% % generative learning in MLNs: % % maximise SUM log Pw(Xi=xi|mb(Xi)) % % or sum N(X) - p(0|mb)n0 - P(1|mb)n1 % % note that Pw(X|MB) = P(0|MB) || P(1|MB) % % :- module(learn_mlns_generative, [learn_mln_generative/0, portray_mln/0]). :- use_module(library(lists)). :- use_module(library(tries)). :- use_module(library(maplist)). :- use_module(library(nb)). :- use_module(library(matrix)). :- reexport(library(mlns)). :- reexport(library(pfl)). :- use_module(library(lbfgs)). :- yap_flag(tabling_mode,local). :- dynamic diff/4, lit/1, i/2. prior_means(_, 0.0). prior_dev(_, 1.0). learn_mln_generative :- compile, optimize. set_weights :- retract( mln:mln_w(Id, _) ), optimizer_get_x( Id, W), %writeln(weight:W), assert( mln:mln_w(Id, W) ), fail. set_weights. adjust_lprior(Lik0, Lik) :- Lik0 = Lik, !. adjust_lprior(Lik0, Lik) :- findall(I-WI, mln_w(I,WI), WIs), foldl(add_lprior, WIs, Lik0, Lik). add_lprior(Id-WI, Lik0, Lik) :- prior_means(Id, PM), prior_dev(Id, PV), Lik is Lik0 + ((WI-PM)*(WI-PM))/(2*PV*PV). likelihood(Lik) :- S = s(0.0), % nb_create_accumulator(0.0, Acc), ( recorded(i, [Ref|N], _), peval(Ref, LogP), %writeln(N*P), S = s(V), V1 is V+N*LogP, nb_setarg(1, S, V1), % nb_add_to_accumulator( Acc, LogP), fail ; % nb_accumulator_value(Acc, Lik) S = s(Lik0), %writeln(lik:Lik0), adjust_lprior(Lik0, Lik1), Lik is -Lik1 ). derive :- nb_getval(i2, Mat), nb_getval(d2, MatD), matrix_set_all(MatD, 0.0), recorded(i, [Ref|NI], _), trie_get_entry(Ref, e(_, Ds, Ps)), member(n(Id,Occs,DN0,DN1), Ds), matrix_get(Mat, [Id], N), matrix_get(MatD, [Id], V), peval(Ps, P0, P1), X is Occs*(N-P0*(N+DN0)-P1*(N+DN1)), %writeln(X is NI*(-P0*(DN0)-P1*(DN1))), V1 is V-NI*X, matrix_set(MatD, [Id], V1), fail. derive :- nb_getval(d2, MatD), mln(Ms), N1 is Ms-1, between(0, N1, Id), matrix_get(MatD, [Id], Sum), %writeln(d:Id:Sum), adjust_prior(Sum, Id, NSum), optimizer_set_g(Id, NSum ), fail. derive. adjust_prior(Lik0, _, Lik) :- Lik0 = Lik, !. adjust_prior(Sum, Id, NSum) :- mln_w(Id, Wi), prior_means(Id, PM), prior_dev(Id, PV), NSum is Sum+(Wi-PM)/(PV*PV). :- dynamic old_fx/1. old_fx(+inf). % This is the call back function which is invoked to report the progress % if the last argument is set to anything else than 0, the optimizer will % stop right now user:progress(FX,X_Norm,G_Norm,Step,_N,Iteration,Ls, Out) :- ( Iteration mod 100 =:= 0 -> atomic_concat([tmp_,Iteration,'.pfl'], File), open( File, write, S), portray_mln(S), close(S) ; true ), retract(old_fx(FX0)), ( Delta is FX-FX0, abs(Delta/FX) < 0.00001 -> Out = 1 ; Out = 0), optimizer_get_x(0,X0), assert(old_fx(FX)), format('/* ~d: w[0]=~10f f(X)=~4f |X|=~4f |X\'|=~4f Step=~4f Ls=~4f */~n',[Iteration,X0,FX,X_Norm,G_Norm,Step,Ls]). % This is the call back function which evaluates F and the gradient of F user:evaluate(FX,_N,_Step) :- set_weights, likelihood(FX), derive. init_vars(Ev, Pr) :- mln(N), N1 is N-1, format('/* We start the search for ~d weights at weight[_]=0 */~2n',[N]), optimizer_initialize(N, Ev, Pr), between(0, N1, I), optimizer_set_x(I,0.0), fail. init_vars(_, _). output_stat(BestF, Status) :- ( portray_mln, fail ; Lik is -BestF, format('/* Final likelihood=~f */~n/* LBFGS Status=~w */~n',[Lik,Status]) ). optimize :- init_vars(evaluate, progress), optimizer_run(BestF,Status), output_stat(BestF, Status), optimizer_finalize, format('~2nOptimization done~n',[]). compile :- init_compiler, compile_literals, fail. /* compile :- recorded(i, [Ref|N], _), trie_get_entry(Ref, E), writeln(N:E), fail. */ compile. init_compiler :- mln(HowMany), D is HowMany+1, matrix_new(ints, [D], M), matrix_new(floats, [D], MD), nb_setval(i2,M), nb_setval(d2,MD), collect_literals, init_trie, retractall(p_l(_,_,_,_)), retractall(lmln:p(_,_,_,_)), fail. init_compiler. init_trie :- catch(nb_getval( mln_trie, Trie ), _, fail), trie_close( Trie ), eraseall( i ), fail. init_trie :- trie_open( Trie ), nb_setval( mln_trie , Trie ). collect_literals :- mln(ParFactor, _Type, _Els, _G, _DConstraints), factor(markov, ParFactor, Ks, _, _Phi, _Constraints), maplist(add_lit, Ks), fail. collect_literals. add_lit(K) :- functor(K, N, A), functor(K0, N, A), ( lit(K0) -> true ; assert(lit(K0)) ). compile_literals :- lit(K), functor(K, N, A), statistics(runtime,_), format(user_error, '/** grounding ~a/~d.~45+**/~n',[N,A]), % evidence(K, 1), ( ground_lit(K), %writeln(k:K), compile_pw(K) ; statistics(runtime,[_,T]), format(user_error, '/** took ~d msec.~45+**/~n',[T]), fail ). ground_lit(K) :- functor(K, _, Ar), ground_lit(0, Ar, K). ground_lit(Ar, Ar, _K). ground_lit(I0, Ar, K) :- I is I0+1, (mln):mln_domain(I, K, G, _A), user:G, ground_lit(I, Ar, K). compile_pw(VId) :- (evidence(VId, 1) -> P = 1 ; P = 0), compile(VId, P). compile(VId, Val) :- findall(p(FId,W,P0,P1,I0,I1), find_prob(VId, Val, FId, W, P0, P1, I0, I1), Fs), ( Fs == [] -> fail ; Fs = [p(FId,W,1,1,I0,I1)] -> fail ; sort(Fs, FsS), merge_lits(FsS, FsN, Ws), nb_getval( mln_trie, Trie ), store( Trie, e(Val, Ws, FsN) ) ). store( T , E ) :- trie_check_entry(T, E, R), !, recorded(i, [R|I], Ref), erase(Ref), I1 is I+1, recorda(i, [R|I1], _). store( T , E ) :- trie_put_entry(T, E, R), !, recorda(i, [R|1], _). merge_lits([], [], []). merge_lits([N*p(F,W,A1,A2,I1,I2), p(F,W,A3,A4,I3,I4)|FsS], FsM, Is) :- A1 == A3, A2 == A4, I1 == I3, I2 == I4, !, N1 is N+1, merge_lits([N1*p(F,W,A3,A4,I3,I4)|FsS], FsM, Is). merge_lits([p(F,W,A1,A2,I1,I2), p(F,W,A3,A4,I3,I4)|FsS], FsM, Is) :- A1 == A3, A2 == A4, I1 == I3, I2 == I4, !, merge_lits([2*p(F,W,A3,A4,I3,I4)|FsS], FsM, Is). merge_lits([p(F,W,A1,A2,I1,I2) | FsS], [p(F,1,W,A1,A2)|FsM], [n(F,1,I1,I2)|Is]) :- merge_lits(FsS, FsM, Is). merge_lits([N*p(F,W,A1,A2,I1,I2) | FsS], [p(F,N,W,A1,A2)|FsM], [n(F,N,I1,I2)|Is]) :- merge_lits(FsS, FsM, Is). find_prob(VId, E, ParFactor, W, P0, P1, I0, I1) :- mln(ParFactor, _, _Type, _, Constraints), % maplist(call,Constraints), deletei(Constraints, VId, ConstraintsF, Pol), maplist(expand_domain(VId-Pol), ConstraintsF), % all other literals are false ( Pol == (+) -> P0 = 0, P1 = W, (E == 1 -> /* we are making this true */ inc(ParFactor), I0 = -1, I1 = 0 ; /* it is false */ I0 = 0, I1 = 1 ) ; P0 = W, P1 = 0, (E == 1 -> /* we are making this false */ I0 = 1, I1 = 0 ; /* it is true */ inc(ParFactor), I0 = 0, I1 = -1 ) ). expand_domain(VIdPol, true - Lits) :- !, maplist( false_literal(VIdPol), Lits). expand_domain(VIdPol, Dom-Lits) :- call(user:Dom), maplist( true_literal(VIdPol), Lits). % we need to check if we have % L ; L or L ; -L % in this case skip or it is always true, so fail. false_literal(L-(-), L). false_literal(VId-_, L) :- evidence(L, 1), L \= VId. % L is ground true_literal(L-(+), L) :- !. true_literal(VId-_, L) :- L \= VId, \+ evidence(L, 1). deletei([true-Lits|More], K, [true-NLits|More], -) :- force_delete(Lits, K, NLits). deletei([true-Lits|More], K, [true-Lits|NMore], -) :- !, force_delete(More, K, NMore). deletei(More, K, NMore, +) :- deletei(More, K, NMore). deletei([Dom-Lits|More], K, [Dom-NLits|More]) :- force_delete(Lits, K, NLits). deletei([DomLits|More], K, [DomLits|NMore]) :- deletei(More, K, NMore). force_delete([Elem|List], Elem, List). force_delete([Head|List], Elem, [Head|Residue]) :- force_delete(List, Elem, Residue). inc(Id) :- nb_getval(i2, M), matrix_inc(M, [Id]). peval(Ref, P) :- trie_get_entry(Ref, e(Side, _, Ps)), foldl2(p_eval, Ps, 0.0, P0, 0.0, P1), logsum(P0, P1, P01), ( Side == 0 -> P = P0-P01 ; P = P1-P01 ). peval(Ps, P0, P1) :- %writeln(p:Ds:Ps), foldl2(p_eval, Ps, 0.0, AP0, 0.0, AP1), logsum(AP0, AP1, AP01), P0 is exp( AP0 - AP01 ), P1 is 1-P0. p_eval(p(WId, N, W, P0, P1), AP0, A0, AP1, A1) :- mln_w(WId, W), A0 is AP0+N*P0, A1 is AP1+N*P1.