================================================================= Logtalk - Object oriented extension to Prolog Release 2.27.1 Copyright (c) 1998-2006 Paulo Moura. All Rights Reserved. ================================================================= % start by loading the necessary library and support example files (if not % already loaded): | ?- logtalk_load(library(all_loader)). ... | ?- logtalk_load(roots(loader)). ... % now you are ready for loading the example: | ?- logtalk_load(searching(loader)). ... % farmer, cabbage, goat and wolf problem | ?- farmer::initial_state(Initial), depth_first(10)::solve(farmer, Initial, Path), farmer::print_path(Path). cgwf.<__>..........____ c_w_..........<__>.f_g_ c_wf.<__>..........__g_ __w_..........<__>.fcg_ _gwf.<__>.........._c__ _g__..........<__>.fc_w _g_f.<__>.........._c_w ____..........<__>.fcgw Path = [(north,north,north,north),(north,south,north,south),(north,south,north,north),(south,south,north,south),(south,north,north,north),(south,north,south,south),(south,north,south,north),(south,south,south,south)], Initial = (north,north,north,north) ? yes % missionaires and cannibals problem, solved using a hill-climbing strategy | ?- miss_cann::initial_state(Initial), hill_climbing(16)::solve(miss_cann, Initial, Path, Cost), miss_cann::print_path(Path). MMMCCC.<__>.......... MMCC..........<__>.MC MMMCC.<__>..........C MMM..........<__>.CCC MMMC.<__>..........CC MC..........<__>.MMCC MMCC.<__>..........MC CC..........<__>.MMMC CCC.<__>..........MMM C..........<__>.MMMCC CC.<__>..........MMMC ..........<__>.MMMCCC Cost = 15, Path = [((3,3),left,0,0),((2,2),right,1,1),((3,2),left,0,1),((3,0),right,0,3),((3,1),left,0,2),((1,1),right,2,2),((2,2),left,1,1),((0,2),right,3,1),((0,3),left,3,0),((0,1),right,3,2),((0,2),left,3,1),((0,0),right,3,3)], Initial = ((3,3),left,0,0) yes % same problem as above with the addition of a monitor to measure hill-climbing performance | ?- performance::init, miss_cann::initial_state(Initial), hill_climbing(16)::solve(miss_cann, Initial, Path, Cost), miss_cann::print_path(Path), performance::report. MMMCCC.<__>.......... MMCC..........<__>.MC MMMCC.<__>..........C MMM..........<__>.CCC MMMC.<__>..........CC MC..........<__>.MMCC MMCC.<__>..........MC CC..........<__>.MMMC CCC.<__>..........MMM C..........<__>.MMMCC CC.<__>..........MMMC ..........<__>.MMMCCC solution length: 12 number of state transitions: 26 ratio solution length / state transitions: 0.461538 minimum branching degree: 1 average branching degree: 2.30769 maximum branching degree: 3 time: 0.02 Cost = 15, Path = [((3,3),left,0,0),((2,2),right,1,1),((3,2),left,0,1),((3,0),right,0,3),((3,1),left,0,2),((1,1),right,2,2),((2,2),left,1,1),((0,2),right,3,1),((0,3),left,3,0),((0,1),right,3,2),((0,2),left,3,1),((0,0),right,3,3)], Initial = ((3,3),left,0,0) ? yes % bridge problem, solved using a hill climbing strategy | ?- performance::init, bridge::initial_state(Initial), hill_climbing(30)::solve(bridge, Initial, Path, Cost), bridge::print_path(Path), performance::report. _|____________|_ lamp 1 3 6 8 12 1 3 lamp _|____________|_ 6 8 12 3 _|____________|_ lamp 1 6 8 12 1 3 6 lamp _|____________|_ 8 12 3 6 _|____________|_ lamp 1 8 12 3 6 8 12 lamp _|____________|_ 1 6 8 12 _|____________|_ lamp 1 3 1 3 6 8 12 lamp _|____________|_ solution length: 8 state transitions: 367 ratio solution length / state transitions: 0.0217984 minimum branching degree: 1 average branching degree: 7.32579 maximum branching degree: 15 time: 0.28 Initial = [], right, [1, 3, 6, 8, 12] Path = [ ([], right, [1, 3, 6, 8, 12]), ([1, 3], left, [6, 8, 12]), ([3], right, [1, 6, 8, 12]), ([1, 3, 6], left, [8, 12]), ([3, 6], right, [1, 8|...]), ([3, 6|...], left, [1]), ([6|...], right, [...|...]), ([...|...], ..., ...)] Cost = 29 yes % water jugs problem solved using a breadth and a depth first strategy, with performance monitors % it's interesting to compare the results | ?- performance::init, water_jug::initial_state(Initial), breadth_first(6)::solve(water_jug, Initial, Path), water_jug::print_path(Path), performance::report. 4-gallon jug: 0 3-gallon jug: 0 4-gallon jug: 0 3-gallon jug: 3 4-gallon jug: 3 3-gallon jug: 0 4-gallon jug: 3 3-gallon jug: 3 4-gallon jug: 4 3-gallon jug: 2 4-gallon jug: 0 3-gallon jug: 2 solution length: 6 number of state transitions: 109 ratio solution length / state transitions: 0.0550459 minimum branching degree: 2 average branching degree: 3.63158 maximum branching degree: 4 time: 0.02 Path = [(0,0),(0,3),(3,0),(3,3),(4,2),(0,2)], Initial = (0,0) ? yes | ?- performance::init, water_jug::initial_state(Initial), depth_first(10)::solve(water_jug, Initial, Path), water_jug::print_path(Path), performance::report. 4-gallon jug: 0 3-gallon jug: 0 4-gallon jug: 4 3-gallon jug: 0 4-gallon jug: 4 3-gallon jug: 3 4-gallon jug: 0 3-gallon jug: 3 4-gallon jug: 3 3-gallon jug: 0 4-gallon jug: 3 3-gallon jug: 3 4-gallon jug: 4 3-gallon jug: 2 4-gallon jug: 0 3-gallon jug: 2 solution length: 8 number of state transitions: 12 ratio solution length / state transitions: 0.666667 minimum branching degree: 1 average branching degree: 2 maximum branching degree: 3 time: 0.00 Path = [(0,0),(4,0),(4,3),(0,3),(3,0),(3,3),(4,2),(0,2)], Initial = (0,0) ? yes % salt puzzle using breadth first search | ?- performance::init, salt(100, 500, 200)::initial_state(Initial), breadth_first(6)::solve(salt(100, 500, 200), Initial, Path), salt(100, 500, 200)::print_path(Path), performance::report. (0, 0, 0) all_empty (0, 500, 0) fill(m1) (0, 300, 200) transfer(m1, m2) (0, 300, 0) empty(m2) (0, 100, 200) transfer(m1, m2) (100, 0, 200) transfer(m1, acc) solution length: 6 state transitions: 476 ratio solution length / state transitions: 0.0126050420168067 minimum branching degree: 1 average branching degree: 4.05829596412556 maximum branching degree: 6 time: 0.0899999999999999 Initial = 0, 0, 0, all_empty Path = [(0, 0, 0, all_empty), (0, 500, 0, fill(m1)), (0, 300, 200, transfer(m1, m2)), (0, 300, 0, empty(m2)), (0, 100, 200, transfer(m1, m2)), (100, 0, 200, transfer(m1, acc))] yes | ?- performance::init, salt(200, 250, 550)::initial_state(Initial), breadth_first(7)::solve(salt(200, 250, 550), Initial, Path), salt(200, 250, 550)::print_path(Path), performance::report. (0, 0, 0) all_empty (0, 250, 0) fill(m1) (0, 0, 250) transfer(m1, m2) (0, 250, 250) fill(m1) (0, 0, 500) transfer(m1, m2) (0, 250, 500) fill(m1) (0, 200, 550) transfer(m1, m2) (200, 0, 550) transfer(m1, acc) solution length: 8 state transitions: 3037 ratio solution length / state transitions: 0.00263417846559104 minimum branching degree: 1 average branching degree: 4.22404371584699 maximum branching degree: 6 time: 1.41 Initial = 0, 0, 0, all_empty Path = [(0, 0, 0, all_empty), (0, 250, 0, fill(m1)), (0, 0, 250, transfer(m1, m2)), (0, 250, 250, fill(m1)), (0, 0, 500, transfer(m1, m2)), (0, 250, 500, fill(m1)), (0, 200, 550, transfer(m1, m2)), (200, 0, 550, transfer(m1, acc))] yes | ?- performance::init, salt(100, 250, 550)::initial_state(Initial), breadth_first(11)::solve(salt(100, 250, 550), Initial, Path), salt(100, 250, 550)::print_path(Path), performance::report. (0, 0, 0) all_empty (0, 0, 550) fill(m2) (0, 250, 300) transfer(m2, m1) (0, 0, 300) empty(m1) (0, 250, 50) transfer(m2, m1) (50, 250, 0) transfer(m2, acc) (50, 0, 0) empty(m1) (50, 0, 550) fill(m2) (50, 250, 300) transfer(m2, m1) (50, 0, 300) empty(m1) (50, 250, 50) transfer(m2, m1) (100, 250, 0) transfer(m2, acc) solution length: 12 state transitions: 289904 ratio solution length / state transitions: 4.13930128594293e-5 minimum branching degree: 1 average branching degree: 4.50438946528332 maximum branching degree: 6 time: 1882.81 Initial = 0, 0, 0, all_empty Path = [(0, 0, 0, all_empty), (0, 0, 550, fill(m2)), (0, 250, 300, transfer(m2, m1)), (0, 0, 300, empty(m1)), (0, 250, 50, transfer(m2, m1)), (50, 250, 0, transfer(m2, acc)), (50, 0, 0, empty(m1)), (50, 0, 550, fill(m2)), (50, 250, 300, transfer(m2, m1)), (50, 0, 300, empty(m1)), (50, 250, 50, transfer(m2, m1)), (100, 250, 0, transfer(m2, acc))] yes % eight puzzle solved using a hill-climbing strategy | ?- performance::init, eight_puzzle::initial_state(five_steps, Initial), hill_climbing(25)::solve(eight_puzzle, Initial, Path, Cost), eight_puzzle::print_path(Path), performance::report. 283 164 7 5 283 1 4 765 2 3 184 765 23 184 765 123 84 765 123 8 4 765 solution length: 6 number of state transitions: 15 ratio solution length / state transitions: 0.4 minimum branching degree: 2 average branching degree: 3.13333 maximum branching degree: 4 time: 0.01 Cost = 5, Path = [[2/1,1/2,1/3,3/3,3/2,3/1,2/2,1/1,2/3],[2/2,1/2,1/3,3/3,3/2,3/1,2/1,1/1,2/3],[2/3,1/2,1/3,3/3,3/2,3/1,2/1,1/1,2/2],[1/3,1/2,2/3,3/3,3/2,3/1,2/1,1/1,2/2],[1/2,1/3,2/3,3/3,3/2,3/1,2/1,1/1,2/2],[2/2,1/3,2/3,3/3,3/2,3/1,2/1,1/1,1/2]], Initial = [2/1,1/2,1/3,3/3,3/2,3/1,2/2,1/1,2/3] ? yes % eight puzzle solved using a best-first strategy | ?- performance::init, eight_puzzle::initial_state(five_steps, Initial), best_first(25)::solve(eight_puzzle, Initial, Path, Cost), eight_puzzle::print_path(Path), performance::report. 283 164 7 5 283 1 4 765 2 3 184 765 23 184 765 123 84 765 123 8 4 765 solution length: 6 number of state transitions: 15 ratio solution length / state transitions: 0.4 minimum branching degree: 2 average branching degree: 3.13333 maximum branching degree: 4 time: 0.02 Cost = 5, Path = [[2/1,1/2,1/3,3/3,3/2,3/1,2/2,1/1,2/3],[2/2,1/2,1/3,3/3,3/2,3/1,2/1,1/1,2/3],[2/3,1/2,1/3,3/3,3/2,3/1,2/1,1/1,2/2],[1/3,1/2,2/3,3/3,3/2,3/1,2/1,1/1,2/2],[1/2,1/3,2/3,3/3,3/2,3/1,2/1,1/1,2/2],[2/2,1/3,2/3,3/3,3/2,3/1,2/1,1/1,1/2]], Initial = [2/1,1/2,1/3,3/3,3/2,3/1,2/2,1/1,2/3] ? yes % turn off performance monitor | ?- performance::stop.