/************************************************************************* * * * YAP Prolog * * * * Yap Prolog was developed at NCCUP - Universidade do Porto * * * * Copyright L.Damas, V.S.Costa and Universidade do Porto 1985-1997 * * * ************************************************************************** * * * File: regexp.yap * * Last rev: 5/15/2000 * * mods: * * comments: AVL trees in YAP (from code by M. van Emden, P. Vasey) * * * *************************************************************************/ /** * @file avl.yap * @author VITOR SANTOS COSTA <vsc@VITORs-MBP.lan> * @date Tue Nov 17 00:59:28 2015 * * @brief Support for constructing AVL trees * * */ :- module(avl, [ avl_new/1, avl_insert/4, avl_lookup/3 ]). /** * @defgroup avl AVL Trees * @ingroup library @{ Supports constructing AVL trees, available through the directive: ~~~~~~~ :- use_module(library(avl)). ~~~~~~~ It includes the following predicates: - avl_insert/4 - avl_lookup/3 - avl_new/1 AVL trees are balanced search binary trees. They are named after their inventors, Adelson-Velskii and Landis, and they were the first dynamically balanced trees to be proposed. The YAP AVL tree manipulation predicates library uses code originally written by Martin van Emdem and published in the Logic Programming Newsletter, Autumn 1981. A bug in this code was fixed by Philip Vasey, in the Logic Programming Newsletter, Summer 1982. The library currently only includes routines to insert and lookup elements in the tree. Please try red-black trees if you need deletion. */ /** @pred avl_new(+ _T_) Create a new tree. */ avl_new([]). /** @pred avl_insert(+ _Key_,? _Value_,+ _T0_,- _TF_) Add an element with key _Key_ and _Value_ to the AVL tree _T0_ creating a new AVL tree _TF_. Duplicated elements are allowed. */ avl_insert(Key, Value, T0, TF) :- insert(T0, Key, Value, TF, _). insert([], Key, Value, avl([],Key,Value,-,[]), yes). insert(avl(L,Root,RVal,Bl,R), E, Value, NewTree, WhatHasChanged) :- E @< Root, !, insert(L, E, Value, NewL, LeftHasChanged), adjust(avl(NewL,Root,RVal,Bl,R), LeftHasChanged, left, NewTree, WhatHasChanged). insert(avl(L,Root,RVal,Bl,R), E, Val, NewTree, WhatHasChanged) :- % E @>= Root, currently we allow duplicated values, although % lookup will only fetch the first. insert(R, E, Val,NewR, RightHasChanged), adjust(avl(L,Root,RVal,Bl,NewR), RightHasChanged, right, NewTree, WhatHasChanged). adjust(Oldtree, no, _, Oldtree, no). adjust(avl(L,Root,RVal,Bl,R), yes, Lor, NewTree, WhatHasChanged) :- table(Bl, Lor, Bl1, WhatHasChanged, ToBeRebalanced), rebalance(avl(L, Root, RVal, Bl, R), Bl1, ToBeRebalanced, NewTree). % balance where balance whole tree to be % before inserted after increased rebalanced table(- , left , < , yes , no ). table(- , right , > , yes , no ). table(< , left , - , no , yes ). table(< , right , - , no , no ). table(> , left , - , no , no ). table(> , right , - , no , yes ). rebalance(avl(Lst, Root, RVal, _Bl, Rst), Bl1, no, avl(Lst, Root, RVal, Bl1,Rst)). rebalance(OldTree, _, yes, NewTree) :- avl_geq(OldTree,NewTree). avl_geq(avl(Alpha,A,VA,>,avl(Beta,B,VB,>,Gamma)), avl(avl(Alpha,A,VA,-,Beta),B,VB,-,Gamma)). avl_geq(avl(avl(Alpha,A,VA,<,Beta),B,VB,<,Gamma), avl(Alpha,A,VA,-,avl(Beta,B,VB,-,Gamma))). avl_geq(avl(Alpha,A,VA,>,avl(avl(Beta,X,VX,Bl1,Gamma),B,VB,<,Delta)), avl(avl(Alpha,A,VA,Bl2,Beta),X,VX,-,avl(Gamma,B,VB,Bl3,Delta))) :- table2(Bl1,Bl2,Bl3). avl_geq(avl(avl(Alpha,A,VA,>,avl(Beta,X,VX,Bl1,Gamma)),B,VB,<,Delta), avl(avl(Alpha,A,VA,Bl2,Beta),X,VX,-,avl(Gamma,B,VB,Bl3,Delta))) :- table2(Bl1,Bl2,Bl3). table2(< ,- ,> ). table2(> ,< ,- ). table2(- ,- ,- ). /** @pred avl_lookup(+ _Key_,- _Value_,+ _T_) Lookup an element with key _Key_ in the AVL tree _T_, returning the value _Value_. */ avl_lookup(Key, Value, avl(L,Key0,KVal,_,R)) :- compare(Cmp, Key, Key0), avl_lookup(Cmp, Value, L, R, Key, KVal). avl_lookup(=, Value, _, _, _, Value). avl_lookup(<, Value, L, _, Key, _) :- avl_lookup(Key, Value, L). avl_lookup(>, Value, _, R, Key, _) :- avl_lookup(Key, Value, R). /** @} */