TaskModelIntGraph Graph constraints GECODE_INT_EXPORT void GECODE_INT_EXPORT void Gecode::circuit (Home home, const IntVarArgs &x, IntConLevel icl=ICL_DEF) circuit Home home const IntVarArgs & x IntConLevel icl ICL_DEF Post propagator such that x forms a circuit. x forms a circuit if the graph with edges $i\to j$ where $x_i=j$ has a single cycle covering all nodes.Supports domain (icl = ICL_DOM) and value propagation (all other values for icl), where this refers to whether value or domain consistent distinct in enforced on x.Throws the following exceptions: Int::ArgumentSame, if x contains the same unassigned variable multiply.Int::TooFewArguments, if x has no elements. GECODE_INT_EXPORT void GECODE_INT_EXPORT void Gecode::circuit (Home home, int offset, const IntVarArgs &x, IntConLevel icl=ICL_DEF) circuit Home home int offset const IntVarArgs & x IntConLevel icl ICL_DEF Post propagator such that x forms a circuit. x forms a circuit if the graph with edges $i\to j$ where $x_{i-\text{offset}}=j$ has a single cycle covering all nodes.Supports domain (icl = ICL_DOM) and value propagation (all other values for icl), where this refers to whether value or domain consistent distinct in enforced on x.Throws the following exceptions: Int::ArgumentSame, if x contains the same unassigned variable multiply.Int::TooFewArguments, if x has no elements.Int::OutOfLimits, if offset is negative. GECODE_INT_EXPORT void GECODE_INT_EXPORT void Gecode::circuit (Home home, const IntArgs &c, const IntVarArgs &x, const IntVarArgs &y, IntVar z, IntConLevel icl=ICL_DEF) circuit Home home const IntArgs & c const IntVarArgs & x const IntVarArgs & y IntVar z IntConLevel icl ICL_DEF Post propagator such that x forms a circuit with costs y and z. x forms a circuit if the graph with edges $i\to j$ where $x_i=j$ has a single cycle covering all nodes. The integer array c gives the costs of all possible edges where $c_{i*|x|+j}$ is the cost of the edge $i\to j$. The variable z is the cost of the entire circuit. The variables y define the cost of the edge in x: that is, if $x_i=j$ then $y_i=c_{i*n+j}$.Supports domain (icl = ICL_DOM) and value propagation (all other values for icl), where this refers to whether value or domain consistent distinct in enforced on x for circuit.Throws the following exceptions: Int::ArgumentSame, if x contains the same unassigned variable multiply.Int::TooFewArguments, if x has no elements.Int::ArgumentSizeMismacth, if x and y do not have the same size or if $|x|\times|x|\neq|c|$. GECODE_INT_EXPORT void GECODE_INT_EXPORT void Gecode::circuit (Home home, const IntArgs &c, int offset, const IntVarArgs &x, const IntVarArgs &y, IntVar z, IntConLevel icl=ICL_DEF) circuit Home home const IntArgs & c int offset const IntVarArgs & x const IntVarArgs & y IntVar z IntConLevel icl ICL_DEF Post propagator such that x forms a circuit with costs y and z. x forms a circuit if the graph with edges $i\to j$ where $x_{i-\text{offset}}=j$ has a single cycle covering all nodes. The integer array c gives the costs of all possible edges where $c_{i*|x|+j}$ is the cost of the edge $i\to j$. The variable z is the cost of the entire circuit. The variables y define the cost of the edge in x: that is, if $x_i=j$ then $y_i=c_{i*n+j}$.Supports domain (icl = ICL_DOM) and value propagation (all other values for icl), where this refers to whether value or domain consistent distinct in enforced on x for circuit.Throws the following exceptions: Int::ArgumentSame, if x contains the same unassigned variable multiply.Int::TooFewArguments, if x has no elements.Int::ArgumentSizeMismacth, if x and y do not have the same size or if $|x|\times|x|\neq|c|$.Int::OutOfLimits, if offset is negative. GECODE_INT_EXPORT void GECODE_INT_EXPORT void Gecode::circuit (Home home, const IntArgs &c, const IntVarArgs &x, IntVar z, IntConLevel icl=ICL_DEF) circuit Home home const IntArgs & c const IntVarArgs & x IntVar z IntConLevel icl ICL_DEF Post propagator such that x forms a circuit with cost z. x forms a circuit if the graph with edges $i\to j$ where $x_i=j$ has a single cycle covering all nodes. The integer array c gives the costs of all possible edges where $c_{i*|x|+j}$ is the cost of the edge $i\to j$. The variable z is the cost of the entire circuit.Supports domain (icl = ICL_DOM) and value propagation (all other values for icl), where this refers to whether value or domain consistent distinct in enforced on x for circuit.Throws the following exceptions: Int::ArgumentSame, if x contains the same unassigned variable multiply.Int::TooFewArguments, if x has no elements.Int::ArgumentSizeMismacth, if $|x|\times|x|\neq|c|$. GECODE_INT_EXPORT void GECODE_INT_EXPORT void Gecode::circuit (Home home, const IntArgs &c, int offset, const IntVarArgs &x, IntVar z, IntConLevel icl=ICL_DEF) circuit Home home const IntArgs & c int offset const IntVarArgs & x IntVar z IntConLevel icl ICL_DEF Post propagator such that x forms a circuit with cost z. x forms a circuit if the graph with edges $i\to j$ where $x_{i-\text{offset}}=j$ has a single cycle covering all nodes. The integer array c gives the costs of all possible edges where $c_{i*|x|+j}$ is the cost of the edge $i\to j$. The variable z is the cost of the entire circuit.Supports domain (icl = ICL_DOM) and value propagation (all other values for icl), where this refers to whether value or domain consistent distinct in enforced on x for circuit.Throws the following exceptions: Int::ArgumentSame, if x contains the same unassigned variable multiply.Int::TooFewArguments, if x has no elements.Int::ArgumentSizeMismacth, if $|x|\times|x|\neq|c|$.Int::OutOfLimits, if offset is negative. GECODE_INT_EXPORT void GECODE_INT_EXPORT void Gecode::path (Home home, const IntVarArgs &x, IntVar s, IntVar e, IntConLevel icl=ICL_DEF) path Home home const IntVarArgs & x IntVar s IntVar e IntConLevel icl ICL_DEF Post propagator such that x forms a Hamiltonian path. x forms a Hamiltonian path if the graph with edges $i\to j$ where $x_i=j$ visits all nodes exactly once. The path starts at node s and the successor of the last node e is equal to $|x|$.Supports domain (icl = ICL_DOM) and value propagation (all other values for icl), where this refers to whether value or domain consistent distinct in enforced on x.Throws the following exceptions: Int::ArgumentSame, if x contains the same unassigned variable multiply.Int::TooFewArguments, if x has no elements. GECODE_INT_EXPORT void GECODE_INT_EXPORT void Gecode::path (Home home, int offset, const IntVarArgs &x, IntVar s, IntVar e, IntConLevel icl=ICL_DEF) path Home home int offset const IntVarArgs & x IntVar s IntVar e IntConLevel icl ICL_DEF Post propagator such that x forms a Hamiltonian path. x forms a Hamiltonian path if the graph with edges $i\to j$ where $x_{i-\text{offset}}=j$ visits all nodes exactly once. The path starts at node s and the successor of the last node e is equal to $|x|+\text{offset}$.Supports domain (icl = ICL_DOM) and value propagation (all other values for icl), where this refers to whether value or domain consistent distinct in enforced on x.Throws the following exceptions: Int::ArgumentSame, if x contains the same unassigned variable multiply.Int::TooFewArguments, if x has no elements.Int::OutOfLimits, if offset is negative. GECODE_INT_EXPORT void GECODE_INT_EXPORT void Gecode::path (Home home, const IntArgs &c, const IntVarArgs &x, IntVar s, IntVar e, const IntVarArgs &y, IntVar z, IntConLevel icl=ICL_DEF) path Home home const IntArgs & c const IntVarArgs & x IntVar s IntVar e const IntVarArgs & y IntVar z IntConLevel icl ICL_DEF Post propagator such that x forms a Hamiltonian path with costs y and z. x forms a Hamiltonian path if the graph with edges $i\to j$ where $x_i=j$ visits all nodes exactly once. The path starts at node s and the successor of the last node e is equal to $|x|$. The integer array c gives the costs of all possible edges where $c_{i*|x|+j}$ is the cost of the edge $i\to j$. The variable z is the cost of the entire path. The variables y define the cost of the edge in x: that is, if $x_i=j$ then $y_i=c_{i*n+j}$.Supports domain (icl = ICL_DOM) and value propagation (all other values for icl), where this refers to whether value or domain consistent distinct in enforced on x for circuit.Throws the following exceptions: Int::ArgumentSame, if x contains the same unassigned variable multiply.Int::TooFewArguments, if x has no elements.Int::ArgumentSizeMismacth, if x and y do not have the same size or if $|x|\times|x|\neq|c|$. GECODE_INT_EXPORT void GECODE_INT_EXPORT void Gecode::path (Home home, const IntArgs &c, int offset, const IntVarArgs &x, IntVar s, IntVar e, const IntVarArgs &y, IntVar z, IntConLevel icl=ICL_DEF) path Home home const IntArgs & c int offset const IntVarArgs & x IntVar s IntVar e const IntVarArgs & y IntVar z IntConLevel icl ICL_DEF Post propagator such that x forms a Hamiltonian path with costs y and z. x forms a Hamiltonian path if the graph with edges $i\to j$ where $x_{i-\text{offset}}=j$ visits all nodes exactly once. The path starts at node s and the successor of the last node e is equal to $|x|+\text{offset}$. The integer array c gives the costs of all possible edges where $c_{i*|x|+j}$ is the cost of the edge $i\to j$. The variable z is the cost of the entire path. The variables y define the cost of the edge in x: that is, if $x_i=j$ then $y_i=c_{i*n+j}$.Supports domain (icl = ICL_DOM) and value propagation (all other values for icl), where this refers to whether value or domain consistent distinct in enforced on x for circuit.Throws the following exceptions: Int::ArgumentSame, if x contains the same unassigned variable multiply.Int::TooFewArguments, if x has no elements.Int::ArgumentSizeMismacth, if x and y do not have the same size or if $|x|\times|x|\neq|c|$.Int::OutOfLimits, if offset is negative. GECODE_INT_EXPORT void GECODE_INT_EXPORT void Gecode::path (Home home, const IntArgs &c, const IntVarArgs &x, IntVar s, IntVar e, IntVar z, IntConLevel icl=ICL_DEF) path Home home const IntArgs & c const IntVarArgs & x IntVar s IntVar e IntVar z IntConLevel icl ICL_DEF Post propagator such that x forms a Hamiltonian path with cost z. x forms a Hamiltonian path if the graph with edges $i\to j$ where $x_i=j$ visits all nodes exactly once. The path starts at node s and the successor of the last node e is equal to $|x|$. The integer array c gives the costs of all possible edges where $c_{i*|x|+j}$ is the cost of the edge $i\to j$. The variable z is the cost of the entire path.Supports domain (icl = ICL_DOM) and value propagation (all other values for icl), where this refers to whether value or domain consistent distinct in enforced on x for circuit.Throws the following exceptions: Int::ArgumentSame, if x contains the same unassigned variable multiply.Int::TooFewArguments, if x has no elements.Int::ArgumentSizeMismacth, if $|x|\times|x|\neq|c|$. GECODE_INT_EXPORT void GECODE_INT_EXPORT void Gecode::path (Home home, const IntArgs &c, int offset, const IntVarArgs &x, IntVar s, IntVar e, IntVar z, IntConLevel icl=ICL_DEF) path Home home const IntArgs & c int offset const IntVarArgs & x IntVar s IntVar e IntVar z IntConLevel icl ICL_DEF Post propagator such that x forms a Hamiltonian path with cost z. x forms a Hamiltonian path if the graph with edges $i\to j$ where $x_{i-\text{offset}}=j$ visits all nodes exactly once. The path starts at node s and the successor of the last node e is equal to $|x|+\text{offset}$. The integer array c gives the costs of all possible edges where $c_{i*|x|+j}$ is the cost of the edge $i\to j$. The variable z is the cost of the entire circuit.Supports domain (icl = ICL_DOM) and value propagation (all other values for icl), where this refers to whether value or domain consistent distinct in enforced on x for circuit.Throws the following exceptions: Int::ArgumentSame, if x contains the same unassigned variable multiply.Int::TooFewArguments, if x has no elements.Int::ArgumentSizeMismacth, if $|x|\times|x|\neq|c|$.Int::OutOfLimits, if offset is negative.