/************************************************************************* * * * YAP Prolog * * * * Yap Prolog was developed at NCCUP - Universidade do Porto * * * * Copyright L.Damas, V.S.Costa and Universidade do Porto 1985-1997 * * * ************************************************************************** * * * File: sysbits.c * * Last rev: 4/03/88 * * mods: * * comments: very much machine dependent routines * * * *************************************************************************/ #ifdef SCCS static char SccsId[] = "%W% %G%"; #endif /* * In this routine we shall try to include the inevitably machine dependant * routines. These include, for the moment : Time, A rudimentary form of * signal handling, OS calls, * * Vitor Santos Costa, February 1987 * */ /* windows.h does not like absmi.h, this should fix it for now */ #include "absmi.h" #include "yapio.h" #include "alloc.h" #include #if STDC_HEADERS #include #endif #if HAVE_WINDOWS_H #include #endif #if HAVE_SYS_TIME_H && !_MSC_VER #include #endif #if HAVE_UNISTD_H #include #endif #if HAVE_SYS_WAIT_H && !defined(__MINGW32__) && !_MSC_VER #include #endif #if HAVE_STRING_H #include #endif #if !HAVE_STRNCAT #define strncat(X,Y,Z) strcat(X,Y) #endif #if !HAVE_STRNCPY #define strncpy(X,Y,Z) strcpy(X,Y) #endif #if HAVE_GETPWNAM #include #endif #if HAVE_SYS_STAT_H #include #endif #if HAVE_SYS_TYPES_H #include #endif #if HAVE_FCNTL_H #include #endif #if _MSC_VER || defined(__MINGW32__) #include /* required for DLL compatibility */ #if HAVE_DIRECT_H #include #endif #include #else #if HAVE_SYS_PARAM_H #include #endif #endif #if HAVE_LIBREADLINE #include #endif STATIC_PROTO (void InitPageSize, (void)); STATIC_PROTO (void InitTime, (void)); STATIC_PROTO (void InitWTime, (void)); STATIC_PROTO (Int p_sh, (void)); STATIC_PROTO (Int p_shell, (void)); STATIC_PROTO (Int p_system, (void)); STATIC_PROTO (Int p_mv, (void)); STATIC_PROTO (Int p_cd, (void)); STATIC_PROTO (Int p_getcwd, (void)); STATIC_PROTO (Int p_dir_sp, (void)); STATIC_PROTO (void InitRandom, (void)); STATIC_PROTO (Int p_srandom, (void)); STATIC_PROTO (Int p_alarm, (void)); STATIC_PROTO (Int p_getenv, (void)); STATIC_PROTO (Int p_putenv, (void)); STATIC_PROTO (void set_fpu_exceptions, (int)); #ifdef MACYAP STATIC_PROTO (int chdir, (char *)); /* #define signal skel_signal */ #endif /* MACYAP */ #if __simplescalar__ char yap_pwd[YAP_FILENAME_MAX]; #endif #if HAVE_SIGNAL static int snoozing = FALSE; #endif STD_PROTO (void exit, (int)); #ifdef _WIN32 static void Yap_WinError(char *yap_error) { char msg[256]; /* Error, we could not read time */ FormatMessage(FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS, NULL, GetLastError(), MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), msg, 256, NULL); Yap_Error(OPERATING_SYSTEM_ERROR, TermNil, "%s at %s", msg, yap_error); } #endif /* _WIN32 */ #define is_valid_env_char(C) ( ((C) >= 'a' && (C) <= 'z') || ((C) >= 'A' && \ (C) <= 'Z') || (C) == '_' ) static int is_directory(char *FileName) { #ifdef _WIN32 DWORD dwAtts = GetFileAttributes(FileName); if (dwAtts == INVALID_FILE_ATTRIBUTES) return FALSE; return (dwAtts & FILE_ATTRIBUTE_DIRECTORY); #elif HAVE_LSTAT struct stat buf; if (lstat(FileName, &buf) == -1) { /* return an error number */ return FALSE; } return S_ISDIR(buf.st_mode); #else return FALSE; #endif } static int dir_separator (int ch) { #ifdef MAC return (ch == ':'); #elif ATARI || _MSC_VER return (ch == '\\'); #elif defined(__MINGW32__) || defined(__CYGWIN__) return (ch == '\\' || ch == '/'); #else return (ch == '/'); #endif } int Yap_dir_separator (int ch) { return dir_separator (ch); } #if _MSC_VER || defined(__MINGW32__) #include char *libdir = NULL; #endif void Yap_InitSysPath(void) { int len; #if _MSC_VER || defined(__MINGW32__) int dir_done = FALSE; int commons_done = FALSE; { char *dir; if ((dir = Yap_RegistryGetString("library"))) { Yap_PutValue(AtomSystemLibraryDir, MkAtomTerm(Yap_LookupAtom(dir))); dir_done = TRUE; } if ((dir = Yap_RegistryGetString("prolog_commons"))) { Yap_PutValue(AtomPrologCommonsDir, MkAtomTerm(Yap_LookupAtom(dir))); commons_done = TRUE; } } if (dir_done && commons_done) return; #endif strncpy(Yap_FileNameBuf, SHARE_DIR, YAP_FILENAME_MAX); #if _MSC_VER || defined(__MINGW32__) { DWORD fatts; int buflen; char *pt; if ((fatts = GetFileAttributes(Yap_FileNameBuf)) == 0xFFFFFFFFL || !(fatts & FILE_ATTRIBUTE_DIRECTORY)) { /* couldn't find it where it was supposed to be, let's try using the executable */ if (!GetModuleFileNameEx( GetCurrentProcess(), NULL, Yap_FileNameBuf, YAP_FILENAME_MAX)) { Yap_Error(OPERATING_SYSTEM_ERROR, TermNil, "could not find executable name"); /* do nothing */ return; } buflen = strlen(Yap_FileNameBuf); pt = Yap_FileNameBuf+strlen(Yap_FileNameBuf); while (*--pt != '\\') { /* skip executable */ if (pt == Yap_FileNameBuf) { Yap_Error(OPERATING_SYSTEM_ERROR, TermNil, "could not find executable name"); /* do nothing */ return; } } while (*--pt != '\\') { /* skip parent directory "bin\\" */ if (pt == Yap_FileNameBuf) { Yap_Error(OPERATING_SYSTEM_ERROR, TermNil, "could not find executable name"); /* do nothing */ } } /* now, this is a possible location for the ROOT_DIR, let's look for a share directory here */ pt[1] = '\0'; /* grosse */ strncat(Yap_FileNameBuf,"lib\\Yap",YAP_FILENAME_MAX); libdir = Yap_AllocCodeSpace(strlen(Yap_FileNameBuf)+1); strncpy(libdir, Yap_FileNameBuf, strlen(Yap_FileNameBuf)+1); pt[1] = '\0'; strncat(Yap_FileNameBuf,"share",YAP_FILENAME_MAX); } } strncat(Yap_FileNameBuf,"\\", YAP_FILENAME_MAX); #else strncat(Yap_FileNameBuf,"/", YAP_FILENAME_MAX); #endif len = strlen(Yap_FileNameBuf); strncat(Yap_FileNameBuf, "Yap", YAP_FILENAME_MAX); #if _MSC_VER || defined(__MINGW32__) if (!dir_done) #endif { Yap_PutValue(AtomSystemLibraryDir, MkAtomTerm(Yap_LookupAtom(Yap_FileNameBuf))); } #if _MSC_VER || defined(__MINGW32__) if (!commons_done) #endif { Yap_FileNameBuf[len] = '\0'; strncat(Yap_FileNameBuf, "PrologCommons", YAP_FILENAME_MAX); Yap_PutValue(AtomPrologCommonsDir, MkAtomTerm(Yap_LookupAtom(Yap_FileNameBuf))); } } static Int p_dir_sp (void) { #ifdef MAC Term t = MkIntTerm(':'); #elif ATARI || _MSC_VER || defined(__MINGW32__) Term t = MkIntTerm('\\'); #else Term t = MkIntTerm('/'); #endif return(Yap_unify_constant(ARG1,t)); } static void InitPageSize(void) { #ifdef _WIN32 SYSTEM_INFO si; GetSystemInfo(&si); Yap_page_size = si.dwPageSize; #elif HAVE_UNISTD_H #ifdef __FreeBSD__ Yap_page_size = getpagesize(); #elif defined(_AIX) Yap_page_size = sysconf(_SC_PAGE_SIZE); #elif !defined(_SC_PAGESIZE) Yap_page_size = getpagesize(); #else Yap_page_size = sysconf(_SC_PAGESIZE); #endif #else bla bla #endif } #ifdef SIMICS #ifdef HAVE_GETRUSAGE #undef HAVE_GETRUSAGE #endif #ifdef HAVE_TIMES #undef HAVE_TIMES #endif #endif /* SIMICS */ #ifdef _WIN32 #if HAVE_GETRUSAGE #undef HAVE_GETRUSAGE #endif #endif #if HAVE_GETRUSAGE #if HAVE_SYS_TIMES_H #include #endif #if HAVE_SYS_RESOURCE_H #include #endif #if THREADS #define StartOfTimes (*(ThreadHandle[worker_id].start_of_timesp)) #define last_time (*(ThreadHandle[worker_id].last_timep)) #else /* since the point YAP was started */ static struct timeval StartOfTimes; /* since last call to runtime */ static struct timeval last_time; #endif static struct timeval last_time_sys; static struct timeval StartOfTimes_sys; /* store user time in this variable */ static void InitTime (void) { struct rusage rusage; #if THREADS ThreadHandle[worker_id].start_of_timesp = (struct timeval *)malloc(sizeof(struct timeval)); ThreadHandle[worker_id].last_timep = (struct timeval *)malloc(sizeof(struct timeval)); #endif getrusage(RUSAGE_SELF, &rusage); last_time.tv_sec = StartOfTimes.tv_sec = rusage.ru_utime.tv_sec; last_time.tv_usec = StartOfTimes.tv_usec = rusage.ru_utime.tv_usec; last_time_sys.tv_sec = StartOfTimes_sys.tv_sec = rusage.ru_stime.tv_sec; last_time_sys.tv_usec = StartOfTimes_sys.tv_usec = rusage.ru_stime.tv_usec; } UInt Yap_cputime (void) { struct rusage rusage; getrusage(RUSAGE_SELF, &rusage); return((rusage.ru_utime.tv_sec - StartOfTimes.tv_sec)) * 1000 + ((rusage.ru_utime.tv_usec - StartOfTimes.tv_usec) / 1000); } void Yap_cputime_interval(Int *now,Int *interval) { struct rusage rusage; getrusage(RUSAGE_SELF, &rusage); *now = (rusage.ru_utime.tv_sec - StartOfTimes.tv_sec) * 1000 + (rusage.ru_utime.tv_usec - StartOfTimes.tv_usec) / 1000; *interval = (rusage.ru_utime.tv_sec - last_time.tv_sec) * 1000 + (rusage.ru_utime.tv_usec - last_time.tv_usec) / 1000; last_time.tv_usec = rusage.ru_utime.tv_usec; last_time.tv_sec = rusage.ru_utime.tv_sec; } void Yap_systime_interval(Int *now,Int *interval) { struct rusage rusage; getrusage(RUSAGE_SELF, &rusage); *now = (rusage.ru_stime.tv_sec - StartOfTimes_sys.tv_sec) * 1000 + (rusage.ru_stime.tv_usec - StartOfTimes_sys.tv_usec) / 1000; *interval = (rusage.ru_stime.tv_sec - last_time_sys.tv_sec) * 1000 + (rusage.ru_stime.tv_usec - last_time_sys.tv_usec) / 1000; last_time_sys.tv_usec = rusage.ru_stime.tv_usec; last_time_sys.tv_sec = rusage.ru_stime.tv_sec; } #elif defined(_WIN32) #ifdef __GNUC__ /* This is stolen from the Linux kernel. The problem is that mingw32 does not seem to have acces to div */ #ifndef do_div #define do_div(n,base) ({ \ unsigned long __upper, __low, __high, __mod; \ asm("":"=a" (__low), "=d" (__high):"A" (n)); \ __upper = __high; \ if (__high) { \ __upper = __high % (base); \ __high = __high / (base); \ } \ asm("divl %2":"=a" (__low), "=d" (__mod):"rm" (base), "0" (__low), "1" (__upper)); \ asm("":"=A" (n):"a" (__low),"d" (__high)); \ __mod; \ }) #endif #endif #include static FILETIME StartOfTimes, last_time; static FILETIME StartOfTimes_sys, last_time_sys; static clock_t TimesStartOfTimes, Times_last_time; /* store user time in this variable */ static void InitTime (void) { HANDLE hProcess = GetCurrentProcess(); FILETIME CreationTime, ExitTime, KernelTime, UserTime; if (!GetProcessTimes(hProcess, &CreationTime, &ExitTime, &KernelTime, &UserTime)) { /* WIN98 */ clock_t t; t = clock (); Times_last_time = TimesStartOfTimes = t; } else { last_time.dwLowDateTime = UserTime.dwLowDateTime; last_time.dwHighDateTime = UserTime.dwHighDateTime; StartOfTimes.dwLowDateTime = UserTime.dwLowDateTime; StartOfTimes.dwHighDateTime = UserTime.dwHighDateTime; last_time_sys.dwLowDateTime = KernelTime.dwLowDateTime; last_time_sys.dwHighDateTime = KernelTime.dwHighDateTime; StartOfTimes_sys.dwLowDateTime = KernelTime.dwLowDateTime; StartOfTimes_sys.dwHighDateTime = KernelTime.dwHighDateTime; } } #ifdef __GNUC__ static unsigned long long int sub_utime(FILETIME t1, FILETIME t2) { ULARGE_INTEGER u[2]; memcpy((void *)u,(void *)&t1,sizeof(FILETIME)); memcpy((void *)(u+1),(void *)&t2,sizeof(FILETIME)); return u[0].QuadPart - u[1].QuadPart; } #endif UInt Yap_cputime (void) { HANDLE hProcess = GetCurrentProcess(); FILETIME CreationTime, ExitTime, KernelTime, UserTime; if (!GetProcessTimes(hProcess, &CreationTime, &ExitTime, &KernelTime, &UserTime)) { clock_t t; t = clock (); return(((t - TimesStartOfTimes)*1000) / CLOCKS_PER_SEC); } else { #ifdef __GNUC__ unsigned long long int t = sub_utime(UserTime,StartOfTimes); do_div(t,10000); return((Int)t); #endif #ifdef _MSC_VER __int64 t = *(__int64 *)&UserTime - *(__int64 *)&StartOfTimes; return((Int)(t/10000)); #endif } } void Yap_cputime_interval(Int *now,Int *interval) { HANDLE hProcess = GetCurrentProcess(); FILETIME CreationTime, ExitTime, KernelTime, UserTime; if (!GetProcessTimes(hProcess, &CreationTime, &ExitTime, &KernelTime, &UserTime)) { clock_t t; t = clock (); *now = ((t - TimesStartOfTimes)*1000) / CLOCKS_PER_SEC; *interval = (t - Times_last_time) * 1000 / CLOCKS_PER_SEC; Times_last_time = t; } else { #ifdef __GNUC__ unsigned long long int t1 = sub_utime(UserTime, StartOfTimes); unsigned long long int t2 = sub_utime(UserTime, last_time); do_div(t1,10000); *now = (Int)t1; do_div(t2,10000); *interval = (Int)t2; #endif #ifdef _MSC_VER __int64 t1 = *(__int64 *)&UserTime - *(__int64 *)&StartOfTimes; __int64 t2 = *(__int64 *)&UserTime - *(__int64 *)&last_time; *now = (Int)(t1/10000); *interval = (Int)(t2/10000); #endif last_time.dwLowDateTime = UserTime.dwLowDateTime; last_time.dwHighDateTime = UserTime.dwHighDateTime; } } void Yap_systime_interval(Int *now,Int *interval) { HANDLE hProcess = GetCurrentProcess(); FILETIME CreationTime, ExitTime, KernelTime, UserTime; if (!GetProcessTimes(hProcess, &CreationTime, &ExitTime, &KernelTime, &UserTime)) { *now = *interval = 0; /* not available */ } else { #ifdef __GNUC__ unsigned long long int t1 = sub_utime(KernelTime, StartOfTimes_sys); unsigned long long int t2 = sub_utime(KernelTime, last_time_sys); do_div(t1,10000); *now = (Int)t1; do_div(t2,10000); *interval = (Int)t2; #endif #ifdef _MSC_VER __int64 t1 = *(__int64 *)&KernelTime - *(__int64 *)&StartOfTimes_sys; __int64 t2 = *(__int64 *)&KernelTime - *(__int64 *)&last_time_sys; *now = (Int)(t1/10000); *interval = (Int)(t2/10000); #endif last_time_sys.dwLowDateTime = KernelTime.dwLowDateTime; last_time_sys.dwHighDateTime = KernelTime.dwHighDateTime; } } #elif HAVE_TIMES #if defined(_WIN32) #include #define TicksPerSec CLOCKS_PER_SEC #else #if HAVE_SYS_TIMES_H #include #endif #endif #if defined(__sun__) && (defined(__svr4__) || defined(__SVR4)) #if HAVE_LIMITS_H #include #endif #define TicksPerSec CLK_TCK #endif #if defined(__alpha) || defined(__FreeBSD__) || defined(__linux__) #if HAVE_TIME_H #include #endif #define TicksPerSec sysconf(_SC_CLK_TCK) #endif #if !TMS_IN_SYS_TIME #if HAVE_SYS_TIMES_H #include #endif #endif static clock_t StartOfTimes, last_time; static clock_t StartOfTimes_sys, last_time_sys; /* store user time in this variable */ static void InitTime (void) { struct tms t; times (&t); last_time = StartOfTimes = t.tms_utime; last_time_sys = StartOfTimes_sys = t.tms_stime; } UInt Yap_cputime (void) { struct tms t; times(&t); return((t.tms_utime - StartOfTimes)*1000 / TicksPerSec); } void Yap_cputime_interval(Int *now,Int *interval) { struct tms t; times (&t); *now = ((t.tms_utime - StartOfTimes)*1000) / TicksPerSec; *interval = (t.tms_utime - last_time) * 1000 / TicksPerSec; last_time = t.tms_utime; } void Yap_systime_interval(Int *now,Int *interval) { struct tms t; times (&t); *now = ((t.tms_stime - StartOfTimes_sys)*1000) / TicksPerSec; *interval = (t.tms_stime - last_time_sys) * 1000 / TicksPerSec; last_time_sys = t.tms_stime; } #else /* HAVE_TIMES */ #ifdef SIMICS #include /* since the point YAP was started */ static struct timeval StartOfTimes; /* since last call to runtime */ static struct timeval last_time; /* store user time in this variable */ static void InitTime (void) { struct timeval tp; gettimeofday(&tp,NULL); last_time.tv_sec = StartOfTimes.tv_sec = tp.tv_sec; last_time.tv_usec = StartOfTimes.tv_usec = tp.tv_usec; } UInt Yap_cputime (void) { struct timeval tp; gettimeofday(&tp,NULL); if (StartOfTimes.tv_usec > tp.tv_usec) return((tp.tv_sec - StartOfTimes.tv_sec - 1) * 1000 + (StartOfTimes.tv_usec - tp.tv_usec) /1000); else return((tp.tv_sec - StartOfTimes.tv_sec)) * 1000 + ((tp.tv_usec - StartOfTimes.tv_usec) / 1000); } void Yap_cputime_interval(Int *now,Int *interval) { struct timeval tp; gettimeofday(&tp,NULL); *now = (tp.tv_sec - StartOfTimes.tv_sec) * 1000 + (tp.tv_usec - StartOfTimes.tv_usec) / 1000; *interval = (tp.tv_sec - last_time.tv_sec) * 1000 + (tp.tv_usec - last_time.tv_usec) / 1000; last_time.tv_usec = tp.tv_usec; last_time.tv_sec = tp.tv_sec; } void Yap_systime_interval(Int *now,Int *interval) { *now = *interval = 0; /* not available */ } #endif /* SIMICS */ #ifdef COMMENTED_OUT /* This code is not working properly. I left it here to help future ports */ #ifdef MPW #include #include #define TicksPerSec 60.0 static double real_cputime () { return (((double) TickCount ()) / TicksPerSec); } #endif /* MPW */ #ifdef LATTICE #include "osbind.h" static long *ptime; gettime () { *ptime = *(long *) 0x462; } static double real_cputime () { long thetime; ptime = &thetime; xbios (38, gettime); return (((double) thetime) / (Getrez () == 2 ? 70 : 60)); } #endif /* LATTICE */ #ifdef M_WILLIAMS #include #include static long *ptime; static long readtime () { return (*((long *) 0x4ba)); } static double real_cputime () { long time; time = Supexec (readtime); return (time / 200.0); } #endif /* M_WILLIAMS */ #ifdef LIGHT #undef FALSE #undef TRUE #include #define TicksPerSec 60.0 static double real_cputime () { return (((double) TickCount ()) / TicksPerSec); } #endif /* LIGHT */ #endif /* COMMENTED_OUT */ #endif /* HAVE_GETRUSAGE */ #if HAVE_GETHRTIME #if HAVE_TIME_H #include #endif /* since the point YAP was started */ static hrtime_t StartOfWTimes; /* since last call to walltime */ #define LastWtime (*(hrtime_t *)ALIGN_YAPTYPE(LastWtimePtr,hrtime_t)) static void InitWTime (void) { StartOfWTimes = gethrtime(); } static void InitLastWtime(void) { /* ask for twice the space in order to guarantee alignment */ LastWtimePtr = (void *)Yap_AllocCodeSpace(2*sizeof(hrtime_t)); LastWtime = StartOfWTimes; } Int Yap_walltime (void) { hrtime_t tp = gethrtime(); /* return time in milliseconds */ return((Int)((tp-StartOfWTimes)/((hrtime_t)1000000))); } void Yap_walltime_interval(Int *now,Int *interval) { hrtime_t tp = gethrtime(); /* return time in milliseconds */ *now = (Int)((tp-StartOfWTimes)/((hrtime_t)1000000)); *interval = (Int)((tp-LastWtime)/((hrtime_t)1000000)); LastWtime = tp; } #elif HAVE_GETTIMEOFDAY /* since the point YAP was started */ static struct timeval StartOfWTimes; /* since last call to walltime */ #define LastWtime (*(struct timeval *)LastWtimePtr) /* store user time in this variable */ static void InitWTime (void) { gettimeofday(&StartOfWTimes,NULL); } static void InitLastWtime(void) { LastWtimePtr = (void *)Yap_AllocCodeSpace(sizeof(struct timeval)); LastWtime.tv_usec = StartOfWTimes.tv_usec; LastWtime.tv_sec = StartOfWTimes.tv_sec; } Int Yap_walltime (void) { struct timeval tp; gettimeofday(&tp,NULL); if (StartOfWTimes.tv_usec > tp.tv_usec) return((tp.tv_sec - StartOfWTimes.tv_sec - 1) * 1000 + (StartOfWTimes.tv_usec - tp.tv_usec) /1000); else return((tp.tv_sec - StartOfWTimes.tv_sec)) * 1000 + ((tp.tv_usec - LastWtime.tv_usec) / 1000); } void Yap_walltime_interval(Int *now,Int *interval) { struct timeval tp; gettimeofday(&tp,NULL); *now = (tp.tv_sec - StartOfWTimes.tv_sec) * 1000 + (tp.tv_usec - StartOfWTimes.tv_usec) / 1000; *interval = (tp.tv_sec - LastWtime.tv_sec) * 1000 + (tp.tv_usec - LastWtime.tv_usec) / 1000; LastWtime.tv_usec = tp.tv_usec; LastWtime.tv_sec = tp.tv_sec; } #elif defined(_WIN32) #include #include /* since the point YAP was started */ static struct _timeb StartOfWTimes; /* since last call to walltime */ #define LastWtime (*(struct timeb *)LastWtimePtr) /* store user time in this variable */ static void InitWTime (void) { _ftime(&StartOfWTimes); } static void InitLastWtime(void) { LastWtimePtr = (void *)Yap_AllocCodeSpace(sizeof(struct timeb)); LastWtime.time = StartOfWTimes.time; LastWtime.millitm = StartOfWTimes.millitm; } Int Yap_walltime (void) { struct _timeb tp; _ftime(&tp); if (StartOfWTimes.millitm > tp.millitm) return((tp.time - StartOfWTimes.time - 1) * 1000 + (StartOfWTimes.millitm - tp.millitm)); else return((tp.time - StartOfWTimes.time)) * 1000 + ((tp.millitm - LastWtime.millitm) / 1000); } void Yap_walltime_interval(Int *now,Int *interval) { struct _timeb tp; _ftime(&tp); *now = (tp.time - StartOfWTimes.time) * 1000 + (tp.millitm - StartOfWTimes.millitm); *interval = (tp.time - LastWtime.time) * 1000 + (tp.millitm - LastWtime.millitm) ; LastWtime.millitm = tp.millitm; LastWtime.time = tp.time; } #elif HAVE_TIMES static clock_t StartOfWTimes; #define LastWtime (*(clock_t *)LastWtimePtr) /* store user time in this variable */ static void InitWTime (void) { StartOfWTimes = times(NULL); } static void InitLastWtime(void) { LastWtimePtr = (void *)Yap_AllocCodeSpace(sizeof(clock_t)); LastWtime = StartOfWTimes; } Int Yap_walltime (void) { clock_t t; t = times(NULL); return ((t - StartOfWTimes)*1000 / TicksPerSec)); } void Yap_walltime_interval(Int *now,Int *interval) { clock_t t; t = times(NULL); *now = ((t - StartOfWTimes)*1000) / TicksPerSec; *interval = (t - LastWtime) * 1000 / TicksPerSec; } #endif /* HAVE_TIMES */ #if HAVE_TIME_H #include #endif unsigned int current_seed; static void InitRandom (void) { current_seed = (unsigned int) time (NULL); #if HAVE_RANDOM srandom (current_seed); #elif HAVE_RAND srand (current_seed); #endif } STD_PROTO (extern int rand, (void)); double Yap_random (void) { #if HAVE_RANDOM /* extern long random (); */ return (((double) random ()) / 0x7fffffffL /* 2**31-1 */); #elif HAVE_RAND return (((double) (rand ()) / RAND_MAX)); #else Yap_Error(SYSTEM_ERROR, TermNil, "random not available in this configuration"); return (0.0); #endif } static Int p_srandom (void) { register Term t0 = Deref (ARG1); if (IsVarTerm (t0)) { return(Yap_unify(ARG1,MkIntegerTerm((Int)current_seed))); } if(!IsNumTerm (t0)) return (FALSE); if (IsIntTerm (t0)) current_seed = (unsigned int) IntOfTerm (t0); else if (IsFloatTerm (t0)) current_seed = (unsigned int) FloatOfTerm (t0); else current_seed = (unsigned int) LongIntOfTerm (t0); #if HAVE_RANDOM srandom(current_seed); #elif HAVE_RAND srand(current_seed); #endif return (TRUE); } #if HAVE_SIGNAL #include #ifdef MPW #define signal sigset #endif #ifdef MSH #define SIGFPE SIGDIV #endif STATIC_PROTO (void InitSignals, (void)); #if (defined(__svr4__) || defined(__SVR4)) #if HAVE_SIGINFO_H #include #endif #if HAVE_SYS_UCONTEXT_H #include #endif STATIC_PROTO (void HandleSIGSEGV, (int, siginfo_t *, ucontext_t *)); STATIC_PROTO (void HandleMatherr, (int, siginfo_t *, ucontext_t *)); STATIC_PROTO (void my_signal_info, (int, void (*)(int, siginfo_t *, ucontext_t *))); STATIC_PROTO (void my_signal, (int, void (*)(int, siginfo_t *, ucontext_t *))); /* This routine believes there is a continuous space starting from the HeapBase and ending on TrailTop */ static void HandleSIGSEGV(int sig, siginfo_t *sip, ucontext_t *uap) { #if !USE_SYSTEM_MALLOC if ( sip->si_code != SI_NOINFO && sip->si_code == SEGV_MAPERR && (void *)(sip->si_addr) > (void *)(Yap_HeapBase) && (void *)(sip->si_addr) < (void *)(Yap_TrailTop+64 * 1024L)) { Yap_growtrail(64 * 1024L, TRUE); } else #endif { Yap_Error(FATAL_ERROR, TermNil, "likely bug in YAP, segmentation violation at %p", sip->si_addr); } } static void HandleMatherr(int sig, siginfo_t *sip, ucontext_t *uap) { yap_error_number error_no; /* reset the registers so that we don't have trash in abstract machine */ switch(sip->si_code) { case FPE_INTDIV: error_no = EVALUATION_ERROR_ZERO_DIVISOR; break; case FPE_INTOVF: error_no = EVALUATION_ERROR_INT_OVERFLOW; break; case FPE_FLTDIV: error_no = EVALUATION_ERROR_ZERO_DIVISOR; break; case FPE_FLTOVF: error_no = EVALUATION_ERROR_FLOAT_OVERFLOW; break; case FPE_FLTUND: error_no = EVALUATION_ERROR_FLOAT_UNDERFLOW; break; case FPE_FLTRES: case FPE_FLTINV: case FPE_FLTSUB: default: error_no = EVALUATION_ERROR_UNDEFINED; } set_fpu_exceptions(0); Yap_Error(error_no, TermNil, ""); } #if HAVE_SIGSEGV && !defined(THREADS) static void my_signal_info(int sig, void (*handler)(int, siginfo_t *, ucontext_t *)) { struct sigaction sigact; sigact.sa_handler = handler; sigemptyset(&sigact.sa_mask); sigact.sa_flags = SA_SIGINFO; sigaction(sig,&sigact,NULL); } #endif static void my_signal(int sig, void (*handler)(int, siginfo_t *, ucontext_t *)) { struct sigaction sigact; sigact.sa_handler=handler; sigemptyset(&sigact.sa_mask); sigact.sa_flags = 0; sigaction(sig,&sigact,NULL); } #elif defined(__linux__) STATIC_PROTO (RETSIGTYPE HandleMatherr, (int)); STATIC_PROTO (RETSIGTYPE HandleSIGSEGV, (int,siginfo_t *,void *)); STATIC_PROTO (void my_signal_info, (int, void (*)(int,siginfo_t *,void *))); STATIC_PROTO (void my_signal, (int, void (*)(int))); /******** Handling floating point errors *******************/ /* old code, used to work with matherror(), deprecated now: char err_msg[256]; switch (x->type) { case DOMAIN: case SING: Yap_Error(EVALUATION_ERROR_UNDEFINED, TermNil, "%s", x->name); return(0); case OVERFLOW: Yap_Error(EVALUATION_ERROR_FLOAT_OVERFLOW, TermNil, "%s", x->name); return(0); case UNDERFLOW: Yap_Error(EVALUATION_ERROR_FLOAT_UNDERFLOW, TermNil, "%s", x->name); return(0); case PLOSS: case TLOSS: Yap_Error(EVALUATION_ERROR_UNDEFINED, TermNil, "%s(%g) = %g", x->name, x->arg1, x->retval); return(0); default: Yap_Error(EVALUATION_ERROR_UNDEFINED, TermNil, NULL); return(0); } */ #if HAVE_FENV_H #include #endif static RETSIGTYPE HandleMatherr(int sig) { #if HAVE_FETESTEXCEPT /* This should work in Linux, but it doesn't seem to. */ int raised = fetestexcept(FE_ALL_EXCEPT); if (raised & FE_OVERFLOW) { Yap_matherror = EVALUATION_ERROR_FLOAT_OVERFLOW; } else if (raised & (FE_INVALID|FE_INEXACT)) { Yap_matherror = EVALUATION_ERROR_UNDEFINED; } else if (raised & FE_DIVBYZERO) { Yap_matherror = EVALUATION_ERROR_ZERO_DIVISOR; } else if (raised & FE_UNDERFLOW) { Yap_matherror = EVALUATION_ERROR_FLOAT_UNDERFLOW; } else #endif Yap_matherror = EVALUATION_ERROR_UNDEFINED; /* something very bad happened on the way to the forum */ set_fpu_exceptions(FALSE); Yap_Error(Yap_matherror, TermNil, ""); } static void SearchForTrailFault(siginfo_t *siginfo) { void *ptr = siginfo->si_addr; /* If the TRAIL is very close to the top of mmaped allocked space, then we can try increasing the TR space and restarting the instruction. In the worst case, the system will crash again */ #if OS_HANDLES_TR_OVERFLOW && !USE_SYSTEM_MALLOC if ((ptr > (void *)Yap_TrailTop-1024 && TR < (tr_fr_ptr) Yap_TrailTop+(64*1024))) { if (!Yap_growtrail(64*1024, TRUE)) { Yap_Error(OUT_OF_TRAIL_ERROR, TermNil, "YAP failed to reserve %ld bytes in growtrail", 64*1024L); } /* just in case, make sure the OS keeps the signal handler. */ /* my_signal_info(SIGSEGV, HandleSIGSEGV); */ } else #endif /* OS_HANDLES_TR_OVERFLOW */ { Yap_Error(FATAL_ERROR, TermNil, "tried to access illegal address %p!!!!", ptr); } } #if HAVE_SIGSEGV && !defined(THREADS) static RETSIGTYPE HandleSIGSEGV(int sig, siginfo_t *siginfo, void *context) { if (Yap_PrologMode & ExtendStackMode) { Yap_Error(FATAL_ERROR, TermNil, "OS memory allocation crashed at address %p, bailing out\n",Yap_TrailTop); } SearchForTrailFault(siginfo); } #endif static void my_signal_info(int sig, void (*handler)(int,siginfo_t *,void *)) { struct sigaction sigact; sigact.sa_sigaction = handler; sigemptyset(&sigact.sa_mask); #if HAVE_SIGINFO sigact.sa_flags = SA_SIGINFO; #else sigact.sa_flags = 0; #endif sigaction(sig,&sigact,NULL); } static void my_signal(int sig, void (*handler)(int)) { struct sigaction sigact; sigact.sa_handler=handler; sigemptyset(&sigact.sa_mask); sigact.sa_flags = 0; sigaction(sig,&sigact,NULL); } #else /* if not (defined(__svr4__) || defined(__SVR4)) */ STATIC_PROTO (RETSIGTYPE HandleMatherr, (int)); STATIC_PROTO (RETSIGTYPE HandleSIGSEGV, (int)); STATIC_PROTO (void my_signal_info, (int, void (*)(int))); STATIC_PROTO (void my_signal, (int, void (*)(int))); /******** Handling floating point errors *******************/ /* old code, used to work with matherror(), deprecated now: char err_msg[256]; switch (x->type) { case DOMAIN: case SING: Yap_Error(EVALUATION_ERROR_UNDEFINED, TermNil, "%s", x->name); return(0); case OVERFLOW: Yap_Error(EVALUATION_ERROR_FLOAT_OVERFLOW, TermNil, "%s", x->name); return(0); case UNDERFLOW: Yap_Error(EVALUATION_ERROR_FLOAT_UNDERFLOW, TermNil, "%s", x->name); return(0); case PLOSS: case TLOSS: Yap_Error(EVALUATION_ERROR_UNDEFINED, TermNil, "%s(%g) = %g", x->name, x->arg1, x->retval); return(0); default: Yap_Error(EVALUATION_ERROR_UNDEFINED, TermNil, NULL); return(0); } */ #if HAVE_FENV_H #include #endif static RETSIGTYPE HandleMatherr(int sig) { #if HAVE_FETESTEXCEPT /* This should work in Linux, but it doesn't seem to. */ int raised = fetestexcept(FE_ALL_EXCEPT); if (raised & FE_OVERFLOW) { Yap_matherror = EVALUATION_ERROR_FLOAT_OVERFLOW; } else if (raised & (FE_INVALID|FE_INEXACT)) { Yap_matherror = EVALUATION_ERROR_UNDEFINED; } else if (raised & FE_DIVBYZERO) { Yap_matherror = EVALUATION_ERROR_ZERO_DIVISOR; } else if (raised & FE_UNDERFLOW) { Yap_matherror = EVALUATION_ERROR_FLOAT_UNDERFLOW; } else #endif Yap_matherror = EVALUATION_ERROR_UNDEFINED; /* something very bad happened on the way to the forum */ set_fpu_exceptions(FALSE); Yap_Error(Yap_matherror, TermNil, ""); } static void SearchForTrailFault(void) { /* If the TRAIL is very close to the top of mmaped allocked space, then we can try increasing the TR space and restarting the instruction. In the worst case, the system will crash again */ #ifdef DEBUG /* fprintf(stderr,"Catching a sigsegv at %p with %p\n", TR, TrailTop); */ #endif #if OS_HANDLES_TR_OVERFLOW && !USE_SYSTEM_MALLOC if ((TR > (tr_fr_ptr)Yap_TrailTop-1024 && TR < (tr_fr_ptr)Yap_TrailTop+(64*1024))|| Yap_DBTrailOverflow()) { long trsize = 64*2014L; while ((CELL)TR > (CELL)Yap_TrailTop+trsize) { trsize += 64*2014L; } if (!Yap_growtrail(trsize, TRUE)) { Yap_Error(OUT_OF_TRAIL_ERROR, TermNil, "YAP failed to reserve %ld bytes in growtrail", 64*1024L); } /* just in case, make sure the OS keeps the signal handler. */ /* my_signal_info(SIGSEGV, HandleSIGSEGV); */ } else #endif /* OS_HANDLES_TR_OVERFLOW */ Yap_Error(INTERNAL_ERROR, TermNil, "likely bug in YAP, segmentation violation"); } static RETSIGTYPE HandleSIGSEGV(int sig) { if (Yap_PrologMode & ExtendStackMode) { Yap_Error(FATAL_ERROR, TermNil, "OS memory allocation crashed at address %p, bailing out\n",Yap_TrailTop); } SearchForTrailFault(); } #if HAVE_SIGACTION static void my_signal_info(int sig, void (*handler)(int)) { struct sigaction sigact; sigact.sa_handler = handler; sigemptyset(&sigact.sa_mask); #if HAVE_SIGINFO sigact.sa_flags = SA_SIGINFO; #else sigact.sa_flags = 0; #endif sigaction(sig,&sigact,NULL); } static void my_signal(int sig, void (*handler)(int)) { struct sigaction sigact; sigact.sa_handler=handler; sigemptyset(&sigact.sa_mask); sigact.sa_flags = 0; sigaction(sig,&sigact,NULL); } #else static void my_signal(int sig, void (*handler)(int)) { signal(sig, handler); } static void my_signal_info(sig, handler) int sig; void (*handler)(int); { if(signal(sig, handler) == SIG_ERR) exit(1); } #endif /* __linux__ */ #endif /* (defined(__svr4__) || defined(__SVR4)) */ static int InteractSIGINT(int ch) { switch (ch) { case 'a': /* abort computation */ if (Yap_PrologMode & (GCMode|ConsoleGetcMode|GrowStackMode|GrowHeapMode)) { Yap_PrologMode |= AbortMode; } else { Yap_Error(PURE_ABORT, TermNil, "abort from console"); /* in case someone mangles the P register */ } return -1; case 'b': /* continue */ Yap_signal (YAP_BREAK_SIGNAL); return 1; case 'c': /* continue */ return 1; case 'd': Yap_signal (YAP_DEBUG_SIGNAL); /* enter debug mode */ return 1; case 'e': /* exit */ Yap_exit(0); return -1; case 't': /* start tracing */ Yap_signal (YAP_TRACE_SIGNAL); return 1; #ifdef LOW_LEVEL_TRACER case 'T': toggle_low_level_trace(); return 1; #endif case 's': /* show some statistics */ Yap_signal (YAP_STATISTICS_SIGNAL); return 1; case EOF: return(0); break; case 'h': case '?': default: /* show an helpful message */ fprintf(Yap_stderr, "Please press one of:\n"); fprintf(Yap_stderr, " a for abort\n c for continue\n d for debug\n"); fprintf(Yap_stderr, " e for exit\n s for statistics\n t for trace\n"); fprintf(Yap_stderr, " b for break\n"); return(0); } } /* This function talks to the user about a signal. We assume we are in the context of the main Prolog thread (trivial in Unix, but hard in WIN32) */ static int ProcessSIGINT(void) { int ch, out; do { ch = Yap_GetCharForSIGINT(); } while (!(out = InteractSIGINT(ch))); return(out); } int Yap_ProcessSIGINT(void) { return ProcessSIGINT(); } /* This function is called from the signal handler to process signals. We assume we are within the context of the signal handler, whatever that might be */ static RETSIGTYPE #if (defined(__svr4__) || defined(__SVR4)) HandleSIGINT (int sig, siginfo_t *x, ucontext_t *y) #else HandleSIGINT (int sig) #endif { LOCK(SignalLock); my_signal(SIGINT, HandleSIGINT); /* do this before we act */ #if HAVE_ISATTY if (!isatty(0) && !Yap_sockets_io) { UNLOCK(SignalLock); Yap_Error(INTERRUPT_ERROR,MkIntTerm(SIGINT),NULL); return; } #endif if (Yap_InterruptsDisabled) { UNLOCK(SignalLock); return; } if (Yap_PrologMode & (CritMode|ConsoleGetcMode)) { Yap_PrologMode |= InterruptMode; #if HAVE_LIBREADLINE if (Yap_PrologMode & ConsoleGetcMode) { fprintf(stderr, "Action (h for help): "); rl_point = rl_end = 0; #if HAVE_RL_SET_PROMPT rl_set_prompt("Action (h for help): "); #endif } #endif UNLOCK(SignalLock); return; } #ifdef HAVE_SETBUF /* make sure we are not waiting for the end of line */ YP_setbuf (stdin, NULL); #endif if (snoozing) { snoozing = FALSE; UNLOCK(SignalLock); return; } ProcessSIGINT(); UNLOCK(SignalLock); } #if !defined(_WIN32) /* this routine is called if the system activated the alarm */ static RETSIGTYPE #if (defined(__svr4__) || defined(__SVR4)) HandleALRM (int s, siginfo_t *x, ucontext_t *y) #else HandleALRM(int s) #endif { my_signal (SIGALRM, HandleALRM); /* force the system to creep */ Yap_signal (YAP_ALARM_SIGNAL); /* now, say what is going on */ Yap_PutValue(AtomAlarm, MkAtomTerm(AtomTrue)); } #endif #if !defined(_WIN32) /* this routine is called if the system activated the alarm */ static RETSIGTYPE #if (defined(__svr4__) || defined(__SVR4)) HandleVTALRM (int s, siginfo_t *x, ucontext_t *y) #else HandleVTALRM(int s) #endif { my_signal (SIGVTALRM, HandleVTALRM); /* force the system to creep */ Yap_signal (YAP_VTALARM_SIGNAL); /* now, say what is going on */ Yap_PutValue(AtomAlarm, MkAtomTerm(AtomTrue)); } #endif /* * This function is called after a normal interrupt had been caught. * It allows 6 possibilities: abort, continue, trace, debug, help, exit. */ #if !defined(LIGHT) && !_MSC_VER && !defined(__MINGW32__) && !defined(LIGHT) static RETSIGTYPE #if (defined(__svr4__) || defined(__SVR4)) ReceiveSignal (int s, siginfo_t *x, ucontext_t *y) #else ReceiveSignal (int s) #endif { switch (s) { #ifndef MPW case SIGFPE: set_fpu_exceptions(FALSE); Yap_Error (SYSTEM_ERROR, TermNil, "floating point exception ]"); break; #endif #if !defined(LIGHT) && !defined(_WIN32) /* These signals are not handled by WIN32 and not the Macintosh */ case SIGQUIT: case SIGKILL: Yap_Error(INTERRUPT_ERROR,MkIntTerm(s),NULL); #endif #ifdef SIGUSR1 case SIGUSR1: /* force the system to creep */ Yap_signal (YAP_USR1_SIGNAL); break; #endif /* defined(SIGUSR1) */ #ifdef SIGUSR2 case SIGUSR2: /* force the system to creep */ Yap_signal (YAP_USR2_SIGNAL); break; #endif /* defined(SIGUSR2) */ #ifdef SIGPIPE case SIGPIPE: /* force the system to creep */ Yap_signal (YAP_PIPE_SIGNAL); break; #endif /* defined(SIGPIPE) */ #ifdef SIGHUP case SIGHUP: /* force the system to creep */ Yap_signal (YAP_HUP_SIGNAL); break; #endif /* defined(SIGHUP) */ default: fprintf(Yap_stderr, "\n[ Unexpected signal ]\n"); exit (EXIT_FAILURE); } } #endif #if (_MSC_VER || defined(__MINGW32__)) static BOOL WINAPI MSCHandleSignal(DWORD dwCtrlType) { if (Yap_InterruptsDisabled) { return FALSE; } switch(dwCtrlType) { case CTRL_C_EVENT: case CTRL_BREAK_EVENT: Yap_signal(YAP_ALARM_SIGNAL); Yap_PrologMode |= InterruptMode; return(TRUE); default: return(FALSE); } } #endif /* SIGINT can cause problems, if caught before full initialization */ static void InitSignals (void) { if (Yap_PrologShouldHandleInterrupts) { #if !defined(LIGHT) && !_MSC_VER && !defined(__MINGW32__) && !defined(LIGHT) my_signal (SIGQUIT, ReceiveSignal); my_signal (SIGKILL, ReceiveSignal); my_signal (SIGUSR1, ReceiveSignal); my_signal (SIGUSR2, ReceiveSignal); my_signal (SIGHUP, ReceiveSignal); my_signal (SIGALRM, HandleALRM); my_signal (SIGVTALRM, HandleVTALRM); #endif #ifdef SIGPIPE my_signal (SIGPIPE, ReceiveSignal); #endif #if _MSC_VER || defined(__MINGW32__) signal (SIGINT, SIG_IGN); SetConsoleCtrlHandler(MSCHandleSignal,TRUE); #else my_signal (SIGINT, HandleSIGINT); #endif #ifndef MPW my_signal (SIGFPE, HandleMatherr); #endif #if HAVE_SIGSEGV && !defined(THREADS) my_signal_info (SIGSEGV, HandleSIGSEGV); #endif #ifdef ACOW signal(SIGCHLD, SIG_IGN); /* avoid ghosts */ #endif } else { #if OS_HANDLES_TR_OVERFLOW #if HAVE_SIGSEGV && !defined(THREADS) my_signal_info (SIGSEGV, HandleSIGSEGV); #endif #endif } } #endif /* HAVE_SIGNAL */ /* TrueFileName -> Finds the true name of a file */ #ifdef __MINGW32__ #include #endif static int volume_header(char *file) { #if _MSC_VER || defined(__MINGW32__) char *ch = file; int c; while ((c = ch[0]) != '\0') { if (isalnum(c)) ch++; else return(c == ':'); } #endif return(FALSE); } int Yap_volume_header(char *file) { return volume_header(file); } int Yap_getcwd(const char *buf, int len) { #if __simplescalar__ /* does not implement getcwd */ strncpy(Yap_buf,yap_pwd,len); #elif HAVE_GETCWD if (getcwd ((char *)buf, len) == NULL) { #if HAVE_STRERROR Yap_Error(OPERATING_SYSTEM_ERROR, ARG1, "%s in getcwd/1", strerror(errno)); #else Yap_Error(OPERATING_SYSTEM_ERROR, ARG1, "error %d in getcwd/1", errno); #endif return FALSE; } #else if (getwd (buf) == NULL) { #if HAVE_STRERROR Yap_Error(OPERATING_SYSTEM_ERROR, ARG1, "%s in getcwd/1", strerror(errno)); #else Yap_Error(OPERATING_SYSTEM_ERROR, ARG1, "in getcwd/1"); #endif return FALSE; } #endif return TRUE; } /****** TODO: rewrite to use wordexp ****/ static int TrueFileName (char *source, char *root, char *result, int in_lib) { char *res0 = result, *work; char ares1[YAP_FILENAME_MAX]; result[0] = '\0'; #if defined(__MINGW32__) || _MSC_VER /* step 0: replace / by \ */ { char *p = source, ch = p[0]; while (ch != '\0') { if (ch == '/') p[0] = '\\'; p++; ch = p[0]; } } #endif /* step 1: eating home information */ if (source[0] == '~') { if (dir_separator(source[1]) || source[1] == '\0') { char *s; source++; #if defined(_WIN32) s = getenv("HOMEDRIVE"); if (s != NULL) strncpy (result, getenv ("HOMEDRIVE"), YAP_FILENAME_MAX); s = getenv("HOMEPATH"); if (s != NULL) strncpy (result, s, YAP_FILENAME_MAX); #else s = getenv ("HOME"); if (s != NULL) strncpy (result, s, YAP_FILENAME_MAX); #endif } else { #if HAVE_GETPWNAM struct passwd *user_passwd; source++; while (!dir_separator((*res0 = *source)) && *res0 != '\0') res0++, source++; *res0++ = '\0'; if ((user_passwd = getpwnam (result)) == NULL) { return FALSE; } strncpy (result, user_passwd->pw_dir, YAP_FILENAME_MAX); #else return FALSE; #endif } strncat (result, source, YAP_FILENAME_MAX); } else if (source[0] == '$') { /* follow SICStus expansion rules */ int ch; char *s; char *res0 = source+1; while ((ch = *res0) && is_valid_env_char (ch)) { res0++; } *res0 = '\0'; if (!(s = (char *) getenv (source+1))) { return FALSE; } *res0 = ch; strncpy (result, s, YAP_FILENAME_MAX); strncat (result, res0, YAP_FILENAME_MAX); } else { strncpy (result, source, YAP_FILENAME_MAX); } #if defined(_WIN32) { int ch; res0 = result; /* step 2 WINDOWS: replacing \ by / */ while ((ch = *res0++)) { if (ch == '\\' && dir_separator('\\')) { res0[-1] = '/'; } } } #endif /* step 3: get the full file name */ if (!dir_separator(result[0]) && !volume_header(result)) { if (!Yap_getcwd(ares1, YAP_FILENAME_MAX)) return FALSE; #if _MSC_VER || defined(__MINGW32__) strncat (ares1, "\\", YAP_FILENAME_MAX); #else strncat (ares1, "/", YAP_FILENAME_MAX); #endif if (root) { if (!dir_separator(root[0]) && !volume_header(root)) { strncat(ares1, root, YAP_FILENAME_MAX-1); } else { strncpy(ares1, root, YAP_FILENAME_MAX-1); } #if _MSC_VER || defined(__MINGW32__) strncat (ares1, "\\", YAP_FILENAME_MAX-1); #else strncat (ares1, "/", YAP_FILENAME_MAX-1); #endif } strncat (ares1, result, YAP_FILENAME_MAX-1); if (in_lib) { int tmpf; if ((tmpf = open(ares1, O_RDONLY)) < 0) { /* not in current directory, let us try the library */ if (Yap_LibDir != NULL) { strncpy(Yap_FileNameBuf, Yap_LibDir, YAP_FILENAME_MAX); #if HAVE_GETENV } else { char *yap_env = getenv("YAPLIBDIR"); if (yap_env != NULL) { strncpy(ares1, yap_env, YAP_FILENAME_MAX); #endif } else { #if _MSC_VER || defined(__MINGW32__) if (libdir) strncpy(ares1, libdir, YAP_FILENAME_MAX); else #endif strncpy(ares1, LIB_DIR, YAP_FILENAME_MAX); } #if HAVE_GETENV } #endif #if _MSC_VER || defined(__MINGW32__) strncat(ares1,"\\", YAP_FILENAME_MAX-1); #else strncat(ares1,"/", YAP_FILENAME_MAX-1); #endif strncat(ares1,result, YAP_FILENAME_MAX-1); if ((tmpf = open(ares1, O_RDONLY)) >= 0) { close(tmpf); strncpy (result, ares1, YAP_FILENAME_MAX); } } else { strncpy (result, ares1, YAP_FILENAME_MAX); close(tmpf); } } else { strncpy (result, ares1, YAP_FILENAME_MAX); } } /* step 4: simplifying the file name */ work = result; while (*work != '\0') { char *new_work, *next_work; if (*work++ != '.') continue; if (*work != '.') { if (!dir_separator(*work) || !dir_separator(work[-2])) continue; next_work = work + 1; new_work = --work; } else { if (!dir_separator(work[1]) || !dir_separator(work[-2])) continue; next_work = work + 2; work -= 2; if (work == result) return (FALSE); while (!dir_separator(*--work) && work != result); if (work == result && !dir_separator(work[0])) return (FALSE); new_work = ++work; } while ((*new_work++ = *next_work++)!=0); } if (work != result && dir_separator(work[-1])) { /* should only do this on result being a directory */ int ch0 = work[-1]; work--; work[0] = '\0'; if (!is_directory(result)) { /* put it back: */ work[0] = ch0; work++; } } return TRUE; } int Yap_TrueFileName (char *source, char *result, int in_lib) { return TrueFileName (source, NULL, result, in_lib); } static Int p_true_file_name (void) { Term t = Deref(ARG1); if (IsVarTerm(t)) { Yap_Error(INSTANTIATION_ERROR,t,"argument to true_file_name unbound"); return FALSE; } if (!IsAtomTerm(t)) { Yap_Error(TYPE_ERROR_ATOM,t,"argument to true_file_name"); return FALSE; } TrueFileName (RepAtom(AtomOfTerm(t))->StrOfAE, NULL, Yap_FileNameBuf, FALSE); return Yap_unify(ARG2, MkAtomTerm(Yap_LookupAtom(Yap_FileNameBuf))); } static Int p_true_file_name3 (void) { Term t = Deref(ARG1), t2 = Deref(ARG2); char *root = NULL; if (IsVarTerm(t)) { Yap_Error(INSTANTIATION_ERROR,t,"argument to true_file_name unbound"); return FALSE; } if (!IsAtomTerm(t)) { Yap_Error(TYPE_ERROR_ATOM,t,"argument to true_file_name"); return FALSE; } if (!IsVarTerm(t2)) { if (!IsAtomTerm(t)) { Yap_Error(TYPE_ERROR_ATOM,t2,"argument to true_file_name"); return FALSE; } root = RepAtom(AtomOfTerm(t2))->StrOfAE; } TrueFileName (RepAtom(AtomOfTerm(t))->StrOfAE, root, Yap_FileNameBuf, FALSE); return Yap_unify(ARG3, MkAtomTerm(Yap_LookupAtom(Yap_FileNameBuf))); } static Int p_getcwd(void) { if (!Yap_getcwd(Yap_FileNameBuf, YAP_FILENAME_MAX)) return FALSE; return Yap_unify(ARG1,MkAtomTerm(Yap_LookupAtom(Yap_FileNameBuf))); } /* Executes $SHELL under Prolog */ static Int p_sh (void) { /* sh */ #ifdef HAVE_SYSTEM char *shell; shell = (char *) getenv ("SHELL"); if (shell == NULL) shell = "/bin/sh"; if (system (shell) < 0) { #if HAVE_STRERROR Yap_Error(OPERATING_SYSTEM_ERROR, TermNil, "%s in sh/0", strerror(errno)); #else Yap_Error(OPERATING_SYSTEM_ERROR, TermNil, "in sh/0"); #endif return FALSE; } return TRUE; #else #ifdef MSH register char *shell; shell = "msh -i"; system (shell); return (TRUE); #else Yap_Error(SYSTEM_ERROR,TermNil,"sh not available in this configuration"); return(FALSE); #endif /* MSH */ #endif } static Int p_shell (void) { /* '$shell'(+SystCommand) */ #if _MSC_VER || defined(__MINGW32__) Yap_Error(SYSTEM_ERROR,TermNil,"shell not available in this configuration"); return FALSE; #else #if HAVE_SYSTEM char *shell; register int bourne = FALSE; Term t1 = Deref (ARG1); shell = (char *) getenv ("SHELL"); if (!strcmp (shell, "/bin/sh")) bourne = TRUE; if (shell == NIL) bourne = TRUE; /* Yap_CloseStreams(TRUE); */ if (bourne) return system(RepAtom(AtomOfTerm(t1))->StrOfAE) == 0; else { int status = -1; int child = fork (); if (child == 0) { /* let the children go */ if (!execl (shell, shell, "-c", RepAtom(AtomOfTerm(t1))->StrOfAE , NULL)) { exit(-1); } exit(TRUE); } { /* put the father on wait */ int result = child < 0 || /* vsc:I am not sure this is used, Stevens say wait returns an integer. #if NO_UNION_WAIT */ wait ((&status)) != child || /* #else wait ((union wait *) (&status)) != child || #endif */ status == 0; return result; } } #else /* HAVE_SYSTEM */ #ifdef MSH register char *shell; shell = "msh -i"; /* Yap_CloseStreams(); */ system (shell); return TRUE; #else Yap_Error (SYSTEM_ERROR,TermNil,"shell not available in this configuration"); return FALSE; #endif #endif /* HAVE_SYSTEM */ #endif /* _MSC_VER */ } static Int p_system (void) { /* '$system'(+SystCommand) */ #ifdef HAVE_SYSTEM Term t1 = Deref (ARG1); char *s; if (IsVarTerm(t1)) { Yap_Error(INSTANTIATION_ERROR,t1,"argument to system/1 unbound"); return FALSE; } else if (IsAtomTerm(t1)) { s = RepAtom(AtomOfTerm(t1))->StrOfAE; } else { if (!Yap_GetName (Yap_FileNameBuf, YAP_FILENAME_MAX, t1)) { Yap_Error(TYPE_ERROR_ATOM,t1,"argument to system/1"); return FALSE; } s = Yap_FileNameBuf; } /* Yap_CloseStreams(TRUE); */ #if _MSC_VER _flushall(); #endif if (system (s)) { #if HAVE_STRERROR Yap_Error(OPERATING_SYSTEM_ERROR,t1,"%s in system(%s)", strerror(errno), s); #else Yap_Error(OPERATING_SYSTEM_ERROR,t1,"in system(%s)", s); #endif return FALSE; } return TRUE; #else #ifdef MSH register char *shell; shell = "msh -i"; /* Yap_CloseStreams(); */ system (shell); return (TRUE); #undef command #else Yap_Error(SYSTEM_ERROR,TermNil,"sh not available in this machine"); return(FALSE); #endif #endif /* HAVE_SYSTEM */ } /* Rename a file */ static Int p_mv (void) { /* rename(+OldName,+NewName) */ #if HAVE_LINK int r; char oldname[YAP_FILENAME_MAX], newname[YAP_FILENAME_MAX]; Term t1 = Deref (ARG1); Term t2 = Deref (ARG2); if (IsVarTerm(t1)) { Yap_Error(INSTANTIATION_ERROR, t1, "first argument to rename/2 unbound"); } else if (!IsAtomTerm(t1)) { Yap_Error(TYPE_ERROR_ATOM, t1, "first argument to rename/2 not atom"); } if (IsVarTerm(t2)) { Yap_Error(INSTANTIATION_ERROR, t2, "second argument to rename/2 unbound"); } else if (!IsAtomTerm(t2)) { Yap_Error(TYPE_ERROR_ATOM, t2, "second argument to rename/2 not atom"); } TrueFileName (RepAtom(AtomOfTerm(t1))->StrOfAE, NULL, oldname, FALSE); TrueFileName (RepAtom(AtomOfTerm(t2))->StrOfAE, NULL, newname, FALSE); if ((r = link (oldname, newname)) == 0 && (r = unlink (oldname)) != 0) unlink (newname); if (r != 0) { #if HAVE_STRERROR Yap_Error(OPERATING_SYSTEM_ERROR,t2,"%s in rename(%s,%s)", strerror(errno),oldname,newname); #else Yap_Error(OPERATING_SYSTEM_ERROR,t2,"in rename(%s,%s)",oldname,newname); #endif return FALSE; } return TRUE; #else Yap_Error(SYSTEM_ERROR,TermNil,"rename/2 not available in this machine"); return (FALSE); #endif } /* find the directory info from a file name */ static Int p_file_directory_name (void) { Term t1 = Deref(ARG1); char *chp; if (IsVarTerm(t1)) { Yap_Error(INSTANTIATION_ERROR, t1, "first arg of file_directory_name/2"); return FALSE; } if (!IsAtomTerm(t1)) { Yap_Error(TYPE_ERROR_ATOM, t1, "first arg of file_directory_name/2"); return FALSE; } TrueFileName (RepAtom(AtomOfTerm(t1))->StrOfAE, NULL, Yap_FileNameBuf, FALSE); chp = Yap_FileNameBuf+strlen(Yap_FileNameBuf); while (!dir_separator(*--chp) && chp != Yap_FileNameBuf); if (chp == Yap_FileNameBuf) { return Yap_unify(MkAtomTerm(AtomDot),ARG2); } *chp = '\0'; return Yap_unify(MkAtomTerm(Yap_LookupAtom(Yap_FileNameBuf)),ARG2); } /* Change the working directory */ static Int p_cd (void) { /* cd(+NewD) */ Term t1 = Deref (ARG1); if (IsVarTerm(t1)) { Yap_Error(INSTANTIATION_ERROR,t1,"argument to cd/1 is not valid"); return FALSE; } else if (IsAtomTerm(t1)) { TrueFileName (RepAtom(AtomOfTerm(t1))->StrOfAE, NULL, Yap_FileNameBuf2, FALSE); } else { if (t1 == TermNil) return TRUE; if (!Yap_GetName (Yap_FileNameBuf, YAP_FILENAME_MAX, t1)) { Yap_Error(TYPE_ERROR_ATOM,t1,"argument to cd/1 is not valid"); return FALSE; } TrueFileName (Yap_FileNameBuf, NULL, Yap_FileNameBuf2, FALSE); } #if HAVE_CHDIR #if __simplescalar__ strncpy(yap_pwd,Yap_FileNameBuf2,YAP_FILENAME_MAX); #endif if (chdir (Yap_FileNameBuf2) < 0) { #if HAVE_STRERROR Yap_Error(OPERATING_SYSTEM_ERROR, t1, "%s in cd(%s)", strerror(errno), Yap_FileNameBuf2); #else Yap_Error(OPERATING_SYSTEM_ERROR,t1," in cd(%s)", Yap_FileNameBuf2); #endif return FALSE; } return TRUE; #else #ifdef MACYAP return (!chdir (Yap_FileNameBuf2)); #else Yap_Error(SYSTEM_ERROR,TermNil,"cd/1 not available in this machine"); return FALSE; #endif #endif } #ifdef MAC void Yap_SetTextFile (name) char *name; { #ifdef MACC SetFileType (name, 'TEXT'); SetFileSignature (name, 'EDIT'); #else FInfo f; FInfo *p = &f; GetFInfo (name, 0, p); p->fdType = 'TEXT'; #ifdef MPW if (mpwshell) p->fdCreator = 'MPS\0'; #endif #ifndef LIGHT else p->fdCreator = 'EDIT'; #endif SetFInfo (name, 0, p); #endif } #endif /* return YAP's environment */ static Int p_getenv(void) { #if HAVE_GETENV Term t1 = Deref(ARG1), to; char *s, *so; if (IsVarTerm(t1)) { Yap_Error(INSTANTIATION_ERROR, t1, "first arg of getenv/2"); return(FALSE); } else if (!IsAtomTerm(t1)) { Yap_Error(TYPE_ERROR_ATOM, t1, "first arg of getenv/2"); return(FALSE); } else s = RepAtom(AtomOfTerm(t1))->StrOfAE; if ((so = getenv(s)) == NULL) return(FALSE); to = MkAtomTerm(Yap_LookupAtom(so)); return(Yap_unify_constant(ARG2,to)); #else Yap_Error(SYSTEM_ERROR, TermNil, "getenv not available in this configuration"); return (FALSE); #endif } /* set a variable in YAP's environment */ static Int p_putenv(void) { #if HAVE_PUTENV Term t1 = Deref(ARG1), t2 = Deref(ARG2); char *s, *s2, *p0, *p; if (IsVarTerm(t1)) { Yap_Error(INSTANTIATION_ERROR, t1, "first arg to putenv/2"); return(FALSE); } else if (!IsAtomTerm(t1)) { Yap_Error(TYPE_ERROR_ATOM, t1, "first arg to putenv/2"); return(FALSE); } else s = RepAtom(AtomOfTerm(t1))->StrOfAE; if (IsVarTerm(t2)) { Yap_Error(INSTANTIATION_ERROR, t1, "second arg to putenv/2"); return(FALSE); } else if (!IsAtomTerm(t2)) { Yap_Error(TYPE_ERROR_ATOM, t2, "second arg to putenv/2"); return(FALSE); } else s2 = RepAtom(AtomOfTerm(t2))->StrOfAE; while (!(p0 = p = Yap_AllocAtomSpace(strlen(s)+strlen(s2)+3))) { if (!Yap_growheap(FALSE, MinHeapGap, NULL)) { Yap_Error(OUT_OF_HEAP_ERROR, TermNil, Yap_ErrorMessage); return FALSE; } } while ((*p++ = *s++) != '\0'); p[-1] = '='; while ((*p++ = *s2++) != '\0'); if (putenv(p0) == 0) return TRUE; #if HAVE_STRERROR Yap_Error(OPERATING_SYSTEM_ERROR, TermNil, "in putenv(%s)", strerror(errno), p0); #else Yap_Error(OPERATING_SYSTEM_ERROR, TermNil, "in putenv(%s)", p0); #endif return FALSE; #else Yap_Error(SYSTEM_ERROR, TermNil, "putenv not available in this configuration"); return FALSE; #endif } /* set a variable in YAP's environment */ static Int p_file_age(void) { char *file_name = RepAtom(AtomOfTerm(Deref(ARG1)))->StrOfAE; if (strcmp(file_name,"user_input") == 0) { return(Yap_unify(ARG2,MkIntTerm(-1))); } #if HAVE_LSTAT { struct stat buf; if (lstat(file_name, &buf) == -1) { /* file does not exist, but was opened? Return -1 */ return(Yap_unify(ARG2, MkIntTerm(-1))); } return(Yap_unify(ARG2, MkIntegerTerm(buf.st_mtime))); } #elif defined(__MINGW32__) || _MSC_VER { struct _stat buf; if (_stat(file_name, &buf) != 0) { /* return an error number */ return(Yap_unify(ARG2, MkIntTerm(-1))); } return(Yap_unify(ARG2, MkIntegerTerm(buf.st_mtime))); } #else return(Yap_unify(ARG2, MkIntTerm(-1))); #endif } /* wrapper for alarm system call */ #if _MSC_VER || defined(__MINGW32__) static DWORD WINAPI DoTimerThread(LPVOID targ) { Int *time = (Int *)targ; HANDLE htimer; LARGE_INTEGER liDueTime; htimer = CreateWaitableTimer(NULL, FALSE, NULL); liDueTime.QuadPart = -10000000; liDueTime.QuadPart *= time[0]; /* add time in usecs */ liDueTime.QuadPart -= time[1]*10; /* Copy the relative time into a LARGE_INTEGER. */ if (SetWaitableTimer(htimer, &liDueTime,0,NULL,NULL,0) == 0) { return(FALSE); } if (WaitForSingleObject(htimer, INFINITE) != WAIT_OBJECT_0) fprintf(stderr,"WaitForSingleObject failed (%ld)\n", GetLastError()); Yap_signal (YAP_ALARM_SIGNAL); /* now, say what is going on */ Yap_PutValue(AtomAlarm, MkAtomTerm(AtomTrue)); ExitThread(1); #if _MSC_VER return(0L); #endif } #endif static Int p_alarm(void) { Term t = Deref(ARG1); Term t2 = Deref(ARG2); Int i1, i2; if (IsVarTerm(t)) { Yap_Error(INSTANTIATION_ERROR, t, "alarm/2"); return(FALSE); } if (!IsIntegerTerm(t)) { Yap_Error(TYPE_ERROR_INTEGER, t, "alarm/2"); return(FALSE); } if (IsVarTerm(t2)) { Yap_Error(INSTANTIATION_ERROR, t2, "alarm/2"); return(FALSE); } if (!IsIntegerTerm(t2)) { Yap_Error(TYPE_ERROR_INTEGER, t2, "alarm/2"); return(FALSE); } i1 = IntegerOfTerm(t); i2 = IntegerOfTerm(t2); if (i1 == 0 && i2 == 0) { LOCK(SignalLock); if (ActiveSignals & YAP_ALARM_SIGNAL) { ActiveSignals &= ~YAP_ALARM_SIGNAL; if (!ActiveSignals) { CreepFlag = CalculateStackGap(); } } UNLOCK(SignalLock); } #if _MSC_VER || defined(__MINGW32__) { Term tout; Int time[2]; time[0] = i1; time[1] = i2; if (time[0] != 0 && time[1] != 0) { DWORD dwThreadId; HANDLE hThread; hThread = CreateThread( NULL, /* no security attributes */ 0, /* use default stack size */ DoTimerThread, /* thread function */ (LPVOID)time, /* argument to thread function */ 0, /* use default creation flags */ &dwThreadId); /* returns the thread identifier */ /* Check the return value for success. */ if (hThread == NULL) { Yap_WinError("trying to use alarm"); } } tout = MkIntegerTerm(0); return Yap_unify(ARG3,tout) && Yap_unify(ARG4,MkIntTerm(0)); } #elif HAVE_SETITIMER && !SUPPORT_CONDOR { struct itimerval new, old; new.it_interval.tv_sec = 0; new.it_interval.tv_usec = 0; new.it_value.tv_sec = i1; new.it_value.tv_usec = i2; if (setitimer(ITIMER_REAL, &new, &old) < 0) { #if HAVE_STRERROR Yap_Error(OPERATING_SYSTEM_ERROR, ARG1, "setitimer: %s", strerror(errno)); #else Yap_Error(OPERATING_SYSTEM_ERROR, ARG1, "setitimer %d", errno); #endif return FALSE; } return Yap_unify(ARG3,MkIntegerTerm(old.it_value.tv_sec)) && Yap_unify(ARG4,MkIntegerTerm(old.it_value.tv_usec)); } #elif HAVE_ALARM && !SUPPORT_CONDOR { Int left; Term tout; left = alarm(i1); tout = MkIntegerTerm(left); return Yap_unify(ARG3,tout) && Yap_unify(ARG4,MkIntTerm(0)) ; } #else /* not actually trying to set the alarm */ if (IntegerOfTerm(t) == 0) return TRUE; Yap_Error(SYSTEM_ERROR, TermNil, "alarm not available in this configuration"); return FALSE; #endif } static Int p_virtual_alarm(void) { Term t = Deref(ARG1); Term t2 = Deref(ARG2); if (IsVarTerm(t)) { Yap_Error(INSTANTIATION_ERROR, t, "alarm/2"); return(FALSE); } if (!IsIntegerTerm(t)) { Yap_Error(TYPE_ERROR_INTEGER, t, "alarm/2"); return(FALSE); } if (IsVarTerm(t2)) { Yap_Error(INSTANTIATION_ERROR, t2, "alarm/2"); return(FALSE); } if (!IsIntegerTerm(t2)) { Yap_Error(TYPE_ERROR_INTEGER, t2, "alarm/2"); return(FALSE); } #if _MSC_VER || defined(__MINGW32__) { Term tout; Int time[2]; time[0] = IntegerOfTerm(t); time[1] = IntegerOfTerm(t2); if (time[0] != 0 && time[1] != 0) { DWORD dwThreadId; HANDLE hThread; hThread = CreateThread( NULL, /* no security attributes */ 0, /* use default stack size */ DoTimerThread, /* thread function */ (LPVOID)time, /* argument to thread function */ 0, /* use default creation flags */ &dwThreadId); /* returns the thread identifier */ /* Check the return value for success. */ if (hThread == NULL) { Yap_WinError("trying to use alarm"); } } tout = MkIntegerTerm(0); return Yap_unify(ARG3,tout) && Yap_unify(ARG4,MkIntTerm(0)); } #elif HAVE_SETITIMER && !SUPPORT_CONDOR { struct itimerval new, old; new.it_interval.tv_sec = 0; new.it_interval.tv_usec = 0; new.it_value.tv_sec = IntegerOfTerm(t); new.it_value.tv_usec = IntegerOfTerm(t2); if (setitimer(ITIMER_VIRTUAL, &new, &old) < 0) { #if HAVE_STRERROR Yap_Error(OPERATING_SYSTEM_ERROR, ARG1, "setitimer: %s", strerror(errno)); #else Yap_Error(OPERATING_SYSTEM_ERROR, ARG1, "setitimer %d", errno); #endif return FALSE; } return Yap_unify(ARG3,MkIntegerTerm(old.it_value.tv_sec)) && Yap_unify(ARG4,MkIntegerTerm(old.it_value.tv_usec)); } #else /* not actually trying to set the alarm */ if (IntegerOfTerm(t) == 0) return TRUE; Yap_Error(SYSTEM_ERROR, TermNil, "virtual_alarm not available in this configuration"); return FALSE; #endif } #if HAVE_FPU_CONTROL_H #include #endif /* by default Linux with glibc is IEEE compliant anyway..., but we will pretend it is not. */ static void set_fpu_exceptions(int flag) { if (flag) { #if defined(__hpux) # if HAVE_FESETTRAPENABLE /* From HP-UX 11.0 onwards: */ fesettrapenable(FE_INVALID|FE_DIVBYZERO|FE_OVERFLOW|FE_UNDERFLOW); # else /* Up until HP-UX 10.20: FP_X_INV invalid operation exceptions FP_X_DZ divide-by-zero exception FP_X_OFL overflow exception FP_X_UFL underflow exception FP_X_IMP imprecise (inexact result) FP_X_CLEAR simply zero to clear all flags */ fpsetmask(FP_X_INV|FP_X_DZ|FP_X_OFL|FP_X_UFL); # endif #endif /* __hpux */ #if HAVE_FPU_CONTROL_H && i386 && defined(__GNUC__) /* I shall ignore denormalization and precision errors */ int v = _FPU_IEEE & ~(_FPU_MASK_IM|_FPU_MASK_ZM|_FPU_MASK_OM|_FPU_MASK_UM); _FPU_SETCW(v); #endif #if HAVE_FETESTEXCEPT feclearexcept(FE_ALL_EXCEPT); #endif my_signal (SIGFPE, HandleMatherr); } else { /* do IEEE arithmetic in the way the big boys do */ #if defined(__hpux) # if HAVE_FESETTRAPENABLE fesettrapenable(FE_ALL_EXCEPT); # else fpsetmask(FP_X_CLEAR); # endif #endif /* __hpux */ #if HAVE_FPU_CONTROL_H && i386 && defined(__GNUC__) /* this will probably not work in older releases of Linux */ int v = _FPU_IEEE; _FPU_SETCW(v); #endif my_signal (SIGFPE, SIG_IGN); } } void Yap_set_fpu_exceptions(int flag) { set_fpu_exceptions(flag); } static Int p_set_fpu_exceptions(void) { if (yap_flags[LANGUAGE_MODE_FLAG] == 1) { set_fpu_exceptions(FALSE); /* can't make it work right */ } else { set_fpu_exceptions(FALSE); } return(TRUE); } static Int p_host_type(void) { Term out = MkAtomTerm(Yap_LookupAtom(HOST_ALIAS)); return(Yap_unify(out,ARG1)); } static Int p_yap_home(void) { Term out = MkAtomTerm(Yap_LookupAtom(YAP_HOME_DIR)); return(Yap_unify(out,ARG1)); } static Int p_env_separator(void) { #if defined(_WIN32) return Yap_unify(MkIntegerTerm(';'),ARG1); #else return Yap_unify(MkIntegerTerm(':'),ARG1); #endif } /* * This is responsable for the initialization of all machine dependant * predicates */ void Yap_InitSysbits (void) { #if __simplescalar__ { char *pwd = getenv("PWD"); strncpy(yap_pwd,pwd,YAP_FILENAME_MAX); } #endif InitPageSize(); InitWTime (); InitRandom (); /* let the caller control signals as it sees fit */ InitSignals (); } void Yap_InitTime(void) { InitTime(); } void Yap_ReInitWallTime (void) { InitWTime(); if (Yap_heap_regs->last_wtime != NULL) Yap_FreeCodeSpace(Yap_heap_regs->last_wtime); InitLastWtime(); } static Int p_first_signal(void) { LOCK(SignalLock); #ifdef THREADS pthread_mutex_lock(&(ThreadHandle[worker_id].tlock)); #endif /* always do wakeups first, because you don't want to keep the non-backtrackable variable bad */ if (ActiveSignals & YAP_WAKEUP_SIGNAL) { ActiveSignals &= ~YAP_WAKEUP_SIGNAL; #ifdef THREADS pthread_mutex_unlock(&(ThreadHandle[worker_id].tlock)); #endif UNLOCK(SignalLock); return Yap_unify(ARG1, MkAtomTerm(AtomSigWakeUp)); } if (ActiveSignals & YAP_ITI_SIGNAL) { ActiveSignals &= ~YAP_ITI_SIGNAL; #ifdef THREADS pthread_mutex_unlock(&(ThreadHandle[worker_id].tlock)); #endif UNLOCK(SignalLock); return Yap_unify(ARG1, MkAtomTerm(AtomSigIti)); } if (ActiveSignals & YAP_INT_SIGNAL) { ActiveSignals &= ~YAP_INT_SIGNAL; #ifdef THREADS pthread_mutex_unlock(&(ThreadHandle[worker_id].tlock)); #endif UNLOCK(SignalLock); return Yap_unify(ARG1, MkAtomTerm(AtomSigInt)); } if (ActiveSignals & YAP_USR2_SIGNAL) { ActiveSignals &= ~YAP_USR2_SIGNAL; #ifdef THREADS pthread_mutex_unlock(&(ThreadHandle[worker_id].tlock)); #endif UNLOCK(SignalLock); return Yap_unify(ARG1, MkAtomTerm(AtomSigUsr2)); } if (ActiveSignals & YAP_USR1_SIGNAL) { ActiveSignals &= ~YAP_USR1_SIGNAL; #ifdef THREADS pthread_mutex_unlock(&(ThreadHandle[worker_id].tlock)); #endif UNLOCK(SignalLock); return Yap_unify(ARG1, MkAtomTerm(AtomSigUsr1)); } if (ActiveSignals & YAP_PIPE_SIGNAL) { ActiveSignals &= ~YAP_PIPE_SIGNAL; #ifdef THREADS pthread_mutex_unlock(&(ThreadHandle[worker_id].tlock)); #endif UNLOCK(SignalLock); return Yap_unify(ARG1, MkAtomTerm(AtomSigPipe)); } if (ActiveSignals & YAP_HUP_SIGNAL) { ActiveSignals &= ~YAP_HUP_SIGNAL; #ifdef THREADS pthread_mutex_unlock(&(ThreadHandle[worker_id].tlock)); #endif UNLOCK(SignalLock); return Yap_unify(ARG1, MkAtomTerm(AtomSigHup)); } if (ActiveSignals & YAP_ALARM_SIGNAL) { ActiveSignals &= ~YAP_ALARM_SIGNAL; UNLOCK(SignalLock); return Yap_unify(ARG1, MkAtomTerm(AtomSigAlarm)); } if (ActiveSignals & YAP_VTALARM_SIGNAL) { ActiveSignals &= ~YAP_VTALARM_SIGNAL; UNLOCK(SignalLock); return Yap_unify(ARG1, MkAtomTerm(AtomSigVTAlarm)); } if (ActiveSignals & YAP_DELAY_CREEP_SIGNAL) { ActiveSignals &= ~(YAP_CREEP_SIGNAL|YAP_DELAY_CREEP_SIGNAL); #ifdef THREADS pthread_mutex_unlock(&(ThreadHandle[worker_id].tlock)); #endif UNLOCK(SignalLock); return Yap_unify(ARG1, MkAtomTerm(AtomSigDelayCreep)); } if (ActiveSignals & YAP_CREEP_SIGNAL) { ActiveSignals &= ~YAP_CREEP_SIGNAL; #ifdef THREADS pthread_mutex_unlock(&(ThreadHandle[worker_id].tlock)); #endif UNLOCK(SignalLock); return Yap_unify(ARG1, MkAtomTerm(AtomSigCreep)); } if (ActiveSignals & YAP_TRACE_SIGNAL) { ActiveSignals &= ~YAP_TRACE_SIGNAL; #ifdef THREADS pthread_mutex_unlock(&(ThreadHandle[worker_id].tlock)); #endif UNLOCK(SignalLock); return Yap_unify(ARG1, MkAtomTerm(AtomSigTrace)); } if (ActiveSignals & YAP_DEBUG_SIGNAL) { ActiveSignals &= ~YAP_DEBUG_SIGNAL; #ifdef THREADS pthread_mutex_unlock(&(ThreadHandle[worker_id].tlock)); #endif UNLOCK(SignalLock); return Yap_unify(ARG1, MkAtomTerm(AtomSigDebug)); } if (ActiveSignals & YAP_BREAK_SIGNAL) { ActiveSignals &= ~YAP_BREAK_SIGNAL; #ifdef THREADS pthread_mutex_unlock(&(ThreadHandle[worker_id].tlock)); #endif UNLOCK(SignalLock); return Yap_unify(ARG1, MkAtomTerm(AtomSigBreak)); } if (ActiveSignals & YAP_STACK_DUMP_SIGNAL) { ActiveSignals &= ~YAP_STACK_DUMP_SIGNAL; #ifdef THREADS pthread_mutex_unlock(&(ThreadHandle[worker_id].tlock)); #endif UNLOCK(SignalLock); return Yap_unify(ARG1, MkAtomTerm(AtomSigStackDump)); } if (ActiveSignals & YAP_STATISTICS_SIGNAL) { ActiveSignals &= ~YAP_STATISTICS_SIGNAL; #ifdef THREADS pthread_mutex_unlock(&(ThreadHandle[worker_id].tlock)); #endif UNLOCK(SignalLock); return Yap_unify(ARG1, MkAtomTerm(AtomSigStatistics)); } #ifdef THREADS pthread_mutex_unlock(&(ThreadHandle[worker_id].tlock)); #endif UNLOCK(SignalLock); return FALSE; } static Int p_continue_signals(void) { /* hack to force the signal anew */ if (ActiveSignals & YAP_ITI_SIGNAL) { Yap_signal(YAP_ITI_SIGNAL); } if (ActiveSignals & YAP_INT_SIGNAL) { Yap_signal(YAP_INT_SIGNAL); } if (ActiveSignals & YAP_USR2_SIGNAL) { Yap_signal(YAP_USR2_SIGNAL); } if (ActiveSignals & YAP_USR1_SIGNAL) { Yap_signal(YAP_USR1_SIGNAL); } if (ActiveSignals & YAP_HUP_SIGNAL) { Yap_signal(YAP_HUP_SIGNAL); } if (ActiveSignals & YAP_ALARM_SIGNAL) { Yap_signal(YAP_ALARM_SIGNAL); } if (ActiveSignals & YAP_VTALARM_SIGNAL) { Yap_signal(YAP_VTALARM_SIGNAL); } if (ActiveSignals & YAP_CREEP_SIGNAL) { Yap_signal(YAP_CREEP_SIGNAL); } if (ActiveSignals & YAP_DELAY_CREEP_SIGNAL) { Yap_signal(YAP_DELAY_CREEP_SIGNAL|YAP_CREEP_SIGNAL); } if (ActiveSignals & YAP_TRACE_SIGNAL) { Yap_signal(YAP_TRACE_SIGNAL); } if (ActiveSignals & YAP_DEBUG_SIGNAL) { Yap_signal(YAP_DEBUG_SIGNAL); } if (ActiveSignals & YAP_BREAK_SIGNAL) { Yap_signal(YAP_BREAK_SIGNAL); } if (ActiveSignals & YAP_STACK_DUMP_SIGNAL) { Yap_signal(YAP_STACK_DUMP_SIGNAL); } if (ActiveSignals & YAP_STATISTICS_SIGNAL) { Yap_signal(YAP_STATISTICS_SIGNAL); } #ifdef THREADS pthread_mutex_unlock(&(ThreadHandle[worker_id].tlock)); #endif return TRUE; } static Int p_unix(void) { #ifdef unix return TRUE; #else #ifdef __unix__ return TRUE; #else #ifdef __APPLE__ return TRUE; #else return FALSE; #endif #endif #endif } static Int p_win32(void) { #ifdef _WIN32 return TRUE; #else #ifdef __CYGWIN__ return TRUE; #else return FALSE; #endif #endif } static Int p_enable_interrupts(void) { LOCK(SignalLock); Yap_InterruptsDisabled--; if (ActiveSignals && !Yap_InterruptsDisabled) { CreepFlag = Unsigned(LCL0); } UNLOCK(SignalLock); return TRUE; } static Int p_disable_interrupts(void) { LOCK(SignalLock); Yap_InterruptsDisabled++; if (ActiveSignals) { CreepFlag = CalculateStackGap(); } UNLOCK(SignalLock); return TRUE; } static Int p_ld_path(void) { return Yap_unify(ARG1,MkAtomTerm(Yap_LookupAtom(LIB_DIR))); } #ifdef _WIN32 /* This code is from SWI-Prolog by Jan Wielemaker */ #define wstreq(s,q) (wcscmp((s), (q)) == 0) static HKEY reg_open_key(const wchar_t *which, int create) { HKEY key = HKEY_CURRENT_USER; DWORD disp; LONG rval; while(*which) { wchar_t buf[256]; wchar_t *s; HKEY tmp; for(s=buf; *which && !(*which == '/' || *which == '\\'); ) *s++ = *which++; *s = '\0'; if ( *which ) which++; if ( wstreq(buf, L"HKEY_CLASSES_ROOT") ) { key = HKEY_CLASSES_ROOT; continue; } else if ( wstreq(buf, L"HKEY_CURRENT_USER") ) { key = HKEY_CURRENT_USER; continue; } else if ( wstreq(buf, L"HKEY_LOCAL_MACHINE") ) { key = HKEY_LOCAL_MACHINE; continue; } else if ( wstreq(buf, L"HKEY_USERS") ) { key = HKEY_USERS; continue; } if ( RegOpenKeyExW(key, buf, 0L, KEY_READ, &tmp) == ERROR_SUCCESS ) { RegCloseKey(key); key = tmp; continue; } if ( !create ) return NULL; rval = RegCreateKeyExW(key, buf, 0, L"", 0, KEY_ALL_ACCESS, NULL, &tmp, &disp); RegCloseKey(key); if ( rval == ERROR_SUCCESS ) key = tmp; else return NULL; } return key; } #define MAXREGSTRLEN 1024 static void recover_space(wchar_t *k, Atom At) { if (At->WStrOfAE != k) Yap_FreeCodeSpace((char *)k); } static wchar_t * WideStringFromAtom(Atom KeyAt) { if (IsWideAtom(KeyAt)) { return KeyAt->WStrOfAE; } else { int len = strlen(KeyAt->StrOfAE); int sz = sizeof(wchar_t)*(len+1); char *chp = KeyAt->StrOfAE; wchar_t *kptr, *k; k = (wchar_t *)Yap_AllocCodeSpace(sz); while (k == NULL) { if (!Yap_growheap(FALSE, sz, NULL)) { Yap_Error(OUT_OF_HEAP_ERROR, MkIntegerTerm(sz), "generating key in win_registry_get_value/3"); return FALSE; } } kptr = k; while ((*kptr++ = *chp++)); return k; } } static Int p_win_registry_get_value(void) { DWORD type; BYTE data[MAXREGSTRLEN]; DWORD len = sizeof(data); wchar_t *k, *name; HKEY key; Term Key = Deref(ARG1); Term Name = Deref(ARG2); Atom KeyAt, NameAt; if (IsVarTerm(Key)) { Yap_Error(INSTANTIATION_ERROR,Key,"argument to win_registry_get_value unbound"); return FALSE; } if (!IsAtomTerm(Key)) { Yap_Error(TYPE_ERROR_ATOM,Key,"argument to win_registry_get_value"); return FALSE; } KeyAt = AtomOfTerm(Key); if (IsVarTerm(Name)) { Yap_Error(INSTANTIATION_ERROR,Key,"argument to win_registry_get_value unbound"); return FALSE; } if (!IsAtomTerm(Name)) { Yap_Error(TYPE_ERROR_ATOM,Key,"argument to win_registry_get_value"); return FALSE; } NameAt = AtomOfTerm(Name); k = WideStringFromAtom(KeyAt); if ( !(key=reg_open_key(k, FALSE)) ) { Yap_Error(EXISTENCE_ERROR_KEY, Key, "argument to win_registry_get_value"); recover_space(k, KeyAt); return FALSE; } name = WideStringFromAtom(NameAt); if ( RegQueryValueExW(key, name, NULL, &type, data, &len) == ERROR_SUCCESS ) { RegCloseKey(key); switch(type) { case REG_SZ: recover_space(k, KeyAt); recover_space(name, NameAt); ((wchar_t *)data)[len] = '\0'; return Yap_unify(MkAtomTerm(Yap_LookupMaybeWideAtom((wchar_t *)data)),ARG3); case REG_DWORD: recover_space(k, KeyAt); recover_space(name, NameAt); return Yap_unify(MkIntegerTerm(*((DWORD *)data)),ARG3); default: recover_space(k, KeyAt); recover_space(name, NameAt); return FALSE; } } recover_space(k, KeyAt); recover_space(name, NameAt); return FALSE; } char * Yap_RegistryGetString(char *name) { DWORD type; BYTE data[MAXREGSTRLEN]; DWORD len = sizeof(data); HKEY key; char *ptr; int i; if ( !(key=reg_open_key(L"HKEY_LOCAL_MACHINE/SOFTWARE/YAP/Prolog", FALSE)) ) { return NULL; } if ( RegQueryValueEx(key, name, NULL, &type, data, &len) == ERROR_SUCCESS ) { RegCloseKey(key); switch(type) { case REG_SZ: ptr = malloc(len+2); if (!ptr) return NULL; for (i=0; i<= len; i++) ptr[i] = data[i]; ptr[len+1] = '\0'; return ptr; default: return NULL; } } return NULL; } #endif void Yap_InitSysPreds(void) { Term cm = CurrentModule; /* can only do after heap is initialised */ InitLastWtime(); Yap_InitCPred ("srandom", 1, p_srandom, SafePredFlag); Yap_InitCPred ("sh", 0, p_sh, SafePredFlag|SyncPredFlag); Yap_InitCPred ("$shell", 1, p_shell, SafePredFlag|SyncPredFlag|HiddenPredFlag); Yap_InitCPred ("system", 1, p_system, SafePredFlag|SyncPredFlag); Yap_InitCPred ("rename", 2, p_mv, SafePredFlag|SyncPredFlag); Yap_InitCPred ("cd", 1, p_cd, SafePredFlag|SyncPredFlag|HiddenPredFlag); Yap_InitCPred ("$yap_home", 1, p_yap_home, SafePredFlag|SyncPredFlag|HiddenPredFlag); Yap_InitCPred ("getcwd", 1, p_getcwd, SafePredFlag|SyncPredFlag); Yap_InitCPred ("$dir_separator", 1, p_dir_sp, SafePredFlag|HiddenPredFlag); Yap_InitCPred ("$alarm", 4, p_alarm, SafePredFlag|SyncPredFlag|HiddenPredFlag); Yap_InitCPred ("$getenv", 2, p_getenv, SafePredFlag|HiddenPredFlag); Yap_InitCPred ("$putenv", 2, p_putenv, SafePredFlag|SyncPredFlag|HiddenPredFlag); Yap_InitCPred ("$file_age", 2, p_file_age, SafePredFlag|SyncPredFlag|HiddenPredFlag); Yap_InitCPred ("$set_fpu_exceptions", 0, p_set_fpu_exceptions, SafePredFlag|SyncPredFlag|HiddenPredFlag); Yap_InitCPred ("$first_signal", 1, p_first_signal, SafePredFlag|SyncPredFlag|HiddenPredFlag); Yap_InitCPred ("$host_type", 1, p_host_type, SafePredFlag|SyncPredFlag|HiddenPredFlag); Yap_InitCPred ("$continue_signals", 0, p_continue_signals, SafePredFlag|SyncPredFlag|HiddenPredFlag); Yap_InitCPred ("file_directory_name", 2, p_file_directory_name, SafePredFlag); Yap_InitCPred ("$env_separator", 1, p_env_separator, SafePredFlag); Yap_InitCPred ("$unix", 0, p_unix, SafePredFlag); Yap_InitCPred ("$win32", 0, p_win32, SafePredFlag); Yap_InitCPred ("$ld_path", 1, p_ld_path, SafePredFlag); #ifdef _WIN32 Yap_InitCPred ("win_registry_get_value", 3, p_win_registry_get_value,0); #endif CurrentModule = HACKS_MODULE; Yap_InitCPred ("virtual_alarm", 4, p_virtual_alarm, SafePredFlag|SyncPredFlag|HiddenPredFlag); Yap_InitCPred ("enable_interrupts", 0, p_enable_interrupts, SafePredFlag); Yap_InitCPred ("disable_interrupts", 0, p_disable_interrupts, SafePredFlag); CurrentModule = SYSTEM_MODULE; Yap_InitCPred ("true_file_name", 2, p_true_file_name, SyncPredFlag); Yap_InitCPred ("true_file_name", 3, p_true_file_name3, SyncPredFlag); CurrentModule = cm; } #ifdef VAX /* avoid longjmp botch */ int vax_absmi_fp; typedef struct { int eh; int flgs; int ap; int fp; int pc; int dummy1; int dummy2; int dummy3; int oldfp; int dummy4; int dummy5; int dummy6; int oldpc; } *VaxFramePtr; VaxFixFrame (dummy) { int maxframes = 100; VaxFramePtr fp = (VaxFramePtr) (((int *) &dummy) - 6); while (--maxframes) { fp = (VaxFramePtr) fp->fp; if (fp->flgs == 0) { if (fp->oldfp >= ®S[6] && fp->oldfp < ®S[REG_SIZE]) fp->oldfp = vax_absmi_fp; return; } } } #endif #if defined(_WIN32) #include int WINAPI STD_PROTO(win_yap, (HANDLE, DWORD, LPVOID)); int WINAPI win_yap(HANDLE hinst, DWORD reason, LPVOID reserved) { switch (reason) { case DLL_PROCESS_ATTACH: break; case DLL_PROCESS_DETACH: break; case DLL_THREAD_ATTACH: break; case DLL_THREAD_DETACH: break; } return 1; } #endif #if (defined(YAPOR) || defined(THREADS)) && !defined(USE_PTHREAD_LOCKING) #ifdef sparc void STD_PROTO(rw_lock_voodoo,(void)); void rw_lock_voodoo(void) { /* code taken from the Linux kernel, it handles shifting between locks */ /* Read/writer locks, as usual this is overly clever to make it as fast as possible. */ /* caches... */ __asm__ __volatile__( "___rw_read_enter_spin_on_wlock:\n" " orcc %g2, 0x0, %g0\n" " be,a ___rw_read_enter\n" " ldstub [%g1 + 3], %g2\n" " b ___rw_read_enter_spin_on_wlock\n" " ldub [%g1 + 3], %g2\n" "___rw_read_exit_spin_on_wlock:\n" " orcc %g2, 0x0, %g0\n" " be,a ___rw_read_exit\n" " ldstub [%g1 + 3], %g2\n" " b ___rw_read_exit_spin_on_wlock\n" " ldub [%g1 + 3], %g2\n" "___rw_write_enter_spin_on_wlock:\n" " orcc %g2, 0x0, %g0\n" " be,a ___rw_write_enter\n" " ldstub [%g1 + 3], %g2\n" " b ___rw_write_enter_spin_on_wlock\n" " ld [%g1], %g2\n" "\n" " .globl ___rw_read_enter\n" "___rw_read_enter:\n" " orcc %g2, 0x0, %g0\n" " bne,a ___rw_read_enter_spin_on_wlock\n" " ldub [%g1 + 3], %g2\n" " ld [%g1], %g2\n" " add %g2, 1, %g2\n" " st %g2, [%g1]\n" " retl\n" " mov %g4, %o7\n" " .globl ___rw_read_exit\n" "___rw_read_exit:\n" " orcc %g2, 0x0, %g0\n" " bne,a ___rw_read_exit_spin_on_wlock\n" " ldub [%g1 + 3], %g2\n" " ld [%g1], %g2\n" " sub %g2, 0x1ff, %g2\n" " st %g2, [%g1]\n" " retl\n" " mov %g4, %o7\n" " .globl ___rw_write_enter\n" "___rw_write_enter:\n" " orcc %g2, 0x0, %g0\n" " bne ___rw_write_enter_spin_on_wlock\n" " ld [%g1], %g2\n" " andncc %g2, 0xff, %g0\n" " bne,a ___rw_write_enter_spin_on_wlock\n" " stb %g0, [%g1 + 3]\n" " retl\n" " mov %g4, %o7\n" ); } #endif /* sparc */ #if defined(i386) || defined(__x86_64__) asm( ".align 4\n" ".globl __write_lock_failed\n" "__write_lock_failed:\n" " lock; addl $" RW_LOCK_BIAS_STR ",(%eax)\n" "1: cmpl $" RW_LOCK_BIAS_STR ",(%eax)\n" " jne 1b\n" " lock; subl $" RW_LOCK_BIAS_STR ",(%eax)\n" " jnz __write_lock_failed\n" " ret\n" ".align 4\n" ".globl __read_lock_failed\n" "__read_lock_failed:\n" " lock ; incl (%eax)\n" "1: cmpl $1,(%eax)\n" " js 1b\n" " lock ; decl (%eax)\n" " js __read_lock_failed\n" " ret\n" ); #endif /* i386 */ #endif /* YAPOR || THREADS */