 = IntegerOfTerm(t2); Int res, mod; if (i2 == 0) return Yap_ArithError(EVALUATION_ERROR_ZERO_DIVISOR, t2, "X is " Int_FORMAT " div 0", i1); if (i1 == Int_MIN && i2 == -1) { #ifdef USE_GMP return Yap_gmp_add_ints(Int_MAX, 1); #else return Yap_ArithError(EVALUATION_ERROR_INT_OVERFLOW, t1, "// /2 with %d and %d", i1, i2); #endif } mod = i1%i2; if (mod && (mod ^ i2) < 0) mod += i2; res = (i1 - mod) / i2; RINT(res); } case (CELL)double_e: return Yap_ArithError(TYPE_ERROR_INTEGER, t2, "div/2"); case (CELL)big_int_e: #ifdef USE_GMP return Yap_gmp_div_int_big(IntegerOfTerm(t1), t2); #endif default: RERROR(); break; } case (CELL)double_e: return Yap_ArithError(TYPE_ERROR_INTEGER, t2, "div/2"); case (CELL)big_int_e: #ifdef USE_GMP switch (ETypeOfTerm(t2)) { case long_int_e: /* modulo between bignum and integer */ { Int i2 = IntegerOfTerm(t2); if (i2 == 0) return Yap_ArithError(EVALUATION_ERROR_ZERO_DIVISOR, t2, "X is ... div 0"); return Yap_gmp_div2_big_int(t1, i2); } case (CELL)big_int_e: /* two bignums */ return Yap_gmp_div2_big_big(t1, t2); case double_e: return Yap_ArithError(TYPE_ERROR_INTEGER, t2, "div/2"); default: RERROR(); } #endif default: RERROR(); } } static Term p_rem(Term t1, Term t2 USES_REGS) { switch (ETypeOfTerm(t1)) { case (CELL)long_int_e: switch (ETypeOfTerm(t2)) { case (CELL)long_int_e: /* two integers */ { Int i1 = IntegerOfTerm(t1); Int i2 = IntegerOfTerm(t2); if (i2 == 0) return Yap_ArithError(EVALUATION_ERROR_ZERO_DIVISOR, t2, "X is " Int_FORMAT " rem 0", i1); if (i1 == Int_MIN && i2 == -1) { return MkIntTerm(0); } RINT(i1%i2); } case (CELL)double_e: return Yap_ArithError(TYPE_ERROR_INTEGER, t2, "rem/2"); case (CELL)big_int_e: #ifdef USE_GMP return Yap_gmp_rem_int_big(IntegerOfTerm(t1), t2); #endif default: RERROR(); } break; case (CELL)double_e: return Yap_ArithError(TYPE_ERROR_INTEGER, t1, "rem/2"); case (CELL)big_int_e: #ifdef USE_GMP switch (ETypeOfTerm(t2)) { case long_int_e: if (IntegerOfTerm(t2) == 0) return Yap_ArithError(EVALUATION_ERROR_ZERO_DIVISOR, t2, "X is ... rem 0"); return Yap_gmp_rem_big_int(t1, IntegerOfTerm(t2)); case (CELL)big_int_e: /* two bignums */ return Yap_gmp_rem_big_big(t1, t2); case double_e: return Yap_ArithError(TYPE_ERROR_INTEGER, t2, "rem/2"); default: RERROR(); } #endif default: RERROR(); } } static Term p_rdiv(Term t1, Term t2 USES_REGS) { #ifdef USE_GMP switch (ETypeOfTerm(t1)) { case (CELL)double_e: return Yap_ArithError(TYPE_ERROR_INTEGER, t2, "rdiv/2"); case (CELL)long_int_e: switch (ETypeOfTerm(t2)) { case (CELL)long_int_e: /* two integers */ { Int i1 = IntegerOfTerm(t1); Int i2 = IntegerOfTerm(t2); if (i2 == 0) return Yap_ArithError(EVALUATION_ERROR_ZERO_DIVISOR, t2, "X is " Int_FORMAT " rdiv 0", i1); return Yap_gmq_rdiv_int_int(i1, i2); } case (CELL)big_int_e: /* I know the term is much larger, so: */ return Yap_gmq_rdiv_int_big(IntegerOfTerm(t1), t2); default: RERROR(); } break; case (CELL)big_int_e: switch (ETypeOfTerm(t2)) { case long_int_e: if (IntegerOfTerm(t2) == 0) return Yap_ArithError(EVALUATION_ERROR_ZERO_DIVISOR, t2, "X is ... rdiv 0"); /* I know the term is much larger, so: */ return Yap_gmq_rdiv_big_int(t1, IntegerOfTerm(t2)); case (CELL)big_int_e: return Yap_gmq_rdiv_big_big(t1, t2); case double_e: return Yap_ArithError(TYPE_ERROR_INTEGER, t2, "rdiv/2"); default: RERROR(); } default: RERROR(); } #else RERROR(); #endif } /* Floating point division: / */ static Term p_fdiv(Term t1, Term t2 USES_REGS) { switch (ETypeOfTerm(t1)) { case long_int_e: switch (ETypeOfTerm(t2)) { case long_int_e: { Int i2 = IntegerOfTerm(t2); /* two integers */ RFLOAT((((Float)IntegerOfTerm(t1))/(Float)i2)); } case double_e: { /* integer, double */ Float fl1 = (Float)IntegerOfTerm(t1); Float fl2 = FloatOfTerm(t2); RFLOAT(fl1/fl2); } case (CELL)big_int_e: #ifdef USE_GMP return Yap_gmp_fdiv_int_big(IntegerOfTerm(t1), t2); #endif default: RERROR(); } break; case double_e: switch (ETypeOfTerm(t2)) { case long_int_e: /* float / integer */ { Int i2 = IntegerOfTerm(t2); RFLOAT(FloatOfTerm(t1)/(Float)i2); } case double_e: { Float f2 = FloatOfTerm(t2); RFLOAT(FloatOfTerm(t1)/f2); } case big_int_e: #ifdef USE_GMP return Yap_gmp_fdiv_float_big(FloatOfTerm(t1), t2); #endif default: RERROR(); } break; case big_int_e: #ifdef USE_GMP switch (ETypeOfTerm(t2)) { case long_int_e: return Yap_gmp_fdiv_big_int(t1, IntegerOfTerm(t2)); case big_int_e: /* two bignums*/ return Yap_gmp_fdiv_big_big(t1, t2); case double_e: return Yap_gmp_fdiv_big_float(t1, FloatOfTerm(t2)); default: RERROR(); } #endif default: RERROR(); } RERROR(); } /* xor # */ static Term p_xor(Term t1, Term t2 USES_REGS) { switch (ETypeOfTerm(t1)) { case long_int_e: switch (ETypeOfTerm(t2)) { case long_int_e: /* two integers */ RINT(IntegerOfTerm(t1) ^ IntegerOfTerm(t2)); case double_e: return Yap_ArithError(TYPE_ERROR_INTEGER, t2, "#/2"); case big_int_e: #ifdef USE_GMP return Yap_gmp_xor_int_big(IntegerOfTerm(t1), t2); #endif default: RERROR(); } break; case double_e: return Yap_ArithError(TYPE_ERROR_INTEGER, t1, "#/2"); case big_int_e: #ifdef USE_GMP switch (ETypeOfTerm(t2)) { case long_int_e: return Yap_gmp_xor_int_big(IntegerOfTerm(t2), t1); case big_int_e: return Yap_gmp_xor_big_big(t1, t2); case double_e: return Yap_ArithError(TYPE_ERROR_INTEGER, t2, "#/2"); default: RERROR(); } #endif default: RERROR(); } RERROR(); } /* atan2: arc tangent x/y */ static Term p_atan2(Term t1, Term t2 USES_REGS) { switch (ETypeOfTerm(t1)) { case long_int_e: switch (ETypeOfTerm(t2)) { case long_int_e: /* two integers */ RFLOAT(atan2(IntegerOfTerm(t1),IntegerOfTerm(t2))); case double_e: RFLOAT(atan2(IntegerOfTerm(t1),FloatOfTerm(t2))); case big_int_e: #ifdef USE_GMP { Int i1 = IntegerOfTerm(t1); Float f2 = Yap_gmp_to_float(t2); RFLOAT(atan2(i1,f2)); } #endif default: RERROR(); break; } case double_e: switch (ETypeOfTerm(t2)) { case long_int_e: /* float / integer */ { Int i2 = IntegerOfTerm(t2); RFLOAT(atan2(FloatOfTerm(t1),i2)); } case double_e: { Float f2 = FloatOfTerm(t2); RFLOAT(atan2(FloatOfTerm(t1),f2)); } case big_int_e: #ifdef USE_GMP { RFLOAT(atan2(FloatOfTerm(t1),Yap_gmp_to_float(t2))); } #endif default: RERROR(); } break; case big_int_e: #ifdef USE_GMP { Float dbl1 = Yap_gmp_to_float(t1); switch (ETypeOfTerm(t2)) { case long_int_e: { Int i = IntegerOfTerm(t2); RFLOAT(atan2(dbl1,i)); } case big_int_e: /* two bignums */ RFLOAT(atan2(dbl1,Yap_gmp_to_float(t2))); case double_e: { Float dbl = FloatOfTerm(t2); RFLOAT(atan2(dbl1,dbl)); } default: RERROR(); } } #endif default: RERROR(); } RERROR(); } /* power: x^y */ static Term p_power(Term t1, Term t2 USES_REGS) { switch (ETypeOfTerm(t1)) { case long_int_e: switch (ETypeOfTerm(t2)) { case long_int_e: { Int i2 = IntegerOfTerm(t2); /* two integers */ RFLOAT(pow(IntegerOfTerm(t1),i2)); } case double_e: { /* integer, double */ Float fl1 = (Float)IntegerOfTerm(t1); Float fl2 = FloatOfTerm(t2); RFLOAT(pow(fl1,fl2)); } case big_int_e: #ifdef USE_GMP { Int i1 = IntegerOfTerm(t1); Float f2 = Yap_gmp_to_float(t2); RFLOAT(pow(i1,f2)); } #endif default: RERROR(); } break; case double_e: switch (ETypeOfTerm(t2)) { case long_int_e: /* float / integer */ { Int i2 = IntegerOfTerm(t2); RFLOAT(pow(FloatOfTerm(t1),i2)); } case double_e: { Float f2 = FloatOfTerm(t2); RFLOAT(pow(FloatOfTerm(t1),f2)); } case big_int_e: #ifdef USE_GMP { RFLOAT(pow(FloatOfTerm(t1),Yap_gmp_to_float(t2))); } #endif default: RERROR(); } break; case big_int_e: #ifdef USE_GMP switch (ETypeOfTerm(t2)) { case long_int_e: { Int i = IntegerOfTerm(t2); RFLOAT(pow(Yap_gmp_to_float(t1),i)); } case big_int_e: /* two bignums */ RFLOAT(pow(Yap_gmp_to_float(t1),Yap_gmp_to_float(t2))); case double_e: { Float dbl = FloatOfTerm(t2); RFLOAT(pow(Yap_gmp_to_float(t1),dbl)); } default: RERROR(); } #endif default: RERROR(); } RERROR(); } /* next function is adapted from: Inline C++ integer exponentiation routines Version 1.01 Copyright (C) 1999-2004 John C. Bowman <bowman@math.ualberta.ca> */ static inline Int ipow(Int x, Int p) { Int r; if (p == 0) return ((CELL)1); if (x == 0 && p > 0) return 0L; if(p < 0) return (-p % 2) ? x : ((CELL)1); r = ((CELL)1); for(;;) { if(p & 1) { if (mul_overflow((r*x), r, x)) { return 0; } r *= x; } if((p >>= 1) == 0) return r; if (mul_overflow((x*x), x, x)) { return 0; } x *= x; } } /* power: x^y */ static Term p_exp(Term t1, Term t2 USES_REGS) { switch (ETypeOfTerm(t1)) { case long_int_e: switch (ETypeOfTerm(t2)) { case long_int_e: { Int i1 = IntegerOfTerm(t1); Int i2 = IntegerOfTerm(t2); Int pow; if (i2 < 0) { return Yap_ArithError(DOMAIN_ERROR_NOT_LESS_THAN_ZERO, t2, "%d ^ %d", i1, i2); } pow = ipow(i1,i2); #ifdef USE_GMP /* two integers */ if ((i1 && !pow)) { /* overflow */ return Yap_gmp_exp_int_int(i1, i2); } #endif RINT(pow); } case double_e: { /* integer, double */ Float fl1 = (Float)IntegerOfTerm(t1); Float fl2 = FloatOfTerm(t2); RFLOAT(pow(fl1,fl2)); } case big_int_e: #ifdef USE_GMP { Int i = IntegerOfTerm(t1); return Yap_gmp_exp_int_big(i,t2); } #endif default: RERROR(); } break; case double_e: switch (ETypeOfTerm(t2)) { case long_int_e: /* float / integer */ { Int i2 = IntegerOfTerm(t2); RFLOAT(pow(FloatOfTerm(t1),i2)); } case double_e: { Float f2 = FloatOfTerm(t2); RFLOAT(pow(FloatOfTerm(t1),f2)); } case big_int_e: #ifdef USE_GMP { RFLOAT(pow(FloatOfTerm(t1),Yap_gmp_to_float(t2))); } #endif default: RERROR(); } break; case big_int_e: #ifdef USE_GMP switch (ETypeOfTerm(t2)) { case long_int_e: { Int i = IntegerOfTerm(t2); return Yap_gmp_exp_big_int(t1,i); } case big_int_e: /* two bignums, makes no sense */ return Yap_gmp_exp_big_big(t1,t2); case double_e: { Float dbl = FloatOfTerm(t2); RFLOAT(pow(Yap_gmp_to_float(t1),dbl)); } default: RERROR(); } #endif default: RERROR(); } RERROR(); } static Int gcd(Int m11,Int m21 USES_REGS) { /* Blankinship algorithm, provided by Miguel Filgueiras */ Int m12=1, m22=0, k; while (m11>0 && m21>0) if (m11<m21) { k = m21/m11; m21 -= k*m11; m22 -= k*m12; } else { k=m11/m21; m11 -= k*m21; m12 -= k*m22; } if (m11<0 || m21<0) { /* overflow? */ /* Oflow = 1; */ Yap_ArithError(EVALUATION_ERROR_INT_OVERFLOW, MkIntegerTerm(m11), "gcd/2 with %d and %d", m11, m21); return(1); } if (m11) return(m11); return(m21); } #ifdef GCD_MULT Int gcdmult(Int m11,Int m21,Int *pm11) /* *pm11 gets multiplier of m11 */ { Int m12=1, m22=0, k; while (m11 && m21) if (m11<m21) { k = m21/m11; m21 -= k*m11; m22 -= k*m12; } else { k=m11/m21; m11 -= k*m21; m12 -= k*m22; } if (m11<0 || m21<0) { /* overflow? */ /* Oflow = 1; */ Yap_ArithError(EVALUATION_ERROR_INT_OVERFLOW, MkIntegerTerm(m11), "gcdmult/2 with %d and %d", m11, m21); return(1); } if (m11) { *pm11 = m12; return(m11); } *pm11 = m22; return(m21); } #endif /* module gcd */ static Term p_gcd(Term t1, Term t2 USES_REGS) { switch (ETypeOfTerm(t1)) { case long_int_e: switch (ETypeOfTerm(t2)) { case long_int_e: /* two integers */ { Int i1 = IntegerOfTerm(t1), i2 = IntegerOfTerm(t2); i1 = (i1 >= 0 ? i1 : -i1); i2 = (i2 >= 0 ? i2 : -i2); RINT(gcd(i1,i2 PASS_REGS)); } case double_e: return Yap_ArithError(TYPE_ERROR_INTEGER, t2, "gcd/2"); case big_int_e: #ifdef USE_GMP return Yap_gmp_gcd_int_big(IntegerOfTerm(t1), t2); #endif default: RERROR(); } break; case double_e: return Yap_ArithError(TYPE_ERROR_INTEGER, t1, "gcd/2"); case big_int_e: #ifdef USE_GMP switch (ETypeOfTerm(t2)) { case long_int_e: return Yap_gmp_gcd_int_big(IntegerOfTerm(t2), t1); case big_int_e: return Yap_gmp_gcd_big_big(t1, t2); case double_e: return Yap_ArithError(TYPE_ERROR_INTEGER, t2, "gcd/2"); default: RERROR(); } #endif default: RERROR(); } RERROR(); } /* minimum: min(x,y) */ static Term p_min(Term t1, Term t2) { switch (ETypeOfTerm(t1)) { case long_int_e: switch (ETypeOfTerm(t2)) { case long_int_e: { Int i1 = IntegerOfTerm(t1); Int i2 = IntegerOfTerm(t2); return((i1 < i2 ? t1 : t2)); } case double_e: { /* integer, double */ Int i = IntegerOfTerm(t1); Float fl = FloatOfTerm(t2); if (i <= fl) { return t1; } return t2; } case big_int_e: #ifdef USE_GMP if (Yap_gmp_cmp_int_big(IntegerOfTerm(t1), t2) < 0) { return t1; } return t2; #endif default: RERROR(); } break; case double_e: switch (ETypeOfTerm(t2)) { case long_int_e: /* float / integer */ { Int i = IntegerOfTerm(t2); Float fl = FloatOfTerm(t1); if (i <= fl) { return t2; } return t1; } case double_e: { Float fl1 = FloatOfTerm(t1); Float fl2 = FloatOfTerm(t2); if (fl1 <= fl2) { return t1; } return t2; } case big_int_e: #ifdef USE_GMP if (Yap_gmp_cmp_float_big(FloatOfTerm(t1), t2) < 0) { return t1; } return t2; #endif default: RERROR(); } break; case big_int_e: #ifdef USE_GMP switch (ETypeOfTerm(t2)) { case long_int_e: if (Yap_gmp_cmp_big_int(t1, IntegerOfTerm(t2)) < 0) { return t1; } return t2; case big_int_e: if (Yap_gmp_cmp_big_big(t1, t2) < 0) { return t1; } return t2; case double_e: if (Yap_gmp_cmp_big_float(t1, FloatOfTerm(t2)) < 0) { return t1; } return t2; default: RERROR(); } #endif default: RERROR(); } RERROR(); } /* maximum: max(x,y) */ static Term p_max(Term t1, Term t2) { switch (ETypeOfTerm(t1)) { case long_int_e: switch (ETypeOfTerm(t2)) { case long_int_e: { Int i1 = IntegerOfTerm(t1); Int i2 = IntegerOfTerm(t2); return((i1 > i2 ? t1 : t2)); } case double_e: { /* integer, double */ Int i = IntegerOfTerm(t1); Float fl = FloatOfTerm(t2); if (i >= fl) { return t1; } return t2; } case big_int_e: #ifdef USE_GMP if (Yap_gmp_cmp_int_big(IntegerOfTerm(t1), t2) > 0) { return t1; } return t2; #endif default: RERROR(); } break; case double_e: switch (ETypeOfTerm(t2)) { case long_int_e: /* float / integer */ { Int i = IntegerOfTerm(t2); Float fl = FloatOfTerm(t1); if (i >= fl) { return t2; } return t1; } case double_e: { Float fl1 = FloatOfTerm(t1); Float fl2 = FloatOfTerm(t2); if (fl1 >= fl2) { return t1; } return t2; } case big_int_e: #ifdef USE_GMP if (Yap_gmp_cmp_float_big(FloatOfTerm(t1), t2) > 0) { return t1; } return t2; #endif default: RERROR(); } break; case big_int_e: #ifdef USE_GMP switch (ETypeOfTerm(t2)) { case long_int_e: if (Yap_gmp_cmp_big_int(t1, IntegerOfTerm(t2)) > 0) { return t1; } return t2; case big_int_e: if (Yap_gmp_cmp_big_big(t1, t2) > 0) { return t1; } return t2; case double_e: if (Yap_gmp_cmp_big_float(t1, FloatOfTerm(t2)) > 0) { return t1; } return t2; default: RERROR(); } #endif default: RERROR(); } RERROR(); } static Term eval2(Int fi, Term t1, Term t2 USES_REGS) { arith2_op f = fi; switch (f) { case op_plus: return p_plus(t1, t2 PASS_REGS); case op_minus: return p_minus(t1, t2 PASS_REGS); case op_times: return p_times(t1, t2 PASS_REGS); case op_div: return p_div(t1, t2 PASS_REGS); case op_idiv: return p_div2(t1, t2 PASS_REGS); case op_and: return p_and(t1, t2 PASS_REGS); case op_or: return p_or(t1, t2 PASS_REGS); case op_sll: return p_sll(t1, t2 PASS_REGS); case op_slr: return p_slr(t1, t2 PASS_REGS); case op_mod: return p_mod(t1, t2 PASS_REGS); case op_rem: return p_rem(t1, t2 PASS_REGS); case op_fdiv: return p_fdiv(t1, t2 PASS_REGS); case op_xor: return p_xor(t1, t2 PASS_REGS); case op_atan2: return p_atan2(t1, t2 PASS_REGS); case op_power: return p_exp(t1, t2 PASS_REGS); case op_power2: return p_power(t1, t2 PASS_REGS); case op_gcd: return p_gcd(t1, t2 PASS_REGS); case op_min: return p_min(t1, t2); case op_max: return p_max(t1, t2); case op_rdiv: return p_rdiv(t1, t2 PASS_REGS); } RERROR(); } Term Yap_eval_binary(Int f, Term t1, Term t2) { CACHE_REGS return eval2(f,t1,t2 PASS_REGS); } static InitBinEntry InitBinTab[] = { {"+", op_plus}, {"-", op_minus}, {"*", op_times}, {"/", op_fdiv}, {"mod", op_mod}, {"rem", op_rem}, {"//", op_div}, {"div", op_idiv}, {"<<", op_sll}, {">>", op_slr}, {"/\\", op_and}, {"\\/", op_or}, {"#", op_xor}, {"><", op_xor}, {"xor", op_xor}, {"atan", op_atan2}, {"atan2", op_atan2}, /* C-Prolog exponentiation */ {"^", op_power}, /* ISO-Prolog exponentiation */ {"**", op_power2}, /* Quintus exponentiation */ {"exp", op_power2}, {"gcd", op_gcd}, {"min", op_min}, {"max", op_max}, {"rdiv", op_rdiv} }; static Int p_binary_is( USES_REGS1 ) { /* X is Y */ Term t = Deref(ARG2); Term t1, t2; yap_error_number err; if (IsVarTerm(t)) { Yap_ArithError(INSTANTIATION_ERROR,t, "VAR(X , Y)"); return(FALSE); } Yap_ClearExs(); t1 = Yap_Eval(Deref(ARG3)); if ((err = Yap_FoundArithError())) { Atom name; if (IsIntTerm(t)) { Int i = IntOfTerm(t); name = Yap_NameOfBinaryOp(i); } else { name = AtomOfTerm(Deref(ARG2)); } Yap_EvalError(err,ARG3,"X is ~s/2: error in first argument ", RepAtom(name)->StrOfAE); return FALSE; } t2 = Yap_Eval(Deref(ARG4)); if ((err=Yap_FoundArithError())) { Atom name; if (IsIntTerm(t)) { Int i = IntOfTerm(t); name = Yap_NameOfBinaryOp(i); } else { name = AtomOfTerm(Deref(ARG2)); } Yap_EvalError(err,ARG3,"X is ~s/2: error in first argument ", RepAtom(name)->StrOfAE); return FALSE; } if (IsIntTerm(t)) { Int i = IntOfTerm(t); Term tout = eval2(i, t1, t2 PASS_REGS); if ((err = Yap_FoundArithError()) != YAP_NO_ERROR) { Term ts[2], terr; Atom name = Yap_NameOfBinaryOp( i ); Functor f = Yap_MkFunctor( name, 2 ); ts[0] = t1; ts[1] = t2; terr = Yap_MkApplTerm( f, 2, ts ); Yap_EvalError(err, terr ,"error in %s/2 ", RepAtom(name)->StrOfAE); return FALSE; } return Yap_unify_constant(ARG1,tout); } if (IsAtomTerm(t)) { Atom name = AtomOfTerm(t); ExpEntry *p; Term out; if (EndOfPAEntr(p = RepExpProp(Yap_GetExpProp(name, 2)))) { Yap_EvalError(TYPE_ERROR_EVALUABLE, takeName(t), "functor %s/2 for arithmetic expression", RepAtom(name)->StrOfAE); P = FAILCODE; return(FALSE); } out= eval2(p->FOfEE, t1, t2 PASS_REGS); if ((err = Yap_FoundArithError()) != YAP_NO_ERROR) { Term ts[2], terr; Functor f = Yap_MkFunctor( name, 2 ); ts[0] = t1; ts[1] = t2; terr = Yap_MkApplTerm( f, 2, ts ); Yap_EvalError(err, terr ,"error in ~s/2 ", RepAtom(name)->StrOfAE); return FALSE; } return Yap_unify_constant(ARG1,out); } return FALSE; } static Int do_arith23(arith2_op op USES_REGS) { /* X is Y */ Term t = Deref(ARG1); Int out; Term t1, t2; yap_error_number err; Yap_ClearExs(); if (IsVarTerm(t)) { Yap_EvalError(INSTANTIATION_ERROR,t, "X is Y"); return(FALSE); } t1 = Yap_Eval(t); if (t1 == 0L) return FALSE; t2 = Yap_Eval(Deref(ARG2)); if (t2 == 0L) return FALSE; out= eval2(op, t1, t2 PASS_REGS); if ((err=Yap_FoundArithError())) { Term ts[2], t; Functor f = Yap_MkFunctor( Yap_NameOfBinaryOp(op), 2 ); ts[0] = t1; ts[1] = t2; t = Yap_MkApplTerm( f, 2, ts ); Yap_EvalError(err, t ,"error in ~s(Y,Z) ",Yap_NameOfBinaryOp(op)); return FALSE; } return Yap_unify_constant(ARG3,out); } static Int export_p_plus( USES_REGS1 ) { /* X is Y */ return do_arith23(op_plus PASS_REGS); } static Int export_p_minus( USES_REGS1 ) { /* X is Y */ return do_arith23(op_minus PASS_REGS); } static Int export_p_times( USES_REGS1 ) { /* X is Y */ return do_arith23(op_times PASS_REGS); } static Int export_p_div( USES_REGS1 ) { /* X is Y */ return do_arith23(op_div PASS_REGS); } static Int export_p_and( USES_REGS1 ) { /* X is Y */ return do_arith23(op_and PASS_REGS); } static Int export_p_or( USES_REGS1 ) { /* X is Y */ return do_arith23(op_or PASS_REGS); } static Int export_p_slr( USES_REGS1 ) { /* X is Y */ return do_arith23(op_slr PASS_REGS); } static Int export_p_sll( USES_REGS1 ) { /* X is Y */ return do_arith23(op_sll PASS_REGS); } static Int p_binary_op_as_integer( USES_REGS1 ) { /* X is Y */ Term t = Deref(ARG1); if (IsVarTerm(t)) { Yap_EvalError(INSTANTIATION_ERROR,t, "X is Y"); return(FALSE); } if (IsIntTerm(t)) { return Yap_unify_constant(ARG2,t); } if (IsAtomTerm(t)) { Atom name = AtomOfTerm(t); ExpEntry *p; if (EndOfPAEntr(p = RepExpProp(Yap_GetExpProp(name, 2)))) { return Yap_unify(ARG1,ARG2); } return Yap_unify_constant(ARG2,MkIntTerm(p->FOfEE)); } return(FALSE); } Atom Yap_NameOfBinaryOp(int i) { return Yap_LookupAtom(InitBinTab[i].OpName); } void Yap_InitBinaryExps(void) { unsigned int i; ExpEntry *p; for (i = 0; i < sizeof(InitBinTab)/sizeof(InitBinEntry); ++i) { AtomEntry *ae = RepAtom(Yap_LookupAtom(InitBinTab[i].OpName)); if (ae == NULL) { Yap_EvalError(OUT_OF_HEAP_ERROR,TermNil,"at InitBinaryExps"); return; } WRITE_LOCK(ae->ARWLock); if (Yap_GetExpPropHavingLock(ae, 2)) { WRITE_UNLOCK(ae->ARWLock); break; } p = (ExpEntry *) Yap_AllocAtomSpace(sizeof(ExpEntry)); p->KindOfPE = ExpProperty; p->ArityOfEE = 2; p->ENoOfEE = 2; p->FOfEE = InitBinTab[i].f; AddPropToAtom(ae, (PropEntry *)p); WRITE_UNLOCK(ae->ARWLock); } Yap_InitCPred("is", 4, p_binary_is, TestPredFlag | SafePredFlag); Yap_InitCPred("$binary_op_as_integer", 2, p_binary_op_as_integer, TestPredFlag|SafePredFlag); Yap_InitAsmPred("$plus", 3, _plus, export_p_plus, SafePredFlag); Yap_InitAsmPred("$minus", 3, _minus, export_p_minus, SafePredFlag); Yap_InitAsmPred("$times", 3, _times, export_p_times, SafePredFlag); Yap_InitAsmPred("$div", 3, _div, export_p_div, SafePredFlag); Yap_InitAsmPred("$and", 3, _and, export_p_and, SafePredFlag); Yap_InitAsmPred("$or", 3, _or, export_p_or, SafePredFlag); Yap_InitAsmPred("$sll", 3, _sll, export_p_sll, SafePredFlag); Yap_InitAsmPred("$slr", 3, _slr, export_p_slr, SafePredFlag); } /* This routine is called from Restore to make sure we have the same arithmetic operators */ int Yap_ReInitBinaryExps(void) { return(TRUE); }