/*  $Id$

    Part of SWI-Prolog

    Author:        Jan Wielemaker
    E-mail:        wielemak@science.uva.nl
    WWW:           http://www.swi-prolog.org
    Copyright (C): 1985-2007, University of Amsterdam

    This program is free software; you can redistribute it and/or
    modify it under the terms of the GNU General Public License
    as published by the Free Software Foundation; either version 2
    of the License, or (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public
    License along with this library; if not, write to the Free Software
    Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA

    As a special exception, if you link this library with other files,
    compiled with a Free Software compiler, to produce an executable, this
    library does not by itself cause the resulting executable to be covered
    by the GNU General Public License. This exception does not however
    invalidate any other reasons why the executable file might be covered by
    the GNU General Public License.
*/

:- module(json_convert,
	  [ prolog_to_json/2,		% :Term, -JSON object
	    json_to_prolog/2,		% +JSON, :Term
	    (json_object)/1,		% +Definition
	    op(1150, fx, (json_object))
	  ]).
:- use_module(library(error)).
:- use_module(json).

:- meta_predicate
	prolog_to_json(:, -),
	json_to_prolog(+, :).

/** <module> Convert between JSON terms and Prolog application terms

The idea behind this module is to  provide a flexible high-level mapping
between Prolog terms as you would like   to see them in your application
and the standard representation of a JSON   object as a Prolog term. For
example,  an  X-Y  point  may  be  represented  in  JSON  as  =|{"x":25,
"y":50}|=. Represented in Prolog this   becomes json([x=25,y=50]), but
this is a pretty non-natural  representation   from  the Prolog point of
view.

This module allows for defining records (just like library(record)) that
provide   transparent   two-way   transformation     between   the   two
representations.

==
:- json_object
	point(x:integer, y:integer).
==

This declaration causes prolog_to_json/2 to translate the native Prolog
representation into a JSON Term:

==
?- prolog_to_json(point(25,50), X).

X = json([x=25, y=50])
==

A json_object/1 declaration can define multiple   objects separated by a
comma (,), similar to the dynamic/1 directive. Optionally, a declaration
can  be  qualified  using   a    module.   The   converstion  predicates
prolog_to_json/2 and json_to_prolog/2 first try  a conversion associated
with the calling  module.  If  not   successful,  they  try  conversions
associated with the module =user=.

JSON objects have no _type_. This can be solved by adding an extra field
to the JSON object, e.g. =|{"type":"point", "x":25, "y":50}|=. As Prolog
records are typed by their functor we need some notation to handle this
gracefully. This is achieved by adding +Fields to the declaration. I.e.

==
:- json_object
	point(x:integer, y:integer) + [type=point].
==

Using this declaration, the conversion becomes:

==
?- prolog_to_json(point(25,50), X).

X = json([x=25, y=50, type=point])
==

The predicate json_to_prolog/2 is often  used after http_read_json/2 and
prolog_to_json/2 before reply_json/1. For now  we consider them seperate
predicates because the transformation may be   too  general, too slow or
not needed for dedicated  applications.  Using   a  seperate  step  also
simplifies debugging this rather complicated process.

@tbd	Ignore extra fields.  Using a partial list of _extra_?
@tbd	Consider a sensible default for handling JSON =null=.  Conversion
	to Prolog could translate @null into a variable if the desired type
	is not =any=.  Conversion to JSON could map variables to =null=,
	though this may be unsafe.  If the Prolog term is known to be
	non-ground and JSON @null is a sensible mapping, we can also use
	this simple snipit to deal with that fact.

	==
		term_variables(Term, Vars),
		maplist(=(@null), Vars).
	==
*/

%%	current_json_object(Term, Module, Fields)
%
%	Multifile   predicate   computed   from     the    json_object/1
%	declarations.  Term is the most general Prolog term representing
%	the object.  Module is the module in which the object is defined
%	and Fields is a list of f(Name, Type, Var), sorted by Name.  Var
%	is the corresponding variable in Term.

:- multifile
	json_object_to_pairs/3,		% Term, Module, Pairs
	current_json_object/3.		% Term, Module, Fields

%%	json_object(+Declaration)
%
%	Declare a JSON object.  The declaration takes the same format as
%	using in record/1 from library(record).  E.g.
%
%	==
%	?- json_object
%		point(x:int, y:int, z:int=0).
%	==

json_object(Declaration) :-
	throw(error(context_error(nodirective, json_object(Declaration)), _)).


%%	compile_json_objects(+Spec, -Clauses) is det.
%
%	Compiles a :- json_object directive into Clauses. Clauses are of
%	the form:
%
%	==
%	json_object_to_pairs(Term, Module, Pairs) :-
%		<type-checks on Term>,
%		<make Pairs from Term>.
%	==

compile_json_objects(Spec, Clauses) :-
	phrase(compile_objects(Spec), Clauses).

compile_objects(A) -->
	{ var(A), !,
	  instantiation_error(A)
	}.
compile_objects((A,B)) --> !,
	compile_objects(A),
	compile_objects(B).
compile_objects(Term) -->
	compile_object(Term).

compile_object(ObjectDef) -->
	{ prolog_load_context(module, CM),
	  strip_module(CM:ObjectDef, M, Def),
	  extra_defs(Def, Term, ExtraFields),
	  Term =.. [Constructor|Args],
	  defaults(Args, _Defs, TypedArgs),
	  types(TypedArgs, Names, Types)
	},
	record_to_json_clause(Constructor, M, Types, Names, ExtraFields),
	current_clause(Constructor, M, Types, Names, ExtraFields),
	[ (:- json_convert:clear_cache) ].

extra_defs(Term+Extra0, Term, Extra) :- !,
	must_be(list, Extra0),
	maplist(canonical_pair, Extra0, Extra).
extra_defs(Term,       Term, []).


canonical_pair(Var, _) :-
	var(Var), !,
	instantiation_error(Var).
canonical_pair(Name=Value, Name=Value) :- !,
	must_be(atom, Name).
canonical_pair(Name-Value, Name=Value) :- !,
	must_be(atom, Name).
canonical_pair(NameValue, Name=Value) :-
	NameValue =.. [Name,Value], !.
canonical_pair(Pair, _) :-
	type_error(pair, Pair).


%%	record_to_json_clause(+Constructor, +Module, +Type, +Names)
%
%	Create a clause translating the record   definition into a pairs
%	representation.

record_to_json_clause(Constructor, Module, Types, Names, Extra) -->
	{ type_checks(Types, VarsHead, VarsBody, Body0, Module),
	  clean_body(Body0, Body),
	  Term =.. [Constructor|VarsHead],
	  make_pairs(Names, VarsBody, Pairs, Extra),
	  Head =.. [json_object_to_pairs,Term,Module,json(Pairs)]
	},
	[ (json_convert:(Head :- Body)) ].


%%	type_checks(+Types, -VarsIn, -VarsOut, -Goal, +Module) is det.
%
%	Goal is a body-term  that  validates   Vars  satisfy  Types.  In
%	addition to the types accepted by   must_be/2,  it accepts =any=
%	and Name/Arity. The latter demands  a   json_object  term of the
%	given Name and Arity.
%
%	@tbd	Compile list(Type) specification.  Currently Type is
%		handled like =any=

type_checks([], [], [], true, _).
type_checks([Type|T], [IV|IVars], [OV|OVars], (Goal, Body), M) :- !,
	type_check(Type, IV, OV, M, Goal),
	type_checks(T, IVars, OVars, Body, M).

type_check(any, IV, OV, M, prolog_to_json(IV, OV, M)) :- !.
type_check(Name/Arity, IV, OV, M, prolog_to_json(IV, OV, M)) :- !,
	functor(IV, Name, Arity).
type_check(boolean, IV, OV, _, prolog_bool_to_json(IV, OV)) :- !.
type_check(list, IV, OV, M, prolog_list_to_json(IV, OV, M)) :- !.
type_check(list(any), IV, OV, M, prolog_list_to_json(IV, OV, M)) :- !.
type_check(list(_Type), IV, OV, M, prolog_list_to_json(IV, OV, M)) :- !.
type_check(Type, V, V, _, Goal) :-
	type_goal(Type, V, Goal).


%%	prolog_bool_to_json(+Prolog, -JSON) is semidet.
%
%	JSON is the JSON boolean for Prolog. It is a flexible the Prolog
%	notation for thruth-value, accepting one of  =true=, =on= or =1=
%	for @true and one of =false=, =fail=, =off= or =0= for @false.
%
%	@error	instantiation_error if Prolog is unbound.

prolog_bool_to_json(Var, _) :-
	var(Var),
	instantiation_error(Var).
prolog_bool_to_json(true, @(true)).
prolog_bool_to_json(false, @(false)).
prolog_bool_to_json(fail, @(false)).
prolog_bool_to_json(0, @(false)).
prolog_bool_to_json(on, @(true)).
prolog_bool_to_json(off, @(false)).
prolog_bool_to_json(1, @(false)).
prolog_bool_to_json(@(True), True) :-
	prolog_bool_to_json(True, True).


%%	type_goal(+Type, +Var, -BodyTerm) is det.
%
%	Inline type checking calls.

type_goal(Type, Var, Body) :-
	clause(error:has_type(Type, Var), Body),
	primitive(Body), !.
type_goal(Type, Var, is_of_type(Type, Var)).

primitive((A,B)) :- !,
	primitive(A),
	primitive(B).
primitive((A;B)) :- !,
	primitive(A),
	primitive(B).
primitive((A->B)) :- !,
	primitive(A),
	primitive(B).
primitive(G) :-
	predicate_property(system:G, built_in).


%%	clean_body(+BodyIn, -BodyOut) is det.
%
%	Cleanup a body goal. Eliminate   redundant =true= statements and
%	perform partial evaluation on some  commonly constructs that are
%	generated from the has_type/2 clauses in library(error).

clean_body(Var, Var) :-
	var(Var), !.
clean_body((A0,B0), G) :- !,
	clean_body(A0, A),
	clean_body(B0, B),
	conj(A, B, G).
clean_body(ground(X), true) :-		% Generated from checking extra fields.
	ground(X), !.
clean_body(memberchk(V, Values), true) :- % generated from oneof(List)
	ground(V), ground(Values),
	memberchk(V, Values), !.
clean_body((integer(Low) -> If ; Then), Goal) :- % generated from between(Low,High)
	number(Low), !,
	(   integer(Low)
	->  Goal = If
	;   Goal = Then
	).
clean_body(A, A).

conj(T, A, A) :- T == true, !.
conj(A, T, A) :- T == true, !.
conj(A, B, (A,B)).

make_pairs([], [], L, L).
make_pairs([N|TN], [V|TV], [N=V|T], Tail) :-
	make_pairs(TN, TV, T, Tail).

%%	current_clause(+Constructor, +Module, +Type, +Names)
%
%	Create the clause current_json_object/3.

current_clause(Constructor, Module, Types, Names, Extra) -->
	{ length(Types, Arity),
	  functor(Term, Constructor, Arity),
	  extra_fields(Extra, EF),
	  Term =.. [_|Vars],
	  mk_fields(Names, Types, Vars, Fields0, EF),
	  sort(Fields0, Fields),
	  Head =.. [current_json_object, Term, Module, Fields]
	},
	[ json_convert:Head ].

extra_fields([], []).
extra_fields([Name=Value|T0], [f(Name, oneof([Value]), Value)|T]) :-
	extra_fields(T0, T).

mk_fields([], [], [], Fields, Fields).
mk_fields([Name|TN], [Type|TT], [Var|VT], [f(Name, Type, Var)|T], Tail) :-
	mk_fields(TN, TT, VT, T, Tail).


/* The code below is copied from library(record) */

%%	defaults(+ArgsSpecs, -Defaults, -Args)
%
%	Strip the default specification from the argument specification.

defaults([], [], []).
defaults([Arg=Default|T0], [Default|TD], [Arg|TA]) :- !,
	defaults(T0, TD, TA).
defaults([Arg|T0], [_|TD], [Arg|TA]) :-
	defaults(T0, TD, TA).


%%	types(+ArgsSpecs, -Defaults, -Args)
%
%	Strip the default specification from the argument specification.

types([], [], []).
types([Name:Type|T0], [Name|TN], [Type|TT]) :- !,
	must_be(atom, Name),
	types(T0, TN, TT).
types([Name|T0], [Name|TN], [any|TT]) :-
	must_be(atom, Name),
	types(T0, TN, TT).


		 /*******************************
		 *       PROLOG --> JSON	*
		 *******************************/

%%	prolog_to_json(:Term, -JSONObject) is det.
%
%	Translate a Prolog application Term  into   a  JSON object term.
%	This transformation is based on   :- json_object/1 declarations.
%	If  a  json_object/1  declaration  declares   a  field  of  type
%	=boolean=, commonly used thruth-values in   Prolog are converted
%	to JSON booleans. Boolean  translation   accepts  one of =true=,
%	=on=, =1=, @true, =false=, =fail=, =off= or =0=, @false.
%
%	@error	type_error(json_term, X)
%	@error	instantiation_error

prolog_to_json(Module:Term, JSON) :-
	prolog_to_json(Term, JSON, Module).

prolog_to_json(Var, _, _) :-
	var(Var), !,
	instantiation_error(Var).
prolog_to_json(Atomic, Atomic, _) :-
	atomic(Atomic), !.
prolog_to_json(List, JSON, Module) :-
	is_list(List), !,
	prolog_list_to_json(List, JSON, Module).
prolog_to_json(Record, JSON, Module) :-
	record_to_pairs(Record, JSON, Module), !.
prolog_to_json(Term, Term, _) :-
	is_json_term(Term), !.
prolog_to_json(Term, _, _) :-
	type_error(json_term, Term).

record_to_pairs(T, _, _) :-
	var(T), !,
	instantiation_error(T).
record_to_pairs(T, JSON, M) :-
	object_module(M, Module),
	json_object_to_pairs(T, Module, JSON), !.

object_module(user, user) :- !.
object_module(M, M).
object_module(_, user).

prolog_list_to_json([], [], _).
prolog_list_to_json([H0|T0], [H|T], M) :-
	prolog_to_json(H0, H, M),
	prolog_list_to_json(T0, T, M).


		 /*******************************
		 *       JSON --> PROLOG	*
		 *******************************/

:- dynamic
	json_to_prolog_rule/3,		% Module, Pairs, Term
	created_rules_for_pairs/2.	% Module, Pairs

clear_cache :-
	retractall(json_to_prolog_rule(_,_,_)),
	retractall(created_rules_for_pairs(_,_)).

:- clear_cache.

%%	json_to_prolog(+JSON, -Term) is det.
%
%	Translate  a  JSON  term   into    an   application  term.  This
%	transformation is based on  :-   json_object/1  declarations. An
%	efficient transformation is non-trivial,  but   we  rely  on the
%	assumption that, although the order of   fields in JSON terms is
%	irrelevant and can therefore vary  a lot, practical applications
%	will normally generate the JSON objects in a consistent order.
%
%	If a field in a json_object is declared of type =boolean=, @true
%	and @false are  translated  to  =true=   or  =false=,  the  most
%	commonly used Prolog representation for truth-values.

json_to_prolog(JSON, Module:Term) :-
	json_to_prolog(JSON, Term, Module).

json_to_prolog(json(Pairs), Term, Module) :- !,
	(   pairs_to_term(Pairs, Term, Module)
	->  true
	;   json_pairs_to_prolog(Pairs, Prolog, Module),
	    Term = json(Prolog)
	).
json_to_prolog(List, Prolog, Module) :-
	is_list(List), !,
	json_list_to_prolog(List, Prolog, Module).
json_to_prolog(@(Special), @(Special), _).
json_to_prolog(Atomic, Atomic, _).

json_pairs_to_prolog([], [], _).
json_pairs_to_prolog([Name=JSONValue|T0], [Name=PrologValue|T], Module) :-
	json_to_prolog(JSONValue, PrologValue, Module),
	json_pairs_to_prolog(T0, T, Module).

json_list_to_prolog([], [], _).
json_list_to_prolog([JSONValue|T0], [PrologValue|T], Module) :-
	json_to_prolog(JSONValue, PrologValue, Module),
	json_list_to_prolog(T0, T, Module).


%%	json_object_to_prolog(+JSONObject, ?Term, +Module) is semidet.
%
%	Translate a JSON json(Pairs) term into a Prolog application term.

json_object_to_prolog(json(Pairs), Term, Module) :-
	pairs_to_term(Pairs, Term, Module).


%%	pairs_to_term(+Pairs, ?Term, +Module) is semidet.
%
%	Convert a Name=Value set into a Prolog application term based on
%	json_object/1 declarations.
%
%	@tbd	Ignore extra pairs if term is partially given?

pairs_to_term(Pairs, Term, Module) :-
	object_module(Module, M),
	(   json_to_prolog_rule(M, Pairs, Term)
	->  !
	;   created_rules_for_pairs(M, Pairs)
	->  !, fail
	;   pairs_args(Pairs, PairArgs),
	    sort(PairArgs, SortedPairArgs),
	    forall(create_rule(SortedPairArgs, Module, M, Term0, Body),
		   asserta((json_to_prolog_rule(M, PairArgs, Term0) :- Body))),
	    asserta(created_rules_for_pairs(M, PairArgs)),
	    json_to_prolog_rule(M, Pairs, Term), !
	).

pairs_args([], []).
pairs_args([Name=_Value|T0], [Name=_|T]) :-
	pairs_args(T0, T).

%%	create_rule(+PairArgs, +Vars, -Term, -Body) is det.
%
%	Create a new rule for dealing with Pairs, a Name=Value list of a
%	particular order.  Here is an example rule:
%
%	==
%	json_to_prolog_rule([x=X, y=Y], point(X,Y)) :-
%		integer(X),
%		integer(Y).
%	==

create_rule(PairArgs, Module, M, Term, Body) :-
	current_json_object(Term, M, Fields),
	match_fields(PairArgs, Fields, Body0, Module),
	clean_body(Body0, Body).

match_fields([], [], true, _).
match_fields([Name=JSON|TP], [f(Name, Type, Prolog)|TF], (Goal,Body), M) :- !,
	match_field(Type, JSON, Prolog, M, Goal),
	match_fields(TP, TF, Body, M).

match_field(any, JSON, Prolog, M, json_to_prolog(JSON,Prolog,M)) :- !.
match_field(F/A, JSON, Prolog, M, json_to_prolog(JSON,Prolog,M)) :- !,
	functor(Prolog, F, A).
match_field(boolean, JSON, Prolog, _, json_bool_to_prolog(JSON, Prolog)) :- !.
match_field(list(Type), JSON, Prolog, M, json_list_to_prolog(JSON, Prolog, M)) :-
	current_json_object(Term, M, _Fields),
	functor(Term, Type, _), !.
match_field(Type, Var, Var, _, Goal) :-
	type_goal(Type, Var, Goal).

json_bool_to_prolog(@(True), True).


		 /*******************************
		 *	      EXPANSION		*
		 *******************************/

:- multifile
	system:term_expansion/2.
:- dynamic
	system:term_expansion/2.

system:term_expansion((:- json_object(Spec)), Clauses) :-
	compile_json_objects(Spec, Clauses).