/* $Id: store_q.pl,v 1.1 2008-03-13 17:16:43 vsc Exp $ Part of CLP(Q) (Constraint Logic Programming over Rationals) Author: Leslie De Koninck E-mail: Leslie.DeKoninck@cs.kuleuven.be WWW: http://www.swi-prolog.org http://www.ai.univie.ac.at/cgi-bin/tr-online?number+95-09 Copyright (C): 2006, K.U. Leuven and 1992-1995, Austrian Research Institute for Artificial Intelligence (OFAI), Vienna, Austria This software is based on CLP(Q,R) by Christian Holzbaur for SICStus Prolog and distributed under the license details below with permission from all mentioned authors. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA As a special exception, if you link this library with other files, compiled with a Free Software compiler, to produce an executable, this library does not by itself cause the resulting executable to be covered by the GNU General Public License. This exception does not however invalidate any other reasons why the executable file might be covered by the GNU General Public License. */ :- module(store_q, [ add_linear_11/3, add_linear_f1/4, add_linear_ff/5, normalize_scalar/2, delete_factor/4, mult_linear_factor/3, nf_rhs_x/4, indep/2, isolate/3, nf_substitute/4, mult_hom/3, nf2sum/3, nf_coeff_of/3, renormalize/2 ]). % normalize_scalar(S,[N,Z]) % % Transforms a scalar S into a linear expression [S,0] normalize_scalar(S,[S,0]). % renormalize(List,Lin) % % Renormalizes the not normalized linear expression in List into % a normalized one. It does so to take care of unifications. % (e.g. when a variable X is bound to a constant, the constant is added to % the constant part of the linear expression; when a variable X is bound to % another variable Y, the scalars of both are added) renormalize([I,R|Hom],Lin) :- length(Hom,Len), renormalize_log(Len,Hom,[],Lin0), add_linear_11([I,R],Lin0,Lin). % renormalize_log(Len,Hom,HomTail,Lin) % % Logarithmically renormalizes the homogene part of a not normalized % linear expression. See also renormalize/2. renormalize_log(1,[Term|Xs],Xs,Lin) :- !, Term = l(X*_,_), renormalize_log_one(X,Term,Lin). renormalize_log(2,[A,B|Xs],Xs,Lin) :- !, A = l(X*_,_), B = l(Y*_,_), renormalize_log_one(X,A,LinA), renormalize_log_one(Y,B,LinB), add_linear_11(LinA,LinB,Lin). renormalize_log(N,L0,L2,Lin) :- P is N>>1, Q is N-P, renormalize_log(P,L0,L1,Lp), renormalize_log(Q,L1,L2,Lq), add_linear_11(Lp,Lq,Lin). % renormalize_log_one(X,Term,Res) % % Renormalizes a term in X: if X is a nonvar, the term becomes a scalar. renormalize_log_one(X,Term,Res) :- var(X), Term = l(X*K,_), get_attr(X,itf,Att), arg(5,Att,order(OrdX)), % Order might have changed Res = [0,0,l(X*K,OrdX)]. renormalize_log_one(X,Term,Res) :- nonvar(X), Term = l(X*K,_), Xk is X*K, normalize_scalar(Xk,Res). % ----------------------------- sparse vector stuff ---------------------------- % % add_linear_ff(LinA,Ka,LinB,Kb,LinC) % % Linear expression LinC is the result of the addition of the 2 linear expressions % LinA and LinB, each one multiplied by a scalar (Ka for LinA and Kb for LinB). add_linear_ff(LinA,Ka,LinB,Kb,LinC) :- LinA = [Ia,Ra|Ha], LinB = [Ib,Rb|Hb], LinC = [Ic,Rc|Hc], Ic is Ia*Ka+Ib*Kb, Rc is Ra*Ka+Rb*Kb, add_linear_ffh(Ha,Ka,Hb,Kb,Hc). % add_linear_ffh(Ha,Ka,Hb,Kb,Hc) % % Homogene part Hc is the result of the addition of the 2 homogene parts Ha and Hb, % each one multiplied by a scalar (Ka for Ha and Kb for Hb) add_linear_ffh([],_,Ys,Kb,Zs) :- mult_hom(Ys,Kb,Zs). add_linear_ffh([l(X*Kx,OrdX)|Xs],Ka,Ys,Kb,Zs) :- add_linear_ffh(Ys,X,Kx,OrdX,Xs,Zs,Ka,Kb). % add_linear_ffh(Ys,X,Kx,OrdX,Xs,Zs,Ka,Kb) % % Homogene part Zs is the result of the addition of the 2 homogene parts Ys and % [l(X*Kx,OrdX)|Xs], each one multiplied by a scalar (Ka for [l(X*Kx,OrdX)|Xs] and Kb for Ys) add_linear_ffh([],X,Kx,OrdX,Xs,Zs,Ka,_) :- mult_hom([l(X*Kx,OrdX)|Xs],Ka,Zs). add_linear_ffh([l(Y*Ky,OrdY)|Ys],X,Kx,OrdX,Xs,Zs,Ka,Kb) :- compare(Rel,OrdX,OrdY), ( Rel = (=) -> Kz is Kx*Ka+Ky*Kb, ( Kz =:= 0 -> add_linear_ffh(Xs,Ka,Ys,Kb,Zs) ; Zs = [l(X*Kz,OrdX)|Ztail], add_linear_ffh(Xs,Ka,Ys,Kb,Ztail) ) ; Rel = (<) -> Zs = [l(X*Kz,OrdX)|Ztail], Kz is Kx*Ka, add_linear_ffh(Xs,Y,Ky,OrdY,Ys,Ztail,Kb,Ka) ; Rel = (>) -> Zs = [l(Y*Kz,OrdY)|Ztail], Kz is Ky*Kb, add_linear_ffh(Ys,X,Kx,OrdX,Xs,Ztail,Ka,Kb) ). % add_linear_f1(LinA,Ka,LinB,LinC) % % special case of add_linear_ff with Kb = 1 add_linear_f1(LinA,Ka,LinB,LinC) :- LinA = [Ia,Ra|Ha], LinB = [Ib,Rb|Hb], LinC = [Ic,Rc|Hc], Ic is Ia*Ka+Ib, Rc is Ra*Ka+Rb, add_linear_f1h(Ha,Ka,Hb,Hc). % add_linear_f1h(Ha,Ka,Hb,Hc) % % special case of add_linear_ffh/5 with Kb = 1 add_linear_f1h([],_,Ys,Ys). add_linear_f1h([l(X*Kx,OrdX)|Xs],Ka,Ys,Zs) :- add_linear_f1h(Ys,X,Kx,OrdX,Xs,Zs,Ka). % add_linear_f1h(Ys,X,Kx,OrdX,Xs,Zs,Ka) % % special case of add_linear_ffh/8 with Kb = 1 add_linear_f1h([],X,Kx,OrdX,Xs,Zs,Ka) :- mult_hom([l(X*Kx,OrdX)|Xs],Ka,Zs). add_linear_f1h([l(Y*Ky,OrdY)|Ys],X,Kx,OrdX,Xs,Zs,Ka) :- compare(Rel,OrdX,OrdY), ( Rel = (=) -> Kz is Kx*Ka+Ky, ( Kz =:= 0 -> add_linear_f1h(Xs,Ka,Ys,Zs) ; Zs = [l(X*Kz,OrdX)|Ztail], add_linear_f1h(Xs,Ka,Ys,Ztail) ) ; Rel = (<) -> Zs = [l(X*Kz,OrdX)|Ztail], Kz is Kx*Ka, add_linear_f1h(Xs,Ka,[l(Y*Ky,OrdY)|Ys],Ztail) ; Rel = (>) -> Zs = [l(Y*Ky,OrdY)|Ztail], add_linear_f1h(Ys,X,Kx,OrdX,Xs,Ztail,Ka) ). % add_linear_11(LinA,LinB,LinC) % % special case of add_linear_ff with Ka = 1 and Kb = 1 add_linear_11(LinA,LinB,LinC) :- LinA = [Ia,Ra|Ha], LinB = [Ib,Rb|Hb], LinC = [Ic,Rc|Hc], Ic is Ia+Ib, Rc is Ra+Rb, add_linear_11h(Ha,Hb,Hc). % add_linear_11h(Ha,Hb,Hc) % % special case of add_linear_ffh/5 with Ka = 1 and Kb = 1 add_linear_11h([],Ys,Ys). add_linear_11h([l(X*Kx,OrdX)|Xs],Ys,Zs) :- add_linear_11h(Ys,X,Kx,OrdX,Xs,Zs). % add_linear_11h(Ys,X,Kx,OrdX,Xs,Zs) % % special case of add_linear_ffh/8 with Ka = 1 and Kb = 1 add_linear_11h([],X,Kx,OrdX,Xs,[l(X*Kx,OrdX)|Xs]). add_linear_11h([l(Y*Ky,OrdY)|Ys],X,Kx,OrdX,Xs,Zs) :- compare(Rel,OrdX,OrdY), ( Rel = (=) -> Kz is Kx+Ky, ( Kz =:= 0 -> add_linear_11h(Xs,Ys,Zs) ; Zs = [l(X*Kz,OrdX)|Ztail], add_linear_11h(Xs,Ys,Ztail) ) ; Rel = (<) -> Zs = [l(X*Kx,OrdX)|Ztail], add_linear_11h(Xs,Y,Ky,OrdY,Ys,Ztail) ; Rel = (>) -> Zs = [l(Y*Ky,OrdY)|Ztail], add_linear_11h(Ys,X,Kx,OrdX,Xs,Ztail) ). % mult_linear_factor(Lin,K,Res) % % Linear expression Res is the result of multiplication of linear % expression Lin by scalar K mult_linear_factor(Lin,K,Mult) :- K =:= 1, !, Mult = Lin. mult_linear_factor(Lin,K,Res) :- Lin = [I,R|Hom], Res = [Ik,Rk|Mult], Ik is I*K, Rk is R*K, mult_hom(Hom,K,Mult). % mult_hom(Hom,K,Res) % % Homogene part Res is the result of multiplication of homogene part % Hom by scalar K mult_hom([],_,[]). mult_hom([l(A*Fa,OrdA)|As],F,[l(A*Fan,OrdA)|Afs]) :- Fan is F*Fa, mult_hom(As,F,Afs). % nf_substitute(Ord,Def,Lin,Res) % % Linear expression Res is the result of substitution of Var in % linear expression Lin, by its definition in the form of linear % expression Def nf_substitute(OrdV,LinV,LinX,LinX1) :- delete_factor(OrdV,LinX,LinW,K), add_linear_f1(LinV,K,LinW,LinX1). % delete_factor(Ord,Lin,Res,Coeff) % % Linear expression Res is the result of the deletion of the term % Var*Coeff where Var has ordering Ord from linear expression Lin delete_factor(OrdV,Lin,Res,Coeff) :- Lin = [I,R|Hom], Res = [I,R|Hdel], delete_factor_hom(OrdV,Hom,Hdel,Coeff). % delete_factor_hom(Ord,Hom,Res,Coeff) % % Homogene part Res is the result of the deletion of the term % Var*Coeff from homogene part Hom delete_factor_hom(VOrd,[Car|Cdr],RCdr,RKoeff) :- Car = l(_*Koeff,Ord), compare(Rel,VOrd,Ord), ( Rel= (=) -> RCdr = Cdr, RKoeff=Koeff ; Rel= (>) -> RCdr = [Car|RCdr1], delete_factor_hom(VOrd,Cdr,RCdr1,RKoeff) ). % nf_coeff_of(Lin,OrdX,Coeff) % % Linear expression Lin contains the term l(X*Coeff,OrdX) nf_coeff_of([_,_|Hom],VOrd,Coeff) :- nf_coeff_hom(Hom,VOrd,Coeff). % nf_coeff_hom(Lin,OrdX,Coeff) % % Linear expression Lin contains the term l(X*Coeff,OrdX) where the % order attribute of X = OrdX nf_coeff_hom([l(_*K,OVar)|Vs],OVid,Coeff) :- compare(Rel,OVid,OVar), ( Rel = (=) -> Coeff = K ; Rel = (>) -> nf_coeff_hom(Vs,OVid,Coeff) ). % nf_rhs_x(Lin,OrdX,Rhs,K) % % Rhs = R + I where Lin = [I,R|Hom] and l(X*K,OrdX) is a term of Hom nf_rhs_x(Lin,OrdX,Rhs,K) :- Lin = [I,R|Tail], nf_coeff_hom(Tail,OrdX,K), Rhs is R+I. % late because X may not occur in H % isolate(OrdN,Lin,Lin1) % % Linear expression Lin1 is the result of the transformation of linear expression % Lin = 0 which contains the term l(New*K,OrdN) into an equivalent expression Lin1 = New. isolate(OrdN,Lin,Lin1) :- delete_factor(OrdN,Lin,Lin0,Coeff), K is -1 rdiv Coeff, mult_linear_factor(Lin0,K,Lin1). % indep(Lin,OrdX) % % succeeds if Lin = [0,_|[l(X*1,OrdX)]] indep(Lin,OrdX) :- Lin = [I,_|[l(_*K,OrdY)]], OrdX == OrdY, K =:= 1, I =:= 0. % nf2sum(Lin,Sofar,Term) % % Transforms a linear expression into a sum % (e.g. the expression [5,_,[l(X*2,OrdX),l(Y*-1,OrdY)]] gets transformed into 5 + 2*X - Y) nf2sum([],I,I). nf2sum([X|Xs],I,Sum) :- ( I =:= 0 -> X = l(Var*K,_), ( K =:= 1 -> hom2sum(Xs,Var,Sum) ; K =:= -1 -> hom2sum(Xs,-Var,Sum) ; hom2sum(Xs,K*Var,Sum) ) ; hom2sum([X|Xs],I,Sum) ). % hom2sum(Hom,Sofar,Term) % % Transforms a linear expression into a sum % this predicate handles all but the first term % (the first term does not need a concatenation symbol + or -) % see also nf2sum/3 hom2sum([],Term,Term). hom2sum([l(Var*K,_)|Cs],Sofar,Term) :- ( K =:= 1 -> Next = Sofar + Var ; K =:= -1 -> Next = Sofar - Var ; K < 0 -> Ka is -K, Next = Sofar - Ka*Var ; Next = Sofar + K*Var ), hom2sum(Cs,Next,Term).