/************************************************************************* * * * YAP Prolog * * * * Yap Prolog was developed at NCCUP - Universidade do Porto * * * * Copyright S. Konstantopoulos and Universidade do Porto 2002 * * * ************************************************************************** * * * File: mpi.c * * Last rev: $Date: 2002-03-12 20:03:55 $ * * mods: * * comments: Interface to an MPI library * * * *************************************************************************/ #ifndef lint static char *rcsid = "$Header: /Users/vitor/Yap/yap-cvsbackup/library/mpi/mpi.c,v 1.6 2002-03-12 20:03:55 stasinos Exp $"; #endif #include "Yap.h" #if HAVE_MPI #include "Yatom.h" #include "yapio.h" /* for AtomEof */ #include "Heap.h" #include #include #include STATIC_PROTO (Int p_mpi_open, (void)); STATIC_PROTO (Int p_mpi_close, (void)); STATIC_PROTO (Int p_mpi_send, (void)); STATIC_PROTO (Int p_mpi_receive, (void)); STATIC_PROTO (Int p_mpi_bcast3, (void)); STATIC_PROTO (Int p_mpi_bcast2, (void)); STATIC_PROTO (Int p_mpi_barrier, (void)); /* * Auxiliary Data and Functions */ static Int rank, numprocs, namelen; static char processor_name[MPI_MAX_PROCESSOR_NAME]; static Int mpi_argc; static char **mpi_argv; /* mini-stream */ #define RECV_BUF_SIZE 4*1024 static size_t bufsize; static char *buf; static int bufptr, bufstrlen; static void expand_buffer( int space ) { #if 1 /* realloc has been SIGSEGV'ing on HP-UX 10.20. do i need to look into arcane allignment issues? */ char *tmp; tmp = malloc( bufsize + space ); if( tmp == NULL ) { Error(SYSTEM_ERROR, TermNil, "out of memory" ); exit_yap( EXIT_FAILURE ); } memcpy( tmp, buf, bufsize ); free( buf ); buf = tmp; #else buf = realloc( buf, bufsize + space ); if( buf == NULL ) { Error(SYSTEM_ERROR, TermNil, "out of memory" ); exit_yap( EXIT_FAILURE ); } #endif bufsize += space; #if 0 printf( "New bufsize: %d\n", bufsize ); #endif } static int mpi_putc(Int stream, Int ch) { if( ch > 0 ) { if( bufptr >= bufsize ) expand_buffer( RECV_BUF_SIZE ); buf[bufptr++] = ch; } return ch; } static Int mpi_getc(Int stream) { return buf[bufptr++]; } static Int mpi_eob(void) { return (bufptrTok != Ord (eot_tok)) { /* we got the end of file from an abort */ if (ErrorMessage == "Abort") { TR = old_TR; return TermNil; } /* we need to force the next reading to also give end of file.*/ buf[bufptr] = EOF; ErrorMessage = "[ Error: end of file found before end of term ]"; } else { /* restore TR */ TR = old_TR; if( unify_constant (ARG2, MkAtomTerm (AtomEof)) ) { /* this might be a reasonable place to reach, but i don't know when */ puts("1XXXXXXXXXXXXXXXXXX"); return TermNil ; } else { puts("2XXXXXXXXXXXXXXXXXX"); return TermNil; } } } repeat_cycle: if (ErrorMessage || (t = Parse ()) == 0) { if (ErrorMessage && (strcmp(ErrorMessage,"Stack Overflow") == 0)) { /* ignore term we just built */ H = old_H; if (growstack_in_parser(&old_TR, &tokstart, &VarTable)) { tokptr = toktide = tokstart; ErrorMessage = NULL; goto repeat_cycle; } } TR = old_TR; if (ErrorMessage) YP_fprintf (YP_stderr, "%s", ErrorMessage); else syntax_error (tokstart); YP_fprintf (YP_stderr, " ]\n"); Error(SYSTEM_ERROR,TermNil,NULL); return TermNil; } else { /* parsing succeeded */ break; } } while (TRUE) { CELL *old_H = H; if (setjmp(IOBotch) == 0) { v = VarNames(VarTable, TermNil); TR = old_TR; break; } else { /* don't need to recheck tokens */ tokstart = NULL; /* restart global */ H = old_H; growstack_in_parser(&old_TR, &tokstart, &VarTable); old_H = H; } } return t; } /* * C Predicates */ static Int p_mpi_open(void) /* mpi_open(?rank, ?num_procs, ?proc_name) */ { Term t_rank = Deref(ARG1), t_numprocs = Deref(ARG2), t_procname = Deref(ARG3); Int retv; MPI_Init( &mpi_argc, &mpi_argv ); MPI_Comm_size( MPI_COMM_WORLD, &numprocs ); MPI_Comm_rank( MPI_COMM_WORLD, &rank ); MPI_Get_processor_name( processor_name, &namelen ); retv = unify(t_rank, MkIntTerm(rank)); retv = retv && unify(t_numprocs, MkIntTerm(numprocs)); retv = retv && unify(t_procname, MkAtomTerm(LookupAtom(processor_name))); return retv; } static Int /* mpi_close */ p_mpi_close() { MPI_Finalize(); return TRUE; } static Int p_mpi_send() /* mpi_send(+data, +destination, +tag) */ { Term t_data = Deref(ARG1), t_dest = Deref(ARG2), t_tag = Deref(ARG3); int tag, dest, retv; /* The first argument (data) must be bound */ if (IsVarTerm(t_data)) { Error(INSTANTIATION_ERROR, t_data, "mpi_send"); return (FALSE); } /* The second and third args must be bount to integers */ if (IsVarTerm(t_dest)) { Error(INSTANTIATION_ERROR, t_dest, "mpi_send"); return (FALSE); } else if( !IsIntegerTerm(t_dest) ) { Error(TYPE_ERROR_INTEGER, t_dest, "mpi_send"); return (FALSE); } else { dest = IntOfTerm( t_dest ); } if (IsVarTerm(t_tag)) { Error(INSTANTIATION_ERROR, t_tag, "mpi_send"); return (FALSE); } else if( !IsIntegerTerm(t_tag) ) { Error(TYPE_ERROR_INTEGER, t_tag, "mpi_send"); return (FALSE); } else { tag = IntOfTerm( t_tag ); } bufptr = 0; /* Turn the term into its ASCII representation */ plwrite( t_data, mpi_putc, 5 ); bufstrlen = bufptr; bufptr = 0; while( bufstrlen-bufptr > 0 ) { int n; n = (bufstrlen-bufptr < RECV_BUF_SIZE)? (bufstrlen-bufptr) : RECV_BUF_SIZE; /* Careful: the buf is not NULL-terminated and does not have the trailing ". " required by the parser */ retv = MPI_Send( &buf[bufptr], n, MPI_CHAR, dest, tag, MPI_COMM_WORLD ); if( retv != 0 ) return FALSE; bufptr += n; } return TRUE; } static Int p_mpi_receive() /* mpi_receive(-data, ?orig, ?tag) */ { Term t_data = Deref(ARG1), t_orig = Deref(ARG2), t_tag = Deref(ARG3); int tag, orig, retv; MPI_Status status; /* The first argument (data) must be unbound */ if(!IsVarTerm(t_data)) { Error(INSTANTIATION_ERROR, t_data, "mpi_receive"); return FALSE; } /* The second argument (source) must be bound to an integer (the rank of the source) or left unbound (i.e. any source is OK) */ if (IsVarTerm(t_orig)) { orig = MPI_ANY_SOURCE; } else if( !IsIntegerTerm(t_orig) ) { Error(TYPE_ERROR_INTEGER, t_orig, "mpi_receive"); return (FALSE); } else { orig = IntOfTerm( t_orig ); } /* The third argument must be bound to an integer (the tag) or left unbound (i.e. any tag is OK) */ if (IsVarTerm(t_tag)) { tag = MPI_ANY_TAG; } else if( !IsIntegerTerm(t_tag) ) { Error(TYPE_ERROR_INTEGER, t_tag, "mpi_receive"); return (FALSE); } else tag = IntOfTerm( t_tag ); bufptr = 0; while(TRUE) { int n; /* Receive the message as a C string */ retv = MPI_Recv( &buf[bufptr], RECV_BUF_SIZE, MPI_CHAR, orig, tag, MPI_COMM_WORLD, &status ); if( retv != 0 ) return FALSE; MPI_Get_count( &status, MPI_CHAR, &n ); bufptr += n; if( n == RECV_BUF_SIZE ) { /* if not enough space, expand buffer */ if( bufsize - bufptr <= RECV_BUF_SIZE ) expand_buffer(RECV_BUF_SIZE); } else { /* we have gotten everything */ break; } } if( bufsize - bufptr <= 3 ) expand_buffer(3); /* NULL-terminate the string and add the ". " termination required by the parser. */ buf[bufptr] = 0; strcat( buf, ". " ); bufstrlen = bufptr + 2; bufptr = 0; if( orig == MPI_ANY_SOURCE ) unify(t_orig, MkIntTerm(status.MPI_SOURCE)); if( tag == MPI_ANY_TAG ) unify(t_tag, MkIntTerm(status.MPI_TAG)); /* parse received string into a Prolog term */ return unify(ARG1, mpi_parse()); } static Int p_mpi_bcast3() /* mpi_bcast( ?data, +root, +max_size ) */ { Term t_data = Deref(ARG1), t_root = Deref(ARG2), t_max_size = Deref(ARG3); int root, retv, max_size; /* The second argument must be bound to an integer (the rank of root processor */ if (IsVarTerm(t_root)) { Error(INSTANTIATION_ERROR, t_root, "mpi_bcast"); return FALSE; } root = IntOfTerm( t_root ); /* If this is the root processor, then the first argument must be bound to the term to be sent. */ if( root == rank ) { if( IsVarTerm(t_data) ) { Error(INSTANTIATION_ERROR, t_data, "mpi_bcast"); return FALSE; } bufptr = 0; /* Turn the term into its ASCII representation */ plwrite( t_data, mpi_putc, 5 ); /* NULL-terminate the string and add the ". " termination required by the parser. */ buf[bufptr] = 0; strcat( buf, ". " ); bufstrlen = bufptr + 2; } /* The third argument must be bound to an integer (the maximum length of the broadcast term's ASCII representation */ if (IsVarTerm(t_max_size)) { Error(INSTANTIATION_ERROR, t_max_size, "mpi_bcast"); return FALSE; } /* allow for the ". " bit and the NULL at the end */ max_size = IntOfTerm( t_max_size ) + 3; #if 0 if( (rank == root) && (max_size < bufstrlen) ) /* issue a warning? explode? bcast s'thing unparsable? */ #endif /* adjust the buffer size, if necessary */ if( max_size > bufsize ) { printf("expanding by %d\n", max_size-bufsize); expand_buffer( max_size - bufsize ); } retv = MPI_Bcast( buf, max_size, MPI_CHAR, root, MPI_COMM_WORLD ); if( retv != 0 ) return FALSE; if( root == rank ) return TRUE; else { /* ARG1 must be unbound so that it can receive data */ if( !IsVarTerm(t_data) ) { Error(INSTANTIATION_ERROR, t_root, "mpi_bcast"); return FALSE; } bufstrlen = strlen(buf); bufptr = 0; /* parse received string into a Prolog term */ return unify(mpi_parse(), ARG1); } } /* This is the same as above, but for dynamic data size. It is implemented as two broadcasts, the first being the size and the second the actual data. */ static Int p_mpi_bcast2() /* mpi_bcast( ?data, +root ) */ { Term t_data = Deref(ARG1), t_root = Deref(ARG2); int root, retv; /* The second argument must be bound to an integer (the rank of root processor */ if (IsVarTerm(t_root)) { Error(INSTANTIATION_ERROR, t_root, "mpi_bcast"); return FALSE; } root = IntOfTerm( t_root ); /* If this is the root processor, then the first argument must be bound to the term to be sent. */ if( root == rank ) { if( IsVarTerm(t_data) ) { Error(INSTANTIATION_ERROR, t_data, "mpi_bcast"); return FALSE; } bufptr = 0; /* Turn the term into its ASCII representation */ plwrite( t_data, mpi_putc, 5 ); /* NULL-terminate the string and add the ". " termination required by the parser. */ buf[bufptr] = 0; strcat( buf, ". " ); bufstrlen = bufptr + 2; } /* Broadcast the data size */ retv = MPI_Bcast( &bufstrlen, sizeof bufstrlen, MPI_INT, root, MPI_COMM_WORLD ); if( retv != 0 ) return FALSE; #if 1 printf("I am %d and I think the data is %d bytes long!\n", rank, bufstrlen); #endif /* adjust the buffer size, if necessary */ if( bufstrlen-bufsize > 0 ) { printf("expanding by %d\n", bufstrlen-bufsize); expand_buffer( bufstrlen - bufsize ); } /* Broadcast the data */ retv = MPI_Bcast( buf, bufstrlen, MPI_CHAR, root, MPI_COMM_WORLD ); if( retv != 0 ) return FALSE; if( root == rank ) return TRUE; else { /* ARG1 must be unbound so that it can receive data */ if( !IsVarTerm(t_data) ) { Error(INSTANTIATION_ERROR, t_root, "mpi_bcast"); return FALSE; } bufstrlen = strlen(buf); bufptr = 0; /* parse received string into a Prolog term */ return unify(mpi_parse(), ARG1); } } static Int p_mpi_barrier() /* mpi_barrier/0 */ { int retv; retv = MPI_Barrier( MPI_COMM_WORLD ); return (retv == 0); } /* * Init */ void InitMPI(void) { int i,j; mpi_argv = malloc( yap_argc * sizeof(char *) ); mpi_argv[0] = strdup( yap_args[0] ); bufsize = RECV_BUF_SIZE; buf = malloc(bufsize * sizeof(char)); for( i=1; i