/************************************************************************* * * * YAP Prolog * * * * Yap Prolog was developed at NCCUP - Universidade do Porto * * * * Copyright L.Damas, V.S.Costa and Universidade do Porto 1985-1997 * * * ************************************************************************** * * * File: utilpreds.c * * Last rev: 4/03/88 * * mods: * * comments: new utility predicates for YAP * * * *************************************************************************/ #ifdef SCCS static char SccsId[] = "@(#)utilpreds.c 1.3"; #endif #include "Yap.h" #include "clause.h" #include "YapHeap.h" #include "yapio.h" #include "eval.h" #include "attvar.h" #ifdef HAVE_STRING_H #include "string.h" #endif typedef struct { Term old_var; Term new_var; } *vcell; STATIC_PROTO(int copy_complex_term, (CELL *, CELL *, int, int, CELL *, CELL * CACHE_TYPE)); STATIC_PROTO(CELL vars_in_complex_term, (CELL *, CELL *, Term CACHE_TYPE)); STATIC_PROTO(Int p_non_singletons_in_term, ( USES_REGS1)); STATIC_PROTO(CELL non_singletons_in_complex_term, (CELL *, CELL * CACHE_TYPE)); STATIC_PROTO(Int p_variables_in_term, ( USES_REGS1 )); STATIC_PROTO(Int ground_complex_term, (CELL *, CELL * CACHE_TYPE)); STATIC_PROTO(Int p_ground, ( USES_REGS1 )); STATIC_PROTO(Int p_copy_term, ( USES_REGS1 )); STATIC_PROTO(Int var_in_complex_term, (CELL *, CELL *, Term CACHE_TYPE)); #ifdef DEBUG STATIC_PROTO(Int p_force_trail_expansion, ( USES_REGS1 )); #endif /* DEBUG */ static inline void clean_tr(tr_fr_ptr TR0 USES_REGS) { if (TR != TR0) { do { Term p = TrailTerm(--TR); RESET_VARIABLE(p); } while (TR != TR0); } } static inline void clean_dirty_tr(tr_fr_ptr TR0 USES_REGS) { if (TR != TR0) { tr_fr_ptr pt = TR0; do { Term p = TrailTerm(pt++); RESET_VARIABLE(p); } while (pt != TR); TR = TR0; } } static int copy_complex_term(CELL *pt0, CELL *pt0_end, int share, int newattvs, CELL *ptf, CELL *HLow USES_REGS) { struct cp_frame *to_visit0, *to_visit = (struct cp_frame *)Yap_PreAllocCodeSpace(); CELL *HB0 = HB; tr_fr_ptr TR0 = TR; int ground = TRUE; HB = HLow; to_visit0 = to_visit; loop: while (pt0 < pt0_end) { register CELL d0; register CELL *ptd0; ++ pt0; ptd0 = pt0; d0 = *ptd0; deref_head(d0, copy_term_unk); copy_term_nvar: { if (IsPairTerm(d0)) { CELL *ap2 = RepPair(d0); if (ap2 >= HB && ap2 < H) { /* If this is newer than the current term, just reuse */ *ptf++ = d0; continue; } *ptf = AbsPair(H); ptf++; #ifdef RATIONAL_TREES if (to_visit+1 >= (struct cp_frame *)AuxSp) { goto heap_overflow; } to_visit->start_cp = pt0; to_visit->end_cp = pt0_end; to_visit->to = ptf; to_visit->oldv = *pt0; to_visit->ground = ground; /* fool the system into thinking we had a variable there */ *pt0 = AbsPair(H); to_visit ++; #else if (pt0 < pt0_end) { if (to_visit+1 >= (struct cp_frame *)AuxSp) { goto heap_overflow; } to_visit->start_cp = pt0; to_visit->end_cp = pt0_end; to_visit->to = ptf; to_visit->ground = ground; to_visit ++; } #endif ground = TRUE; pt0 = ap2 - 1; pt0_end = ap2 + 1; ptf = H; H += 2; if (H > ASP - 2048) { goto overflow; } } else if (IsApplTerm(d0)) { register Functor f; register CELL *ap2; /* store the terms to visit */ ap2 = RepAppl(d0); if (ap2 >= HB && ap2 <= H) { /* If this is newer than the current term, just reuse */ *ptf++ = d0; continue; } f = (Functor)(*ap2); if (IsExtensionFunctor(f)) { #if MULTIPLE_STACKS if (f == FunctorDBRef) { DBRef entryref = DBRefOfTerm(d0); if (entryref->Flags & LogUpdMask) { LogUpdClause *luclause = (LogUpdClause *)entryref; PELOCK(100,luclause->ClPred); UNLOCK(luclause->ClPred->PELock); } else { LOCK(entryref->lock); TRAIL_REF(entryref); /* So that fail will erase it */ INC_DBREF_COUNT(entryref); UNLOCK(entryref->lock); } *ptf++ = d0; /* you can just copy other extensions. */ } else #endif if (!share) { UInt sz; *ptf++ = AbsAppl(H); /* you can just copy other extensions. */ /* make sure to copy floats */ if (f== FunctorDouble) { sz = sizeof(Float)/sizeof(CELL)+2; } else if (f== FunctorLongInt) { sz = 3; } else { CELL *pt = ap2+1; sz = 2+sizeof(MP_INT)+(((MP_INT *)(pt+1))->_mp_alloc*sizeof(mp_limb_t)); } if (H+sz > ASP - 2048) { goto overflow; } memcpy((void *)H, (void *)ap2, sz*sizeof(CELL)); H += sz; } else { *ptf++ = d0; /* you can just copy other extensions. */ } continue; } *ptf = AbsAppl(H); ptf++; /* store the terms to visit */ #ifdef RATIONAL_TREES if (to_visit+1 >= (struct cp_frame *)AuxSp) { goto heap_overflow; } to_visit->start_cp = pt0; to_visit->end_cp = pt0_end; to_visit->to = ptf; to_visit->oldv = *pt0; to_visit->ground = ground; /* fool the system into thinking we had a variable there */ *pt0 = AbsAppl(H); to_visit ++; #else if (pt0 < pt0_end) { if (to_visit+1 >= (struct cp_frame *)AuxSp) { goto heap_overflow; } to_visit->start_cp = pt0; to_visit->end_cp = pt0_end; to_visit->to = ptf; to_visit->ground = ground; to_visit ++; } #endif ground = (f != FunctorMutable); d0 = ArityOfFunctor(f); pt0 = ap2; pt0_end = ap2 + d0; /* store the functor for the new term */ H[0] = (CELL)f; ptf = H+1; H += 1+d0; if (H > ASP - 2048) { goto overflow; } } else { /* just copy atoms or integers */ *ptf++ = d0; } continue; } derefa_body(d0, ptd0, copy_term_unk, copy_term_nvar); ground = FALSE; if (ptd0 >= HLow && ptd0 < H) { /* we have already found this cell */ *ptf++ = (CELL) ptd0; } else #if COROUTINING if (newattvs && IsAttachedTerm((CELL)ptd0)) { /* if unbound, call the standard copy term routine */ struct cp_frame *bp; CELL new; bp = to_visit; if (!attas[ExtFromCell(ptd0)].copy_term_op(ptd0, &bp, ptf PASS_REGS)) { goto overflow; } to_visit = bp; new = *ptf; Bind_NonAtt(ptd0, new); ptf++; } else { #endif /* first time we met this term */ RESET_VARIABLE(ptf); if (TR > (tr_fr_ptr)Yap_TrailTop - 256) { /* Trail overflow */ if (!Yap_growtrail((TR-TR0)*sizeof(tr_fr_ptr *), TRUE)) { goto trail_overflow; } } Bind_NonAtt(ptd0, (CELL)ptf); ptf++; #ifdef COROUTINING } #endif } /* Do we still have compound terms to visit */ if (to_visit > to_visit0) { to_visit --; if (ground && share) { CELL old = to_visit->oldv; CELL *newp = to_visit->to-1; CELL new = *newp; *newp = old; if (IsApplTerm(new)) H = RepAppl(new); else H = RepPair(new); } pt0 = to_visit->start_cp; pt0_end = to_visit->end_cp; ptf = to_visit->to; #ifdef RATIONAL_TREES *pt0 = to_visit->oldv; #endif ground = (ground && to_visit->ground); goto loop; } /* restore our nice, friendly, term to its original state */ clean_dirty_tr(TR0 PASS_REGS); HB = HB0; return ground; overflow: /* oops, we're in trouble */ H = HLow; /* we've done it */ /* restore our nice, friendly, term to its original state */ HB = HB0; #ifdef RATIONAL_TREES while (to_visit > to_visit0) { to_visit --; pt0 = to_visit->start_cp; pt0_end = to_visit->end_cp; ptf = to_visit->to; *pt0 = to_visit->oldv; } #endif reset_trail(TR0); /* follow chain of multi-assigned variables */ return -1; trail_overflow: /* oops, we're in trouble */ H = HLow; /* we've done it */ /* restore our nice, friendly, term to its original state */ HB = HB0; #ifdef RATIONAL_TREES while (to_visit > to_visit0) { to_visit --; pt0 = to_visit->start_cp; pt0_end = to_visit->end_cp; ptf = to_visit->to; *pt0 = to_visit->oldv; } #endif { tr_fr_ptr oTR = TR; reset_trail(TR0); if (!Yap_growtrail((oTR-TR0)*sizeof(tr_fr_ptr *), TRUE)) { return -4; } return -2; } heap_overflow: /* oops, we're in trouble */ H = HLow; /* we've done it */ /* restore our nice, friendly, term to its original state */ HB = HB0; #ifdef RATIONAL_TREES while (to_visit > to_visit0) { to_visit --; pt0 = to_visit->start_cp; pt0_end = to_visit->end_cp; ptf = to_visit->to; *pt0 = to_visit->oldv; } #endif reset_trail(TR0); Yap_Error_Size = (ADDR)AuxSp-(ADDR)to_visit0; return -3; } static Term handle_cp_overflow(int res, tr_fr_ptr TR0, UInt arity, Term t) { CACHE_REGS XREGS[arity+1] = t; switch(res) { case -1: if (!Yap_gcl((ASP-H)*sizeof(CELL), arity+1, ENV, gc_P(P,CP))) { Yap_Error(OUT_OF_STACK_ERROR, TermNil, Yap_ErrorMessage); return 0L; } return Deref(XREGS[arity+1]); case -2: return Deref(XREGS[arity+1]); case -3: { UInt size = Yap_Error_Size; Yap_Error_Size = 0L; if (size > 4*1024*1024) size = 4*1024*1024; if (!Yap_ExpandPreAllocCodeSpace(size, NULL, TRUE)) { Yap_Error(OUT_OF_AUXSPACE_ERROR, TermNil, Yap_ErrorMessage); return 0L; } } return Deref(XREGS[arity+1]); case -4: if (!Yap_growtrail((TR-TR0)*sizeof(tr_fr_ptr *), FALSE)) { Yap_Error(OUT_OF_TRAIL_ERROR, TermNil, Yap_ErrorMessage); return 0L; } return Deref(XREGS[arity+1]); default: return 0L; } } static Term CopyTerm(Term inp, UInt arity, int share, int newattvs USES_REGS) { Term t = Deref(inp); tr_fr_ptr TR0 = TR; if (IsVarTerm(t)) { #if COROUTINING if (newattvs && IsAttachedTerm(t)) { CELL *Hi; int res; restart_attached: *H = t; Hi = H+1; H += 2; if ((res = copy_complex_term(Hi-2, Hi-1, share, newattvs, Hi, Hi PASS_REGS)) < 0) { H = Hi-1; if ((t = handle_cp_overflow(res, TR0, arity, t))== 0L) return FALSE; goto restart_attached; } return Hi[0]; } #endif return MkVarTerm(); } else if (IsPrimitiveTerm(t)) { return t; } else if (IsPairTerm(t)) { Term tf; CELL *ap; CELL *Hi; restart_list: ap = RepPair(t); Hi = H; tf = AbsPair(H); H += 2; { int res; if ((res = copy_complex_term(ap-1, ap+1, share, newattvs, Hi, Hi PASS_REGS)) < 0) { H = Hi; if ((t = handle_cp_overflow(res, TR0, arity, t))== 0L) return FALSE; goto restart_list; } else if (res && share) { H = Hi; return t; } } return tf; } else { Functor f = FunctorOfTerm(t); Term tf; CELL *HB0; CELL *ap; restart_appl: f = FunctorOfTerm(t); HB0 = H; ap = RepAppl(t); tf = AbsAppl(H); H[0] = (CELL)f; H += 1+ArityOfFunctor(f); if (H > ASP-128) { H = HB0; if ((t = handle_cp_overflow(-1, TR0, arity, t))== 0L) return FALSE; goto restart_appl; } else { int res; if ((res = copy_complex_term(ap, ap+ArityOfFunctor(f), share, newattvs, HB0+1, HB0 PASS_REGS)) < 0) { H = HB0; if ((t = handle_cp_overflow(res, TR0, arity, t))== 0L) return FALSE; goto restart_appl; } else if (res && share && FunctorOfTerm(t) != FunctorMutable) { H = HB0; return t; } } return tf; } } Term Yap_CopyTerm(Term inp) { CACHE_REGS return CopyTerm(inp, 0, TRUE, TRUE PASS_REGS); } Term Yap_CopyTermNoShare(Term inp) { CACHE_REGS return CopyTerm(inp, 0, FALSE, FALSE PASS_REGS); } static Int p_copy_term( USES_REGS1 ) /* copy term t to a new instance */ { Term t = CopyTerm(ARG1, 2, TRUE, TRUE PASS_REGS); if (t == 0L) return FALSE; /* be careful, there may be a stack shift here */ return Yap_unify(ARG2,t); } static Int p_duplicate_term( USES_REGS1 ) /* copy term t to a new instance */ { Term t = CopyTerm(ARG1, 2, FALSE, TRUE PASS_REGS); if (t == 0L) return FALSE; /* be careful, there may be a stack shift here */ return Yap_unify(ARG2,t); } static Int p_copy_term_no_delays( USES_REGS1 ) /* copy term t to a new instance */ { Term t = CopyTerm(ARG1, 2, TRUE, FALSE PASS_REGS); if (t == 0L) { return FALSE; } /* be careful, there may be a stack shift here */ return(Yap_unify(ARG2,t)); } typedef struct copy_frame { CELL *start_cp; CELL *end_cp; CELL *to; #ifdef RATIONAL_TREES CELL oldv; CELL *parent; int ground; #endif } copy_frame_t; static int break_rationals_complex_term(CELL *pt0, CELL *pt0_end, CELL *ptf, CELL *HLow USES_REGS) { struct copy_frame *to_visit0, *to_visit = (struct copy_frame *)Yap_PreAllocCodeSpace(); CELL *HB0 = HB; tr_fr_ptr TR0 = TR; int ground = TRUE; CELL *parent = ptf; HB = HLow; to_visit0 = to_visit; loop: while (pt0 < pt0_end) { register CELL d0; register CELL *ptd0; ++ pt0; ptd0 = pt0; d0 = *ptd0; deref_head(d0, break_rationals_unk); break_rationals_nvar: { if (IsPairTerm(d0)) { CELL *ap2 = RepPair(d0); if (ap2 >= HB && ap2 < H) { /* If this is newer than the current term, just reuse */ *ptf++ = d0; continue; } *ptf = AbsPair(H); ptf++; #ifdef RATIONAL_TREES if (to_visit+1 >= (struct copy_frame *)AuxSp) { goto heap_overflow; } to_visit->start_cp = pt0; to_visit->end_cp = pt0_end; to_visit->to = ptf; to_visit->oldv = *pt0; to_visit->ground = ground; to_visit->parent = parent; parent = ptf-1; /* fool the system into thinking we had a variable there */ *pt0 = TermFoundVar; to_visit ++; #else if (pt0 < pt0_end) { if (to_visit+1 >= (struct copy_frame *)AuxSp) { goto heap_overflow; } to_visit->start_cp = pt0; to_visit->end_cp = pt0_end; to_visit->to = ptf; to_visit->ground = ground; to_visit ++; } #endif ground = TRUE; pt0 = ap2 - 1; pt0_end = ap2 + 1; ptf = H; H += 2; if (H > ASP - 2048) { goto overflow; } } else if (IsApplTerm(d0)) { register Functor f; register CELL *ap2; /* store the terms to visit */ ap2 = RepAppl(d0); if (ap2 >= HB && ap2 <= H) { /* If this is newer than the current term, just reuse */ *ptf++ = d0; continue; } f = (Functor)(*ap2); if (IsExtensionFunctor(f)) { *ptf++ = d0; /* you can just copy extensions, what about DB?*/ continue; } *ptf = AbsAppl(H); ptf++; /* store the terms to visit */ #ifdef RATIONAL_TREES if (to_visit+1 >= (struct copy_frame *)AuxSp) { goto heap_overflow; } to_visit->start_cp = pt0; to_visit->end_cp = pt0_end; to_visit->to = ptf; to_visit->oldv = *pt0; to_visit->ground = ground; to_visit->parent = parent; parent = ptf-1; /* fool the system into thinking we had a variable there */ *pt0 = TermFoundVar; to_visit ++; #else if (pt0 < pt0_end) { if (to_visit+1 >= (struct copy_frame *)AuxSp) { goto heap_overflow; } to_visit->start_cp = pt0; to_visit->end_cp = pt0_end; to_visit->to = ptf; to_visit->ground = ground; to_visit ++; } #endif d0 = ArityOfFunctor(f); pt0 = ap2; pt0_end = ap2 + d0; /* store the functor for the new term */ H[0] = (CELL)f; ptf = H+1; H += 1+d0; if (H > ASP - 2048) { goto overflow; } } else { /* just copy atoms or integers */ if (d0 == TermFoundVar) { struct copy_frame *visited = to_visit-1; CELL *end = pt0_end; RESET_VARIABLE(ptf); while (visited >= to_visit0) { if (visited->end_cp == end) { Term t[1]; t[0] = MkIntegerTerm(to_visit-visited); *parent = Yap_MkApplTerm(FunctorLOOP,1,t); break; } visited--; } ptf++; ground = FALSE; } else { *ptf++ = d0; } } continue; } derefa_body(d0, ptd0, break_rationals_unk, break_rationals_nvar); /* we have already found this cell */ *ptf++ = (CELL) ptd0; } /* Do we still have compound terms to visit */ if (to_visit > to_visit0) { to_visit --; if (ground) { CELL old = to_visit->oldv; CELL *newp = to_visit->to-1; CELL new = *newp; *newp = old; if (IsApplTerm(new)) H = RepAppl(new); else H = RepPair(new); } pt0 = to_visit->start_cp; pt0_end = to_visit->end_cp; ptf = to_visit->to; parent = to_visit->parent; #ifdef RATIONAL_TREES *pt0 = to_visit->oldv; #endif ground = (ground && to_visit->ground); goto loop; } /* restore our nice, friendly, term to its original state */ clean_dirty_tr(TR0 PASS_REGS); HB = HB0; return ground; overflow: /* oops, we're in trouble */ H = HLow; /* we've done it */ /* restore our nice, friendly, term to its original state */ HB = HB0; #ifdef RATIONAL_TREES while (to_visit > to_visit0) { to_visit --; pt0 = to_visit->start_cp; pt0_end = to_visit->end_cp; ptf = to_visit->to; parent = to_visit->parent; *pt0 = to_visit->oldv; } #endif reset_trail(TR0); /* follow chain of multi-assigned variables */ return -1; heap_overflow: /* oops, we're in trouble */ H = HLow; /* we've done it */ /* restore our nice, friendly, term to its original state */ HB = HB0; #ifdef RATIONAL_TREES while (to_visit > to_visit0) { to_visit --; pt0 = to_visit->start_cp; pt0_end = to_visit->end_cp; ptf = to_visit->to; parent = to_visit->parent; *pt0 = to_visit->oldv; } #endif reset_trail(TR0); Yap_Error_Size = (ADDR)AuxSp-(ADDR)to_visit0; return -3; } static Term BreakRational(Term inp, UInt arity USES_REGS) { Term t = Deref(inp); tr_fr_ptr TR0 = TR; if (IsVarTerm(t)) { return t; } else if (IsPrimitiveTerm(t)) { return t; } else if (IsPairTerm(t)) { Term tf; CELL *ap; CELL *Hi; restart_list: ap = RepPair(t); Hi = H; tf = AbsPair(H); H += 2; { int res; if ((res = break_rationals_complex_term(ap-1, ap+1, Hi, Hi PASS_REGS)) < 0) { H = Hi; if ((t = handle_cp_overflow(res, TR0, arity, t))== 0L) return FALSE; goto restart_list; } else if (res) { H = Hi; return t; } } return tf; } else { Functor f = FunctorOfTerm(t); Term tf; CELL *HB0; CELL *ap; restart_appl: f = FunctorOfTerm(t); HB0 = H; ap = RepAppl(t); tf = AbsAppl(H); H[0] = (CELL)f; H += 1+ArityOfFunctor(f); if (H > ASP-128) { H = HB0; if ((t = handle_cp_overflow(-1, TR0, arity, t))== 0L) return FALSE; goto restart_appl; } else { int res; if ((res = break_rationals_complex_term(ap, ap+ArityOfFunctor(f), HB0+1, HB0 PASS_REGS)) < 0) { H = HB0; if ((t = handle_cp_overflow(res, TR0, arity, t))== 0L) return FALSE; goto restart_appl; } else if (res && FunctorOfTerm(t) != FunctorMutable) { H = HB0; return t; } } return tf; } } static Int p_break_rational( USES_REGS1 ) { return Yap_unify(ARG2, BreakRational(ARG1, 2 PASS_REGS)); } typedef struct restore_frame { CELL *start_cp; CELL *end_cp; CELL *to; #ifdef RATIONAL_TREES CELL oldv; CELL *parent; int ground; int term_type; #endif } restore_frame_t; static int restore_rationals_complex_term(CELL *pt0, CELL *pt0_end, CELL *ptf, CELL *HLow, int pair USES_REGS) { struct restore_frame *to_visit0, *to_visit = (struct restore_frame *)Yap_PreAllocCodeSpace(); CELL *HB0 = HB; tr_fr_ptr TR0 = TR; int ground = TRUE; CELL *parent = ptf; HB = HLow; to_visit0 = to_visit; loop: while (pt0 < pt0_end) { register CELL d0; register CELL *ptd0; ++ pt0; ptd0 = pt0; d0 = *ptd0; deref_head(d0, restore_rationals_unk); restore_rationals_nvar: { if (IsPairTerm(d0)) { CELL *ap2 = RepPair(d0); if (ap2 >= HB && ap2 < H) { /* If this is newer than the current term, just reuse */ *ptf++ = d0; continue; } *ptf = AbsPair(H); ptf++; #ifdef RATIONAL_TREES if (to_visit+1 >= (struct restore_frame *)AuxSp) { goto heap_overflow; } to_visit->start_cp = pt0; to_visit->end_cp = pt0_end; to_visit->to = ptf; to_visit->oldv = *pt0; to_visit->ground = ground; to_visit->parent = parent; to_visit->term_type = pair; parent = ptf; /* fool the system into thinking we had a variable there */ *pt0 = TermFoundVar; to_visit ++; #else if (pt0 < pt0_end) { if (to_visit+1 >= (struct restore_frame *)AuxSp) { goto heap_overflow; } to_visit->start_cp = pt0; to_visit->end_cp = pt0_end; to_visit->to = ptf; to_visit->ground = ground; to_visit ++; } #endif ground = TRUE; pair = TRUE; pt0 = ap2 - 1; pt0_end = ap2 + 1; ptf = H; H += 2; if (H > ASP - 2048) { goto overflow; } } else if (IsApplTerm(d0)) { register Functor f; register CELL *ap2; /* store the terms to visit */ ap2 = RepAppl(d0); if (ap2 >= HB && ap2 <= H) { /* If this is newer than the current term, just reuse */ *ptf++ = d0; continue; } f = (Functor)(*ap2); if (IsExtensionFunctor(f)) { *ptf++ = d0; /* you can just copy extensions, what about DB?*/ continue; } else if (f == FunctorLOOP) { Int nlevels = IntegerOfTerm(ap2[1])-1; struct restore_frame *visited = to_visit-nlevels; CELL *p; int type_pair; if (nlevels) { p = visited->parent; type_pair = visited->term_type; } else { p = parent; type_pair = pair; } if (type_pair) { *ptf++ = AbsPair(p); } else { *ptf++ = AbsAppl(p-1); } ground = FALSE; continue; } *ptf = AbsAppl(H); ptf++; /* store the terms to visit */ #ifdef RATIONAL_TREES if (to_visit+1 >= (struct restore_frame *)AuxSp) { goto heap_overflow; } to_visit->start_cp = pt0; to_visit->end_cp = pt0_end; to_visit->to = ptf; to_visit->oldv = *pt0; to_visit->ground = ground; to_visit->parent = parent; to_visit->term_type = pair; parent = ptf; /* fool the system into thinking we had a variable there */ *pt0 = TermFoundVar; to_visit ++; #else if (pt0 < pt0_end) { if (to_visit+1 >= (struct restore_frame *)AuxSp) { goto heap_overflow; } to_visit->start_cp = pt0; to_visit->end_cp = pt0_end; to_visit->to = ptf; to_visit->ground = ground; to_visit ++; } #endif d0 = ArityOfFunctor(f); pt0 = ap2; pt0_end = ap2 + d0; /* store the functor for the new term */ H[0] = (CELL)f; ptf = H+1; H += 1+d0; pair = FALSE; if (H > ASP - 2048) { goto overflow; } } else { *ptf++ = d0; } continue; } derefa_body(d0, ptd0, restore_rationals_unk, restore_rationals_nvar); /* we have already found this cell */ *ptf++ = (CELL) ptd0; } /* Do we still have compound terms to visit */ if (to_visit > to_visit0) { to_visit --; if (ground) { CELL old = to_visit->oldv; CELL *newp = to_visit->to-1; CELL new = *newp; *newp = old; if (IsApplTerm(new)) H = RepAppl(new); else H = RepPair(new); } pt0 = to_visit->start_cp; pt0_end = to_visit->end_cp; ptf = to_visit->to; #ifdef RATIONAL_TREES parent = to_visit->parent; pair = to_visit->term_type; *pt0 = to_visit->oldv; #endif ground = (ground && to_visit->ground); goto loop; } /* restore our nice, friendly, term to its original state */ clean_dirty_tr(TR0 PASS_REGS); HB = HB0; return ground; overflow: /* oops, we're in trouble */ H = HLow; /* we've done it */ /* restore our nice, friendly, term to its original state */ HB = HB0; #ifdef RATIONAL_TREES while (to_visit > to_visit0) { to_visit --; pt0 = to_visit->start_cp; pt0_end = to_visit->end_cp; ptf = to_visit->to; parent = to_visit->parent; pair = to_visit->term_type; *pt0 = to_visit->oldv; } #endif reset_trail(TR0); /* follow chain of multi-assigned variables */ return -1; heap_overflow: /* oops, we're in trouble */ H = HLow; /* we've done it */ /* restore our nice, friendly, term to its original state */ HB = HB0; #ifdef RATIONAL_TREES while (to_visit > to_visit0) { to_visit --; pt0 = to_visit->start_cp; pt0_end = to_visit->end_cp; ptf = to_visit->to; parent = to_visit->parent; pair = to_visit->term_type; *pt0 = to_visit->oldv; } #endif reset_trail(TR0); Yap_Error_Size = (ADDR)AuxSp-(ADDR)to_visit0; return -3; } static Term RestoreRational(Term inp, UInt arity USES_REGS) { Term t = Deref(inp); tr_fr_ptr TR0 = TR; if (IsVarTerm(t)) { return t; } else if (IsPrimitiveTerm(t)) { return t; } else if (IsPairTerm(t)) { Term tf; CELL *ap; CELL *Hi; restart_list: ap = RepPair(t); Hi = H; tf = AbsPair(H); H += 2; { int res; if ((res = restore_rationals_complex_term(ap-1, ap+1, Hi, Hi, TRUE PASS_REGS)) < 0) { H = Hi; if ((t = handle_cp_overflow(res, TR0, arity, t))== 0L) return FALSE; goto restart_list; } else if (res) { H = Hi; return t; } } return tf; } else { Functor f = FunctorOfTerm(t); Term tf; CELL *HB0; CELL *ap; restart_appl: f = FunctorOfTerm(t); HB0 = H; ap = RepAppl(t); tf = AbsAppl(H); H[0] = (CELL)f; H += 1+ArityOfFunctor(f); if (H > ASP-128) { H = HB0; if ((t = handle_cp_overflow(-1, TR0, arity, t))== 0L) return FALSE; goto restart_appl; } else { int res; if ((res = restore_rationals_complex_term(ap, ap+ArityOfFunctor(f), HB0+1, HB0, FALSE PASS_REGS)) < 0) { H = HB0; if ((t = handle_cp_overflow(res, TR0, arity, t))== 0L) return FALSE; goto restart_appl; } else if (res && FunctorOfTerm(t) != FunctorMutable) { H = HB0; return t; } } return tf; } } static Int p_restore_rational( USES_REGS1 ) { return Yap_unify(ARG2, RestoreRational(ARG1, 2 PASS_REGS)); } /* FAST EXPORT ROUTINE. Export a Prolog term to something like: CELL 0: offset for start of term CELL 1: size of actual term (to be copied to stack) CELL 2: the original term (just for reference) Atoms and functors: - atoms are either: 0 and a char *string -1 and a wchar_t *string - functors are a CELL with arity and a string. Compiled Term. */ static inline CELL *CellDifH(CELL *hptr, CELL *hlow) { return (CELL *)((char *)hptr-(char *)hlow); } #define AdjustSizeAtom(X) ((char *)(((CELL)X+7) & (CELL)(-8))) static inline Atom export_atom(Atom at, char **hpp, size_t len) { char *ptr, *p0; size_t sz; ptr = *hpp; ptr = AdjustSizeAtom(ptr); p0 = ptr; if (IsWideAtom(at)) { wchar_t *wptr = (wchar_t *)ptr; *wptr++ = -1; sz = wcslen(RepAtom(at)->WStrOfAE); if (sizeof(wchar_t)*(sz+1) >= len) return (Atom)NULL; wcsncpy(wptr, RepAtom(at)->WStrOfAE, len); *hpp = (char *)(wptr+(sz+1)); } else { *ptr++ = 0; sz = strlen(RepAtom(at)->StrOfAE); if (sz +1 >= len) return (Atom)NULL; strcpy(ptr, RepAtom(at)->StrOfAE); *hpp = ptr+(sz+1); } ptr += sz; return (Atom)p0; } static inline Functor export_functor(Functor f, char **hpp, size_t len) { CELL *hptr = (UInt *)AdjustSizeAtom(*hpp); UInt arity = ArityOfFunctor(f); if (2*sizeof(CELL) >= len) return (Functor)NULL; hptr[0] = arity; *hpp = (char *)(hptr+1); if (!export_atom(NameOfFunctor(f), hpp, len)) return 0L; return (Functor)hptr; } #define export_derefa_body(D,A,LabelUnk,LabelNonVar) \ do { \ if ((CELL *)(D) < CellDifH(H,HLow)) { (A) = (CELL *)(D); break; } \ (A) = (CELL *)(D); \ (D) = *(CELL *)(D); \ if(!IsVarTerm(D)) goto LabelNonVar; \ LabelUnk: ; \ } while (Unsigned(A) != (D)) static int export_term_to_buffer(Term inpt, char *buf, char *bptr, CELL *t0 , CELL *tf, size_t len) { char *td = bptr; CELL *bf = (CELL *)buf; if (buf + len < (char *)(td + (tf-t0))) return FALSE; memcpy((void *)td, (void *)t0, (tf-t0)* sizeof(CELL)); bf[0] = (td-buf); bf[1] = (tf-t0); bf[2] = inpt; return bf[0]+sizeof(CELL)*bf[1]; } static int export_complex_term(Term tf, CELL *pt0, CELL *pt0_end, char * buf, size_t len0, int newattvs, CELL *ptf, CELL *HLow USES_REGS) { struct cp_frame *to_visit0, *to_visit = (struct cp_frame *)Yap_PreAllocCodeSpace(); CELL *HB0 = HB; tr_fr_ptr TR0 = TR; int ground = TRUE; char *bptr = buf+ 3*sizeof(CELL); size_t len = len0; HB = HLow; to_visit0 = to_visit; loop: while (pt0 < pt0_end) { register CELL d0; register CELL *ptd0; ++ pt0; ptd0 = pt0; d0 = *ptd0; deref_head(d0, export_term_unk); export_term_nvar: { if (IsPairTerm(d0)) { CELL *ap2 = RepPair(d0); if (ap2 < CellDifH(H,HLow)) { /* If this is newer than the current term, just reuse */ *ptf++ = d0; continue; } *ptf = AbsPair(CellDifH(H,HLow)); ptf++; #ifdef RATIONAL_TREES if (to_visit+1 >= (struct cp_frame *)AuxSp) { goto heap_overflow; } to_visit->start_cp = pt0; to_visit->end_cp = pt0_end; to_visit->to = ptf; to_visit->oldv = *pt0; to_visit->ground = ground; /* fool the system into thinking we had a variable there */ *pt0 = AbsPair(CellDifH(H,HLow)); to_visit ++; #else if (pt0 < pt0_end) { if (to_visit+1 >= (struct cp_frame *)AuxSp) { goto heap_overflow; } to_visit->start_cp = pt0; to_visit->end_cp = pt0_end; to_visit->to = ptf; to_visit->ground = ground; to_visit ++; } #endif pt0 = ap2 - 1; pt0_end = ap2 + 1; ptf = H; H += 2; if (H > ASP - 2048) { goto overflow; } } else if (IsApplTerm(d0)) { register Functor f; register CELL *ap2; /* store the terms to visit */ ap2 = RepAppl(d0); if (ap2 < CellDifH(H,HLow)) { /* If this is newer than the current term, just reuse */ *ptf++ = d0; continue; } f = (Functor)(*ap2); *ptf++ = AbsAppl(CellDifH(H,HLow)); if (IsExtensionFunctor(f)) { UInt sz; /* make sure to export floats */ if (f== FunctorDouble) { sz = sizeof(Float)/sizeof(CELL)+2; } else if (f== FunctorLongInt) { sz = 3; } else { CELL *pt = ap2+1; sz = 2+sizeof(MP_INT)+(((MP_INT *)(pt+1))->_mp_alloc*sizeof(mp_limb_t)); } if (H+sz > ASP - 2048) { goto overflow; } memcpy((void *)H, (void *)ap2, sz*sizeof(CELL)); H += sz; continue; } /* store the terms to visit */ #ifdef RATIONAL_TREES if (to_visit+1 >= (struct cp_frame *)AuxSp) { goto heap_overflow; } to_visit->start_cp = pt0; to_visit->end_cp = pt0_end; to_visit->to = ptf; to_visit->oldv = *pt0; to_visit->ground = ground; /* fool the system into thinking we had a variable there */ *pt0 = AbsAppl(H); to_visit ++; #else if (pt0 < pt0_end) { if (to_visit+1 >= (struct cp_frame *)AuxSp) { goto heap_overflow; } to_visit->start_cp = pt0; to_visit->end_cp = pt0_end; to_visit->to = ptf; to_visit->ground = ground; to_visit ++; } #endif ground = (f != FunctorMutable); d0 = ArityOfFunctor(f); pt0 = ap2; pt0_end = ap2 + d0; /* store the functor for the new term */ ptf = H+1; H += 1+d0; if (H > ASP - 2048) { goto overflow; } ptf[-1] = (CELL)export_functor(f, &bptr, len); len = len0 - (bptr-buf); if (H > ASP - 2048) { goto overflow; } } else { if (IsAtomTerm(d0)) { *ptf = MkAtomTerm(export_atom(AtomOfTerm(d0), &bptr, len)); ptf++; len = len0 - (bptr-buf); } else { *ptf++ = d0; } } continue; } export_derefa_body(d0, ptd0, export_term_unk, export_term_nvar); ground = FALSE; if (ptd0 < CellDifH(H,HLow)) { /* we have already found this cell */ *ptf++ = (CELL) ptd0; } else { #if COROUTINING if (newattvs && IsAttachedTerm((CELL)ptd0) && FALSE) { /* if unbound, call the standard export term routine */ struct cp_frame *bp; CELL new; bp = to_visit; if (!attas[ExtFromCell(ptd0)].copy_term_op(ptd0, &bp, ptf PASS_REGS)) { goto overflow; } to_visit = bp; new = *ptf; Bind_NonAtt(ptd0, new); ptf++; } else { #endif /* first time we met this term */ *ptf = (CELL)CellDifH(ptf,HLow); if (TR > (tr_fr_ptr)Yap_TrailTop - 256) { /* Trail overflow */ if (!Yap_growtrail((TR-TR0)*sizeof(tr_fr_ptr *), TRUE)) { goto trail_overflow; } } Bind_NonAtt(ptd0, (CELL)ptf); ptf++; #ifdef COROUTINING } #endif } } /* Do we still have compound terms to visit */ if (to_visit > to_visit0) { to_visit --; pt0 = to_visit->start_cp; pt0_end = to_visit->end_cp; ptf = to_visit->to; #ifdef RATIONAL_TREES *pt0 = to_visit->oldv; #endif ground = (ground && to_visit->ground); goto loop; } /* restore our nice, friendly, term to its original state */ clean_dirty_tr(TR0 PASS_REGS); HB = HB0; return export_term_to_buffer(tf, buf, bptr, HLow, H, len0); overflow: /* oops, we're in trouble */ H = HLow; /* we've done it */ /* restore our nice, friendly, term to its original state */ HB = HB0; #ifdef RATIONAL_TREES while (to_visit > to_visit0) { to_visit --; pt0 = to_visit->start_cp; pt0_end = to_visit->end_cp; ptf = to_visit->to; *pt0 = to_visit->oldv; } #endif reset_trail(TR0); /* follow chain of multi-assigned variables */ return -1; trail_overflow: /* oops, we're in trouble */ H = HLow; /* we've done it */ /* restore our nice, friendly, term to its original state */ HB = HB0; #ifdef RATIONAL_TREES while (to_visit > to_visit0) { to_visit --; pt0 = to_visit->start_cp; pt0_end = to_visit->end_cp; ptf = to_visit->to; *pt0 = to_visit->oldv; } #endif { tr_fr_ptr oTR = TR; reset_trail(TR0); if (!Yap_growtrail((oTR-TR0)*sizeof(tr_fr_ptr *), TRUE)) { return -4; } return -2; } heap_overflow: /* oops, we're in trouble */ H = HLow; /* we've done it */ /* restore our nice, friendly, term to its original state */ HB = HB0; #ifdef RATIONAL_TREES while (to_visit > to_visit0) { to_visit --; pt0 = to_visit->start_cp; pt0_end = to_visit->end_cp; ptf = to_visit->to; *pt0 = to_visit->oldv; } #endif reset_trail(TR0); Yap_Error_Size = (ADDR)AuxSp-(ADDR)to_visit0; return -3; } static int ExportTerm(Term inp, char * buf, size_t len, UInt arity, int newattvs USES_REGS) { Term t = Deref(inp); tr_fr_ptr TR0 = TR; int res; CELL *Hi; restart: Hi = H; if ((res = export_complex_term(inp, &t-1, &t, buf, len, newattvs, Hi, Hi PASS_REGS)) < 0) { H = Hi; if ((t = handle_cp_overflow(res, TR0, arity, t))== 0L) return FALSE; goto restart; } return res; } int Yap_ExportTerm(Term inp, char * buf, size_t len) { CACHE_REGS return ExportTerm(inp, buf, len, 0, TRUE PASS_REGS); } static CELL * ShiftPtr(CELL t, char *base) { return (CELL *)(base+t); } static Atom AddAtom(Atom t) { char *s = (char *)t; if (!*s) { return Yap_LookupAtom(s+1); } else { wchar_t *w = (wchar_t *)s; return Yap_LookupWideAtom(w+1); } } static UInt FetchFunctor(CELL *pt) { CELL *ptr = (CELL *)(*pt); // do arity first UInt arity = *ptr; char *name; // and then an atom ++ptr; name = (char *)ptr; name = AdjustSizeAtom(name); *pt = (CELL)Yap_MkFunctor(AddAtom((Atom)name), arity); return arity; } static CELL *import_compound(CELL *hp, char *abase, CELL *amax); static CELL *import_pair(CELL *hp, char *abase, CELL *amax); static CELL * import_arg(CELL *hp, char *abase, CELL *amax) { Term t = *hp; if (IsVarTerm(t)) { hp[0] = (CELL)ShiftPtr(t, abase); } else if (IsAtomTerm(t)) { hp[0] = MkAtomTerm(AddAtom(AtomOfTerm(t))); } else if (IsPairTerm(t)) { CELL *newp = ShiftPtr((CELL)RepPair(t), abase); hp[0] = AbsPair(newp); if (newp > amax) { amax = import_pair(newp, abase, newp); } } else { CELL *newp = ShiftPtr((CELL)RepAppl(t), abase); hp[0] = AbsAppl(newp); if (newp > amax) { amax = import_compound(newp, abase, newp); } } return amax; } static CELL * import_compound(CELL *hp, char *abase, CELL *amax) { Functor f = (Functor)*hp; UInt ar, i; if (IsExtensionFunctor(f)) return amax; ar = FetchFunctor(hp); for (i=1; i<=ar; i++) { amax = import_arg(hp+i, abase, amax); } return amax; } static CELL * import_pair(CELL *hp, char *abase, CELL *amax) { amax = import_arg(hp, abase, amax); amax = import_arg(hp+1, abase, amax); return amax; } Term Yap_ImportTerm(char * buf) { CACHE_REGS CELL *bc = (CELL *)buf; size_t sz = bc[1]; Term tinp, tret; tinp = bc[2]; if (IsVarTerm(tinp)) return MkVarTerm(); if (IsAtomOrIntTerm(tinp)) { if (IsAtomTerm(tinp)) { char *pt = AdjustSizeAtom((char *)(bc+3)); return MkAtomTerm(Yap_LookupAtom(pt)); } else return tinp; } if (H + sz > ASP) return (Term)0; memcpy(H, buf+bc[0], sizeof(CELL)*sz); if (IsApplTerm(tinp)) { tret = AbsAppl(H); import_compound(H, (char *)H, H); } else { tret = AbsPair(H); import_pair(H, (char *)H, H); } H += sz; return tret; } #define DEBUG_IMPORT 1 #if DEBUG_IMPORT static char export_debug_buf[2048]; static Int p_export_term( USES_REGS1 ) { Yap_ExportTerm(ARG1, export_debug_buf, 2048); return TRUE; } static Int p_import_term( USES_REGS1 ) { return Yap_unify(ARG1,Yap_ImportTerm(export_debug_buf)); } #endif static Term vars_in_complex_term(register CELL *pt0, register CELL *pt0_end, Term inp USES_REGS) { register CELL **to_visit0, **to_visit = (CELL **)Yap_PreAllocCodeSpace(); register tr_fr_ptr TR0 = TR; CELL *InitialH = H; CELL output = AbsPair(H); to_visit0 = to_visit; loop: while (pt0 < pt0_end) { register CELL d0; register CELL *ptd0; ++ pt0; ptd0 = pt0; d0 = *ptd0; deref_head(d0, vars_in_term_unk); vars_in_term_nvar: { if (IsPairTerm(d0)) { if (to_visit + 1024 >= (CELL **)AuxSp) { goto aux_overflow; } #ifdef RATIONAL_TREES to_visit[0] = pt0; to_visit[1] = pt0_end; to_visit[2] = (CELL *)*pt0; to_visit += 3; *pt0 = TermNil; #else if (pt0 < pt0_end) { to_visit[0] = pt0; to_visit[1] = pt0_end; to_visit += 2; } #endif pt0 = RepPair(d0) - 1; pt0_end = RepPair(d0) + 1; } else if (IsApplTerm(d0)) { register Functor f; register CELL *ap2; /* store the terms to visit */ ap2 = RepAppl(d0); f = (Functor)(*ap2); if (IsExtensionFunctor(f)) { continue; } /* store the terms to visit */ if (to_visit + 1024 >= (CELL **)AuxSp) { goto aux_overflow; } #ifdef RATIONAL_TREES to_visit[0] = pt0; to_visit[1] = pt0_end; to_visit[2] = (CELL *)*pt0; to_visit += 3; *pt0 = TermNil; #else if (pt0 < pt0_end) { to_visit[0] = pt0; to_visit[1] = pt0_end; to_visit += 2; } #endif d0 = ArityOfFunctor(f); pt0 = ap2; pt0_end = ap2 + d0; } continue; } derefa_body(d0, ptd0, vars_in_term_unk, vars_in_term_nvar); /* do or pt2 are unbound */ *ptd0 = TermNil; /* leave an empty slot to fill in later */ if (H+1024 > ASP) { goto global_overflow; } H[1] = AbsPair(H+2); H += 2; H[-2] = (CELL)ptd0; /* next make sure noone will see this as a variable again */ if (TR > (tr_fr_ptr)Yap_TrailTop - 256) { /* Trail overflow */ if (!Yap_growtrail((TR-TR0)*sizeof(tr_fr_ptr *), TRUE)) { goto trail_overflow; } } TrailTerm(TR++) = (CELL)ptd0; } /* Do we still have compound terms to visit */ if (to_visit > to_visit0) { #ifdef RATIONAL_TREES to_visit -= 3; pt0 = to_visit[0]; pt0_end = to_visit[1]; *pt0 = (CELL)to_visit[2]; #else to_visit -= 2; pt0 = to_visit[0]; pt0_end = to_visit[1]; #endif goto loop; } clean_tr(TR0 PASS_REGS); Yap_ReleasePreAllocCodeSpace((ADDR)to_visit0); if (H != InitialH) { /* close the list */ Term t2 = Deref(inp); if (IsVarTerm(t2)) { RESET_VARIABLE(H-1); Yap_unify((CELL)(H-1),ARG2); } else { H[-1] = t2; /* don't need to trail */ } return(output); } else { return(inp); } trail_overflow: #ifdef RATIONAL_TREES while (to_visit > to_visit0) { to_visit -= 3; pt0 = to_visit[0]; *pt0 = (CELL)to_visit[2]; } #endif Yap_Error_TYPE = OUT_OF_TRAIL_ERROR; Yap_Error_Size = (TR-TR0)*sizeof(tr_fr_ptr *); clean_tr(TR0 PASS_REGS); Yap_ReleasePreAllocCodeSpace((ADDR)to_visit0); H = InitialH; return 0L; aux_overflow: Yap_Error_Size = (to_visit-to_visit0)*sizeof(CELL **); #ifdef RATIONAL_TREES while (to_visit > to_visit0) { to_visit -= 3; pt0 = to_visit[0]; *pt0 = (CELL)to_visit[2]; } #endif Yap_Error_TYPE = OUT_OF_AUXSPACE_ERROR; clean_tr(TR0 PASS_REGS); Yap_ReleasePreAllocCodeSpace((ADDR)to_visit0); H = InitialH; return 0L; global_overflow: #ifdef RATIONAL_TREES while (to_visit > to_visit0) { to_visit -= 3; pt0 = to_visit[0]; *pt0 = (CELL)to_visit[2]; } #endif clean_tr(TR0 PASS_REGS); Yap_ReleasePreAllocCodeSpace((ADDR)to_visit0); H = InitialH; Yap_Error_TYPE = OUT_OF_STACK_ERROR; Yap_Error_Size = (ASP-H)*sizeof(CELL); return 0L; } static int expand_vts( USES_REGS1 ) { UInt expand = Yap_Error_Size; yap_error_number yap_errno = Yap_Error_TYPE; Yap_Error_Size = 0; Yap_Error_TYPE = YAP_NO_ERROR; if (yap_errno == OUT_OF_TRAIL_ERROR) { /* Trail overflow */ if (!Yap_growtrail(expand, FALSE)) { return FALSE; } } else if (yap_errno == OUT_OF_AUXSPACE_ERROR) { /* Aux space overflow */ if (expand > 4*1024*1024) expand = 4*1024*1024; if (!Yap_ExpandPreAllocCodeSpace(expand, NULL, TRUE)) { return FALSE; } } else { if (!Yap_gcl(expand, 3, ENV, gc_P(P,CP))) { Yap_Error(OUT_OF_STACK_ERROR, TermNil, "in term_variables"); return FALSE; } } return TRUE; } static Int p_variables_in_term( USES_REGS1 ) /* variables in term t */ { Term out, inp; int count; restart: count = 0; inp = Deref(ARG2); while (!IsVarTerm(inp) && IsPairTerm(inp)) { Term t = HeadOfTerm(inp); if (IsVarTerm(t)) { CELL *ptr = VarOfTerm(t); *ptr = TermFoundVar; TrailTerm(TR++) = t; count++; if (TR > (tr_fr_ptr)Yap_TrailTop - 256) { clean_tr(TR-count PASS_REGS); if (!Yap_growtrail(count*sizeof(tr_fr_ptr *), FALSE)) { return FALSE; } goto restart; } } inp = TailOfTerm(inp); } do { Term t = Deref(ARG1); if (IsVarTerm(t)) { out = AbsPair(H); H += 2; RESET_VARIABLE(H-2); RESET_VARIABLE(H-1); Yap_unify((CELL)(H-2),ARG1); Yap_unify((CELL)(H-1),ARG2); } else if (IsPrimitiveTerm(t)) out = ARG2; else if (IsPairTerm(t)) { out = vars_in_complex_term(RepPair(t)-1, RepPair(t)+1, ARG2 PASS_REGS); } else { Functor f = FunctorOfTerm(t); out = vars_in_complex_term(RepAppl(t), RepAppl(t)+ ArityOfFunctor(f), ARG2 PASS_REGS); } if (out == 0L) { if (!expand_vts( PASS_REGS1 )) return FALSE; } } while (out == 0L); clean_tr(TR-count PASS_REGS); return Yap_unify(ARG3,out); } static Int p_term_variables( USES_REGS1 ) /* variables in term t */ { Term out; do { Term t = Deref(ARG1); if (IsVarTerm(t)) { Term out = Yap_MkNewPairTerm(); return Yap_unify(t,HeadOfTerm(out)) && Yap_unify(TermNil, TailOfTerm(out)) && Yap_unify(out, ARG2); } else if (IsPrimitiveTerm(t)) { return Yap_unify(TermNil, ARG2); } else if (IsPairTerm(t)) { out = vars_in_complex_term(RepPair(t)-1, RepPair(t)+1, TermNil PASS_REGS); } else { Functor f = FunctorOfTerm(t); out = vars_in_complex_term(RepAppl(t), RepAppl(t)+ ArityOfFunctor(f), TermNil PASS_REGS); } if (out == 0L) { if (!expand_vts( PASS_REGS1 )) return FALSE; } } while (out == 0L); return Yap_unify(ARG2,out); } static Term attvars_in_complex_term(register CELL *pt0, register CELL *pt0_end, Term inp USES_REGS) { register CELL **to_visit0, **to_visit = (CELL **)Yap_PreAllocCodeSpace(); register tr_fr_ptr TR0 = TR; CELL *InitialH = H; CELL output = AbsPair(H); to_visit0 = to_visit; loop: while (pt0 < pt0_end) { register CELL d0; register CELL *ptd0; ++ pt0; ptd0 = pt0; d0 = *ptd0; deref_head(d0, attvars_in_term_unk); attvars_in_term_nvar: { if (IsPairTerm(d0)) { if (to_visit + 1024 >= (CELL **)AuxSp) { goto aux_overflow; } #ifdef RATIONAL_TREES to_visit[0] = pt0; to_visit[1] = pt0_end; to_visit[2] = (CELL *)*pt0; to_visit += 3; *pt0 = TermNil; #else if (pt0 < pt0_end) { to_visit[0] = pt0; to_visit[1] = pt0_end; to_visit += 2; } #endif pt0 = RepPair(d0) - 1; pt0_end = RepPair(d0) + 1; } else if (IsApplTerm(d0)) { register Functor f; register CELL *ap2; /* store the terms to visit */ ap2 = RepAppl(d0); f = (Functor)(*ap2); if (IsExtensionFunctor(f)) { continue; } /* store the terms to visit */ if (to_visit + 1024 >= (CELL **)AuxSp) { goto aux_overflow; } #ifdef RATIONAL_TREES to_visit[0] = pt0; to_visit[1] = pt0_end; to_visit[2] = (CELL *)*pt0; to_visit += 3; *pt0 = TermNil; #else if (pt0 < pt0_end) { to_visit[0] = pt0; to_visit[1] = pt0_end; to_visit += 2; } #endif d0 = ArityOfFunctor(f); pt0 = ap2; pt0_end = ap2 + d0; } continue; } derefa_body(d0, ptd0, attvars_in_term_unk, attvars_in_term_nvar); if (IsAttVar(ptd0)) { /* do or pt2 are unbound */ *ptd0 = TermNil; /* next make sure noone will see this as a variable again */ if (TR > (tr_fr_ptr)Yap_TrailTop - 256) { /* Trail overflow */ if (!Yap_growtrail((TR-TR0)*sizeof(tr_fr_ptr *), TRUE)) { goto trail_overflow; } } TrailTerm(TR++) = (CELL)ptd0; /* leave an empty slot to fill in later */ if (H+1024 > ASP) { goto global_overflow; } H[1] = AbsPair(H+2); H += 2; H[-2] = (CELL)ptd0; /* store the terms to visit */ if (to_visit + 1024 >= (CELL **)AuxSp) { goto aux_overflow; } #ifdef RATIONAL_TREES to_visit[0] = pt0; to_visit[1] = pt0_end; to_visit[2] = (CELL *)*pt0; to_visit += 3; *pt0 = TermNil; #else if (pt0 < pt0_end) { to_visit[0] = pt0; to_visit[1] = pt0_end; to_visit += 2; } #endif pt0 = &RepAttVar(ptd0)->Value; pt0_end = &RepAttVar(ptd0)->Atts; } } /* Do we still have compound terms to visit */ if (to_visit > to_visit0) { #ifdef RATIONAL_TREES to_visit -= 3; pt0 = to_visit[0]; pt0_end = to_visit[1]; *pt0 = (CELL)to_visit[2]; #else to_visit -= 2; pt0 = to_visit[0]; pt0_end = to_visit[1]; #endif goto loop; } clean_tr(TR0 PASS_REGS); Yap_ReleasePreAllocCodeSpace((ADDR)to_visit0); if (H != InitialH) { /* close the list */ Term t2 = Deref(inp); if (IsVarTerm(t2)) { RESET_VARIABLE(H-1); Yap_unify((CELL)(H-1),ARG2); } else { H[-1] = t2; /* don't need to trail */ } return(output); } else { return(inp); } trail_overflow: #ifdef RATIONAL_TREES while (to_visit > to_visit0) { to_visit -= 3; pt0 = to_visit[0]; *pt0 = (CELL)to_visit[2]; } #endif Yap_Error_TYPE = OUT_OF_TRAIL_ERROR; Yap_Error_Size = (TR-TR0)*sizeof(tr_fr_ptr *); clean_tr(TR0 PASS_REGS); Yap_ReleasePreAllocCodeSpace((ADDR)to_visit0); H = InitialH; return 0L; aux_overflow: Yap_Error_Size = (to_visit-to_visit0)*sizeof(CELL **); #ifdef RATIONAL_TREES while (to_visit > to_visit0) { to_visit -= 3; pt0 = to_visit[0]; *pt0 = (CELL)to_visit[2]; } #endif Yap_Error_TYPE = OUT_OF_AUXSPACE_ERROR; clean_tr(TR0 PASS_REGS); Yap_ReleasePreAllocCodeSpace((ADDR)to_visit0); H = InitialH; return 0L; global_overflow: #ifdef RATIONAL_TREES while (to_visit > to_visit0) { to_visit -= 3; pt0 = to_visit[0]; *pt0 = (CELL)to_visit[2]; } #endif clean_tr(TR0 PASS_REGS); Yap_ReleasePreAllocCodeSpace((ADDR)to_visit0); H = InitialH; Yap_Error_TYPE = OUT_OF_STACK_ERROR; Yap_Error_Size = (ASP-H)*sizeof(CELL); return 0L; } static Int p_term_attvars( USES_REGS1 ) /* variables in term t */ { Term out; do { Term t = Deref(ARG1); if (IsVarTerm(t)) { out = attvars_in_complex_term(VarOfTerm(t)-1, VarOfTerm(t)+1, TermNil PASS_REGS); } else if (IsPrimitiveTerm(t)) { return Yap_unify(TermNil, ARG2); } else if (IsPairTerm(t)) { out = attvars_in_complex_term(RepPair(t)-1, RepPair(t)+1, TermNil PASS_REGS); } else { Functor f = FunctorOfTerm(t); out = attvars_in_complex_term(RepAppl(t), RepAppl(t)+ ArityOfFunctor(f), TermNil PASS_REGS); } if (out == 0L) { if (!expand_vts( PASS_REGS1 )) return FALSE; } } while (out == 0L); return Yap_unify(ARG2,out); } static Int p_term_variables3( USES_REGS1 ) /* variables in term t */ { Term out; do { Term t = Deref(ARG1); if (IsVarTerm(t)) { Term out = Yap_MkNewPairTerm(); return Yap_unify(t,HeadOfTerm(out)) && Yap_unify(ARG3, TailOfTerm(out)) && Yap_unify(out, ARG2); } else if (IsPrimitiveTerm(t)) { return Yap_unify(ARG2, ARG3); } else if (IsPairTerm(t)) { out = vars_in_complex_term(RepPair(t)-1, RepPair(t)+1, ARG3 PASS_REGS); } else { Functor f = FunctorOfTerm(t); out = vars_in_complex_term(RepAppl(t), RepAppl(t)+ ArityOfFunctor(f), ARG3 PASS_REGS); } if (out == 0L) { if (!expand_vts( PASS_REGS1 )) return FALSE; } } while (out == 0L); return Yap_unify(ARG2,out); } static Term vars_within_complex_term(register CELL *pt0, register CELL *pt0_end, Term inp USES_REGS) { register CELL **to_visit0, **to_visit = (CELL **)Yap_PreAllocCodeSpace(); register tr_fr_ptr TR0 = TR; CELL *InitialH = H; CELL output = AbsPair(H); to_visit0 = to_visit; while (!IsVarTerm(inp) && IsPairTerm(inp)) { Term t = HeadOfTerm(inp); if (IsVarTerm(t)) { CELL *ptr = VarOfTerm(t); *ptr = TermFoundVar; TrailTerm(TR++) = t; if (TR > (tr_fr_ptr)Yap_TrailTop - 256) { if (!Yap_growtrail((TR-TR0)*sizeof(tr_fr_ptr *), TRUE)) { goto trail_overflow; } } } inp = TailOfTerm(inp); } loop: while (pt0 < pt0_end) { register CELL d0; register CELL *ptd0; ++ pt0; ptd0 = pt0; d0 = *ptd0; deref_head(d0, vars_within_term_unk); vars_within_term_nvar: { if (IsPairTerm(d0)) { if (to_visit + 1024 >= (CELL **)AuxSp) { goto aux_overflow; } #ifdef RATIONAL_TREES to_visit[0] = pt0; to_visit[1] = pt0_end; to_visit[2] = (CELL *)*pt0; to_visit += 3; *pt0 = TermNil; #else if (pt0 < pt0_end) { to_visit[0] = pt0; to_visit[1] = pt0_end; to_visit += 2; } #endif pt0 = RepPair(d0) - 1; pt0_end = RepPair(d0) + 1; } else if (IsApplTerm(d0)) { register Functor f; register CELL *ap2; /* store the terms to visit */ ap2 = RepAppl(d0); f = (Functor)(*ap2); if (IsExtensionFunctor(f)) { continue; } /* store the terms to visit */ if (to_visit + 1024 >= (CELL **)AuxSp) { goto aux_overflow; } #ifdef RATIONAL_TREES to_visit[0] = pt0; to_visit[1] = pt0_end; to_visit[2] = (CELL *)*pt0; to_visit += 3; *pt0 = TermNil; #else if (pt0 < pt0_end) { to_visit[0] = pt0; to_visit[1] = pt0_end; to_visit += 2; } #endif d0 = ArityOfFunctor(f); pt0 = ap2; pt0_end = ap2 + d0; } else if (d0 == TermFoundVar) { /* leave an empty slot to fill in later */ if (H+1024 > ASP) { goto global_overflow; } H[1] = AbsPair(H+2); H += 2; H[-2] = (CELL)ptd0; *ptd0 = TermNil; } continue; } derefa_body(d0, ptd0, vars_within_term_unk, vars_within_term_nvar); } /* Do we still have compound terms to visit */ if (to_visit > to_visit0) { #ifdef RATIONAL_TREES to_visit -= 3; pt0 = to_visit[0]; pt0_end = to_visit[1]; *pt0 = (CELL)to_visit[2]; #else to_visit -= 2; pt0 = to_visit[0]; pt0_end = to_visit[1]; #endif goto loop; } clean_tr(TR0 PASS_REGS); Yap_ReleasePreAllocCodeSpace((ADDR)to_visit0); if (H != InitialH) { H[-1] = TermNil; return output; } else { return TermNil; } trail_overflow: #ifdef RATIONAL_TREES while (to_visit > to_visit0) { to_visit -= 3; pt0 = to_visit[0]; *pt0 = (CELL)to_visit[2]; } #endif Yap_Error_TYPE = OUT_OF_TRAIL_ERROR; Yap_Error_Size = (TR-TR0)*sizeof(tr_fr_ptr *); clean_tr(TR0 PASS_REGS); Yap_ReleasePreAllocCodeSpace((ADDR)to_visit0); H = InitialH; return 0L; aux_overflow: Yap_Error_Size = (to_visit-to_visit0)*sizeof(CELL **); #ifdef RATIONAL_TREES while (to_visit > to_visit0) { to_visit -= 3; pt0 = to_visit[0]; *pt0 = (CELL)to_visit[2]; } #endif Yap_Error_TYPE = OUT_OF_AUXSPACE_ERROR; clean_tr(TR0 PASS_REGS); Yap_ReleasePreAllocCodeSpace((ADDR)to_visit0); H = InitialH; return 0L; global_overflow: #ifdef RATIONAL_TREES while (to_visit > to_visit0) { to_visit -= 3; pt0 = to_visit[0]; *pt0 = (CELL)to_visit[2]; } #endif clean_tr(TR0 PASS_REGS); Yap_ReleasePreAllocCodeSpace((ADDR)to_visit0); H = InitialH; Yap_Error_TYPE = OUT_OF_STACK_ERROR; Yap_Error_Size = (ASP-H)*sizeof(CELL); return 0L; } static Int p_variables_within_term( USES_REGS1 ) /* variables within term t */ { Term out; do { Term t = Deref(ARG2); if (IsVarTerm(t)) { out = vars_within_complex_term(VarOfTerm(t)-1, VarOfTerm(t), Deref(ARG1) PASS_REGS); } else if (IsPrimitiveTerm(t)) out = TermNil; else if (IsPairTerm(t)) { out = vars_within_complex_term(RepPair(t)-1, RepPair(t)+1, Deref(ARG1) PASS_REGS); } else { Functor f = FunctorOfTerm(t); out = vars_within_complex_term(RepAppl(t), RepAppl(t)+ ArityOfFunctor(f), Deref(ARG1) PASS_REGS); } if (out == 0L) { if (!expand_vts( PASS_REGS1 )) return FALSE; } } while (out == 0L); return Yap_unify(ARG3,out); } static Term new_vars_in_complex_term(register CELL *pt0, register CELL *pt0_end, Term inp USES_REGS) { register CELL **to_visit0, **to_visit = (CELL **)Yap_PreAllocCodeSpace(); register tr_fr_ptr TR0 = TR; CELL *InitialH = H; CELL output = AbsPair(H); to_visit0 = to_visit; while (!IsVarTerm(inp) && IsPairTerm(inp)) { Term t = HeadOfTerm(inp); if (IsVarTerm(t)) { CELL *ptr = VarOfTerm(t); *ptr = TermFoundVar; TrailTerm(TR++) = t; if (TR > (tr_fr_ptr)Yap_TrailTop - 256) { if (!Yap_growtrail((TR-TR0)*sizeof(tr_fr_ptr *), TRUE)) { goto trail_overflow; } } } inp = TailOfTerm(inp); } loop: while (pt0 < pt0_end) { register CELL d0; register CELL *ptd0; ++ pt0; ptd0 = pt0; d0 = *ptd0; deref_head(d0, vars_within_term_unk); vars_within_term_nvar: { if (IsPairTerm(d0)) { if (to_visit + 1024 >= (CELL **)AuxSp) { goto aux_overflow; } #ifdef RATIONAL_TREES to_visit[0] = pt0; to_visit[1] = pt0_end; to_visit[2] = (CELL *)*pt0; to_visit += 3; *pt0 = TermNil; #else if (pt0 < pt0_end) { to_visit[0] = pt0; to_visit[1] = pt0_end; to_visit += 2; } #endif pt0 = RepPair(d0) - 1; pt0_end = RepPair(d0) + 1; } else if (IsApplTerm(d0)) { register Functor f; register CELL *ap2; /* store the terms to visit */ ap2 = RepAppl(d0); f = (Functor)(*ap2); if (IsExtensionFunctor(f)) { continue; } /* store the terms to visit */ if (to_visit + 1024 >= (CELL **)AuxSp) { goto aux_overflow; } #ifdef RATIONAL_TREES to_visit[0] = pt0; to_visit[1] = pt0_end; to_visit[2] = (CELL *)*pt0; to_visit += 3; *pt0 = TermNil; #else if (pt0 < pt0_end) { to_visit[0] = pt0; to_visit[1] = pt0_end; to_visit += 2; } #endif d0 = ArityOfFunctor(f); pt0 = ap2; pt0_end = ap2 + d0; } continue; } derefa_body(d0, ptd0, vars_within_term_unk, vars_within_term_nvar); /* do or pt2 are unbound */ *ptd0 = TermNil; /* leave an empty slot to fill in later */ if (H+1024 > ASP) { goto global_overflow; } H[1] = AbsPair(H+2); H += 2; H[-2] = (CELL)ptd0; /* next make sure noone will see this as a variable again */ if (TR > (tr_fr_ptr)Yap_TrailTop - 256) { /* Trail overflow */ if (!Yap_growtrail((TR-TR0)*sizeof(tr_fr_ptr *), TRUE)) { goto trail_overflow; } } TrailTerm(TR++) = (CELL)ptd0; } /* Do we still have compound terms to visit */ if (to_visit > to_visit0) { #ifdef RATIONAL_TREES to_visit -= 3; pt0 = to_visit[0]; pt0_end = to_visit[1]; *pt0 = (CELL)to_visit[2]; #else to_visit -= 2; pt0 = to_visit[0]; pt0_end = to_visit[1]; #endif goto loop; } clean_tr(TR0 PASS_REGS); Yap_ReleasePreAllocCodeSpace((ADDR)to_visit0); if (H != InitialH) { H[-1] = TermNil; return output; } else { return TermNil; } trail_overflow: #ifdef RATIONAL_TREES while (to_visit > to_visit0) { to_visit -= 3; pt0 = to_visit[0]; *pt0 = (CELL)to_visit[2]; } #endif Yap_Error_TYPE = OUT_OF_TRAIL_ERROR; Yap_Error_Size = (TR-TR0)*sizeof(tr_fr_ptr *); clean_tr(TR0 PASS_REGS); Yap_ReleasePreAllocCodeSpace((ADDR)to_visit0); H = InitialH; return 0L; aux_overflow: Yap_Error_Size = (to_visit-to_visit0)*sizeof(CELL **); #ifdef RATIONAL_TREES while (to_visit > to_visit0) { to_visit -= 3; pt0 = to_visit[0]; *pt0 = (CELL)to_visit[2]; } #endif Yap_Error_TYPE = OUT_OF_AUXSPACE_ERROR; clean_tr(TR0 PASS_REGS); Yap_ReleasePreAllocCodeSpace((ADDR)to_visit0); H = InitialH; return 0L; global_overflow: #ifdef RATIONAL_TREES while (to_visit > to_visit0) { to_visit -= 3; pt0 = to_visit[0]; *pt0 = (CELL)to_visit[2]; } #endif clean_tr(TR0 PASS_REGS); Yap_ReleasePreAllocCodeSpace((ADDR)to_visit0); H = InitialH; Yap_Error_TYPE = OUT_OF_STACK_ERROR; Yap_Error_Size = (ASP-H)*sizeof(CELL); return 0L; } static Int p_new_variables_in_term( USES_REGS1 ) /* variables within term t */ { Term out; do { Term t = Deref(ARG2); if (IsVarTerm(t)) { out = new_vars_in_complex_term(VarOfTerm(t)-1, VarOfTerm(t), Deref(ARG1) PASS_REGS); } else if (IsPrimitiveTerm(t)) out = TermNil; else if (IsPairTerm(t)) { out = new_vars_in_complex_term(RepPair(t)-1, RepPair(t)+1, Deref(ARG1) PASS_REGS); } else { Functor f = FunctorOfTerm(t); out = new_vars_in_complex_term(RepAppl(t), RepAppl(t)+ ArityOfFunctor(f), Deref(ARG1) PASS_REGS); } if (out == 0L) { if (!expand_vts( PASS_REGS1 )) return FALSE; } } while (out == 0L); return Yap_unify(ARG3,out); } static Term non_singletons_in_complex_term(register CELL *pt0, register CELL *pt0_end USES_REGS) { register CELL **to_visit0, **to_visit = (CELL **)Yap_PreAllocCodeSpace(); register tr_fr_ptr TR0 = TR; CELL *InitialH = H; CELL output = AbsPair(H); to_visit0 = to_visit; loop: while (pt0 < pt0_end) { register CELL d0; register CELL *ptd0; ++ pt0; ptd0 = pt0; d0 = *ptd0; deref_head(d0, vars_in_term_unk); vars_in_term_nvar: { if (IsPairTerm(d0)) { if (to_visit + 1024 >= (CELL **)AuxSp) { goto aux_overflow; } #ifdef RATIONAL_TREES to_visit[0] = pt0; to_visit[1] = pt0_end; to_visit[2] = (CELL *)*pt0; to_visit += 3; *pt0 = TermNil; #else if (pt0 < pt0_end) { to_visit[0] = pt0; to_visit[1] = pt0_end; to_visit += 2; } #endif pt0 = RepPair(d0) - 1; pt0_end = RepPair(d0) + 1; } else if (IsApplTerm(d0)) { register Functor f; register CELL *ap2; /* store the terms to visit */ ap2 = RepAppl(d0); f = (Functor)(*ap2); if (IsExtensionFunctor(f)) { continue; } if (to_visit + 1024 >= (CELL **)AuxSp) { goto aux_overflow; } #ifdef RATIONAL_TREES to_visit[0] = pt0; to_visit[1] = pt0_end; to_visit[2] = (CELL *)*pt0; to_visit += 3; *pt0 = TermNil; #else /* store the terms to visit */ if (pt0 < pt0_end) { to_visit[0] = pt0; to_visit[1] = pt0_end; to_visit += 2; } #endif d0 = ArityOfFunctor(f); pt0 = ap2; pt0_end = ap2 + d0; } else if (d0 == TermFoundVar) { CELL *pt2 = pt0; while(IsVarTerm(*pt2)) pt2 = (CELL *)(*pt2); H[1] = AbsPair(H+2); H += 2; H[-2] = (CELL)pt2; *pt2 = TermReFoundVar; } continue; } derefa_body(d0, ptd0, vars_in_term_unk, vars_in_term_nvar); /* do or pt2 are unbound */ *ptd0 = TermFoundVar; /* next make sure we can recover the variable again */ TrailTerm(TR++) = (CELL)ptd0; } /* Do we still have compound terms to visit */ if (to_visit > to_visit0) { #ifdef RATIONAL_TREES to_visit -= 3; pt0 = to_visit[0]; pt0_end = to_visit[1]; *pt0 = (CELL)to_visit[2]; #else to_visit -= 2; pt0 = to_visit[0]; pt0_end = to_visit[1]; #endif goto loop; } clean_tr(TR0 PASS_REGS); if (H != InitialH) { /* close the list */ RESET_VARIABLE(H-1); Yap_unify((CELL)(H-1),ARG2); return output; } else { return ARG2; } aux_overflow: #ifdef RATIONAL_TREES while (to_visit > to_visit0) { to_visit -= 3; pt0 = to_visit[0]; *pt0 = (CELL)to_visit[2]; } #endif clean_tr(TR0 PASS_REGS); if (H != InitialH) { /* close the list */ RESET_VARIABLE(H-1); } return 0L; } static Int p_non_singletons_in_term( USES_REGS1 ) /* non_singletons in term t */ { Term t; Term out; while (TRUE) { t = Deref(ARG1); if (IsVarTerm(t)) { out = MkPairTerm(t,ARG2); } else if (IsPrimitiveTerm(t)) { out = ARG2; } else if (IsPairTerm(t)) { out = non_singletons_in_complex_term(RepPair(t)-1, RepPair(t)+1 PASS_REGS); } else { out = non_singletons_in_complex_term(RepAppl(t), RepAppl(t)+ ArityOfFunctor(FunctorOfTerm(t)) PASS_REGS); } if (out != 0L) { return Yap_unify(ARG3,out); } else { if (!Yap_ExpandPreAllocCodeSpace(0, NULL, TRUE)) { Yap_Error(OUT_OF_AUXSPACE_ERROR, ARG1, "overflow in singletons"); return FALSE; } } } } static Int ground_complex_term(register CELL *pt0, register CELL *pt0_end USES_REGS) { register CELL **to_visit0, **to_visit = (CELL **)Yap_PreAllocCodeSpace(); to_visit0 = to_visit; loop: while (pt0 < pt0_end) { register CELL d0; register CELL *ptd0; ++pt0; ptd0 = pt0; d0 = *ptd0; deref_head(d0, vars_in_term_unk); vars_in_term_nvar: { if (IsPairTerm(d0)) { if (to_visit + 1024 >= (CELL **)AuxSp) { goto aux_overflow; } #ifdef RATIONAL_TREES to_visit[0] = pt0; to_visit[1] = pt0_end; to_visit[2] = (CELL *)*pt0; to_visit += 3; *pt0 = TermNil; #else if (pt0 < pt0_end) { to_visit[0] = pt0; to_visit[1] = pt0_end; to_visit += 2; } #endif pt0 = RepPair(d0) - 1; pt0_end = RepPair(d0) + 1; } else if (IsApplTerm(d0)) { register Functor f; register CELL *ap2; /* store the terms to visit */ ap2 = RepAppl(d0); f = (Functor)(*ap2); if (IsExtensionFunctor(f)) { continue; } if (to_visit + 1024 >= (CELL **)AuxSp) { goto aux_overflow; } #ifdef RATIONAL_TREES to_visit[0] = pt0; to_visit[1] = pt0_end; to_visit[2] = (CELL *)*pt0; to_visit += 3; *pt0 = TermNil; #else /* store the terms to visit */ if (pt0 < pt0_end) { to_visit[0] = pt0; to_visit[1] = pt0_end; to_visit += 2; } #endif d0 = ArityOfFunctor(f); pt0 = ap2; pt0_end = ap2 + d0; } continue; } derefa_body(d0, ptd0, vars_in_term_unk, vars_in_term_nvar); #ifdef RATIONAL_TREES while (to_visit > to_visit0) { to_visit -= 3; pt0 = to_visit[0]; pt0_end = to_visit[1]; *pt0 = (CELL)to_visit[2]; } #endif return FALSE; } /* Do we still have compound terms to visit */ if (to_visit > to_visit0) { #ifdef RATIONAL_TREES to_visit -= 3; pt0 = to_visit[0]; pt0_end = to_visit[1]; *pt0 = (CELL)to_visit[2]; #else to_visit -= 2; pt0 = to_visit[0]; pt0_end = to_visit[1]; #endif goto loop; } return TRUE; aux_overflow: /* unwind stack */ #ifdef RATIONAL_TREES while (to_visit > to_visit0) { to_visit -= 3; pt0 = to_visit[0]; *pt0 = (CELL)to_visit[2]; } #endif return -1; } int Yap_IsGroundTerm(Term t) { CACHE_REGS while (TRUE) { Int out; if (IsVarTerm(t)) { return FALSE; } else if (IsPrimitiveTerm(t)) { return TRUE; } else if (IsPairTerm(t)) { if ((out =ground_complex_term(RepPair(t)-1, RepPair(t)+1 PASS_REGS)) >= 0) { return out; } } else { Functor fun = FunctorOfTerm(t); if (IsExtensionFunctor(fun)) return TRUE; else if ((out = ground_complex_term(RepAppl(t), RepAppl(t)+ ArityOfFunctor(fun) PASS_REGS)) >= 0) { return out; } } if (out < 0) { *H++ = t; if (!Yap_ExpandPreAllocCodeSpace(0, NULL, TRUE)) { Yap_Error(OUT_OF_AUXSPACE_ERROR, ARG1, "overflow in ground"); return FALSE; } t = *--H; } } } static Int p_ground( USES_REGS1 ) /* ground(+T) */ { return Yap_IsGroundTerm(Deref(ARG1)); } static int SizeOfExtension(Term t) { Functor f = FunctorOfTerm(t); if (f== FunctorDouble) { return 2 + sizeof(Float)/sizeof(CELL); } if (f== FunctorLongInt) { return 2 + sizeof(Float)/sizeof(CELL); } if (f== FunctorDBRef) { return 0; } if (f== FunctorBigInt) { CELL *pt = RepAppl(t)+2; return 3+sizeof(MP_INT)+(((MP_INT *)(pt))->_mp_alloc*sizeof(mp_limb_t)); } return 0; } static Int sz_ground_complex_term(register CELL *pt0, register CELL *pt0_end, int ground USES_REGS) { register CELL **to_visit0, **to_visit = (CELL **)Yap_PreAllocCodeSpace(); Int sz = 0; to_visit0 = to_visit; loop: while (pt0 < pt0_end) { register CELL d0; register CELL *ptd0; ++pt0; ptd0 = pt0; d0 = *ptd0; deref_head(d0, vars_in_term_unk); vars_in_term_nvar: { if (IsPairTerm(d0)) { sz += 2; if (to_visit + 1024 >= (CELL **)AuxSp) { goto aux_overflow; } #ifdef RATIONAL_TREES to_visit[0] = pt0; to_visit[1] = pt0_end; to_visit[2] = (CELL *)*pt0; to_visit += 3; *pt0 = TermNil; #else if (pt0 < pt0_end) { to_visit[0] = pt0; to_visit[1] = pt0_end; to_visit += 2; } #endif pt0 = RepPair(d0) - 1; pt0_end = RepPair(d0) + 1; } else if (IsApplTerm(d0)) { register Functor f; register CELL *ap2; /* store the terms to visit */ ap2 = RepAppl(d0); f = (Functor)(*ap2); if (IsExtensionFunctor(f)) { sz += SizeOfExtension(d0); continue; } if (to_visit + 1024 >= (CELL **)AuxSp) { goto aux_overflow; } #ifdef RATIONAL_TREES to_visit[0] = pt0; to_visit[1] = pt0_end; to_visit[2] = (CELL *)*pt0; to_visit += 3; *pt0 = TermNil; #else /* store the terms to visit */ if (pt0 < pt0_end) { to_visit[0] = pt0; to_visit[1] = pt0_end; to_visit += 2; } #endif d0 = ArityOfFunctor(f); sz += (1+d0); pt0 = ap2; pt0_end = ap2 + d0; } continue; } derefa_body(d0, ptd0, vars_in_term_unk, vars_in_term_nvar); if (!ground) continue; #ifdef RATIONAL_TREES while (to_visit > to_visit0) { to_visit -= 3; pt0 = to_visit[0]; pt0_end = to_visit[1]; *pt0 = (CELL)to_visit[2]; } #endif return 0; } /* Do we still have compound terms to visit */ if (to_visit > to_visit0) { #ifdef RATIONAL_TREES to_visit -= 3; pt0 = to_visit[0]; pt0_end = to_visit[1]; *pt0 = (CELL)to_visit[2]; #else to_visit -= 2; pt0 = to_visit[0]; pt0_end = to_visit[1]; #endif goto loop; } return sz; aux_overflow: /* unwind stack */ #ifdef RATIONAL_TREES while (to_visit > to_visit0) { to_visit -= 3; pt0 = to_visit[0]; *pt0 = (CELL)to_visit[2]; } #endif return -1; } int Yap_SizeGroundTerm(Term t, int ground) { CACHE_REGS if (IsVarTerm(t)) { if (!ground) return 1; return 0; } else if (IsPrimitiveTerm(t)) { return 1; } else if (IsPairTerm(t)) { int sz = sz_ground_complex_term(RepPair(t)-1, RepPair(t)+1, ground PASS_REGS); if (sz <= 0) return sz; return sz+2; } else { int sz = 0; Functor fun = FunctorOfTerm(t); if (IsExtensionFunctor(fun)) return 1+ SizeOfExtension(t); sz = sz_ground_complex_term(RepAppl(t), RepAppl(t)+ ArityOfFunctor(fun), ground PASS_REGS); if (sz <= 0) return sz; return 1+ArityOfFunctor(fun)+sz; } } static Int var_in_complex_term(register CELL *pt0, register CELL *pt0_end, Term v USES_REGS) { register CELL **to_visit0, **to_visit = (CELL **)Yap_PreAllocCodeSpace(); register tr_fr_ptr TR0 = TR; to_visit0 = to_visit; loop: while (pt0 < pt0_end) { register CELL d0; register CELL *ptd0; ++ pt0; ptd0 = pt0; d0 = *ptd0; deref_head(d0, var_in_term_unk); var_in_term_nvar: { if (IsPairTerm(d0)) { if (to_visit + 1024 >= (CELL **)AuxSp) { goto aux_overflow; } #ifdef RATIONAL_TREES to_visit[0] = pt0; to_visit[1] = pt0_end; to_visit[2] = (CELL *)*pt0; to_visit += 3; *pt0 = TermNil; #else if (pt0 < pt0_end) { to_visit[0] = pt0; to_visit[1] = pt0_end; to_visit += 2; } #endif pt0 = RepPair(d0) - 1; pt0_end = RepPair(d0) + 1; continue; } else if (IsApplTerm(d0)) { register Functor f; register CELL *ap2; /* store the terms to visit */ ap2 = RepAppl(d0); f = (Functor)(*ap2); if (IsExtensionFunctor(f)) { continue; } if (to_visit + 1024 >= (CELL **)AuxSp) { goto aux_overflow; } #ifdef RATIONAL_TREES to_visit[0] = pt0; to_visit[1] = pt0_end; to_visit[2] = (CELL *)*pt0; to_visit += 3; *pt0 = TermNil; #else /* store the terms to visit */ if (pt0 < pt0_end) { to_visit[0] = pt0; to_visit[1] = pt0_end; to_visit += 2; } #endif d0 = ArityOfFunctor(f); pt0 = ap2; pt0_end = ap2 + d0; } continue; } deref_body(d0, ptd0, var_in_term_unk, var_in_term_nvar); if ((CELL)ptd0 == v) { /* we found it */ #ifdef RATIONAL_TREES while (to_visit > to_visit0) { to_visit -= 3; pt0 = to_visit[0]; *pt0 = (CELL)to_visit[2]; } #endif clean_tr(TR0 PASS_REGS); return(TRUE); } /* do or pt2 are unbound */ *ptd0 = TermNil; /* next make sure noone will see this as a variable again */ TrailTerm(TR++) = (CELL)ptd0; } /* Do we still have compound terms to visit */ if (to_visit > to_visit0) { #ifdef RATIONAL_TREES to_visit -= 3; pt0 = to_visit[0]; pt0_end = to_visit[1]; *pt0 = (CELL)to_visit[2]; #else to_visit -= 2; pt0 = to_visit[0]; pt0_end = to_visit[1]; #endif goto loop; } #ifdef RATIONAL_TREES while (to_visit > to_visit0) { to_visit -= 3; pt0 = to_visit[0]; *pt0 = (CELL)to_visit[2]; } #endif clean_tr(TR0 PASS_REGS); return FALSE; aux_overflow: /* unwind stack */ #ifdef RATIONAL_TREES while (to_visit > to_visit0) { to_visit -= 3; pt0 = to_visit[0]; *pt0 = (CELL)to_visit[2]; } #endif return -1; } static Int var_in_term(Term v, Term t USES_REGS) /* variables in term t */ { if (IsVarTerm(t)) { return(v == t); } else if (IsPrimitiveTerm(t)) { return(FALSE); } else if (IsPairTerm(t)) { return(var_in_complex_term(RepPair(t)-1, RepPair(t)+1,v PASS_REGS)); } else return(var_in_complex_term(RepAppl(t), RepAppl(t)+ ArityOfFunctor(FunctorOfTerm(t)),v PASS_REGS)); } static Int p_var_in_term( USES_REGS1 ) { return(var_in_term(Deref(ARG2), Deref(ARG1) PASS_REGS)); } /* The code for TermHash was originally contributed by Gertjen Van Noor */ /* This code with max_depth == -1 will loop for infinite trees */ //----------------------------------------------------------------------------- // MurmurHash2, by Austin Appleby // Note - This code makes a few assumptions about how your machine behaves - // 1. We can read a 4-byte value from any address without crashing // 2. sizeof(int) == 4 // And it has a few limitations - // 1. It will not work incrementally. // 2. It will not produce the same results on little-endian and big-endian // machines. static unsigned int MurmurHashNeutral2 ( const void * key, int len, unsigned int seed ) { const unsigned int m = 0x5bd1e995; const int r = 24; unsigned int h = seed ^ len; const unsigned char * data = (const unsigned char *)key; while(len >= 4) { unsigned int k; k = data[0]; k |= data[1] << 8; k |= data[2] << 16; k |= data[3] << 24; k *= m; k ^= k >> r; k *= m; h *= m; h ^= k; data += 4; len -= 4; } switch(len) { case 3: h ^= data[2] << 16; case 2: h ^= data[1] << 8; case 1: h ^= data[0]; h *= m; }; h ^= h >> 13; h *= m; h ^= h >> 15; return h; } static CELL * AddAtomToHash(CELL *st, Atom at) { unsigned int len; CELL * start; if (IsWideAtom(at)) { wchar_t *c = RepAtom(at)->WStrOfAE; int ulen = wcslen(c); len = ulen*sizeof(wchar_t); if (len % CellSize == 0) { len /= CellSize; } else { len /= CellSize; len++; } st[len-1] = 0L; wcsncpy((wchar_t *)st, c, ulen); } else { char *c = RepAtom(at)->StrOfAE; int ulen = strlen(c); /* fix hashing over empty atom */ if (!ulen) { return st; } start = (CELL *)c; if (ulen % CellSize == 0) { len = ulen/CellSize; } else { len = ulen/CellSize; len++; } st[len-1] = 0L; strncpy((char *)st, c, ulen); } return st+len; } static CELL * hash_complex_term(register CELL *pt0, register CELL *pt0_end, Int depth, CELL *st, int variant USES_REGS) { register CELL **to_visit0, **to_visit = (CELL **)Yap_PreAllocCodeSpace(); to_visit0 = to_visit; loop: while (pt0 < pt0_end) { register CELL d0; register CELL *ptd0; ++ pt0; ptd0 = pt0; d0 = *ptd0; deref_head(d0, hash_complex_unk); hash_complex_nvar: { if (st + 1024 >= ASP) { goto global_overflow; } if (IsAtomOrIntTerm(d0)) { if (d0 != TermFoundVar) { if (IsAtomTerm(d0)) { st = AddAtomToHash(st, AtomOfTerm(d0)); } else { *st++ = IntOfTerm(d0); } } continue; } else if (IsPairTerm(d0)) { st = AddAtomToHash(st, AtomDot); if (depth == 1) continue; if (to_visit + 1024 >= (CELL **)AuxSp) { goto aux_overflow; } #ifdef RATIONAL_TREES to_visit[0] = pt0; to_visit[1] = pt0_end; to_visit[2] = (CELL *)*pt0; to_visit[3] = (CELL *)(depth--); to_visit += 4; *pt0 = TermFoundVar; #else if (pt0 < pt0_end) { to_visit[0] = pt0; to_visit[1] = pt0_end; to_visit[2] = (CELL *)(depth--); to_visit += 3; } #endif pt0 = RepPair(d0) - 1; pt0_end = RepPair(d0) + 1; continue; } else if (IsApplTerm(d0)) { register Functor f; register CELL *ap2; /* store the terms to visit */ ap2 = RepAppl(d0); f = (Functor)(*ap2); if (IsExtensionFunctor(f)) { CELL fc = (CELL)f; switch(fc) { case (CELL)FunctorDBRef: *st++ = fc; break; case (CELL)FunctorLongInt: *st++ = LongIntOfTerm(d0); break; #ifdef USE_GMP case (CELL)FunctorBigInt: { CELL *pt = RepAppl(d0); Int sz = sizeof(MP_INT)+1+ (((MP_INT *)(pt+2))->_mp_alloc*sizeof(mp_limb_t)); if (st + (1024 + sz/CellSize) >= ASP) { goto global_overflow; } /* then the actual number */ memcpy((void *)(st+1), (void *)(pt+1), sz); st = st+sz/CellSize; } break; #endif case (CELL)FunctorDouble: { CELL *pt = RepAppl(d0); *st++ = pt[1]; #if SIZEOF_DOUBLE == 2*SIZEOF_LONG_INT *st++ = pt[2]; #endif break; } } continue; } st = AddAtomToHash(st, NameOfFunctor(f)); if (depth == 1) continue; if (to_visit + 1024 >= (CELL **)AuxSp) { goto aux_overflow; } #ifdef RATIONAL_TREES to_visit[0] = pt0; to_visit[1] = pt0_end; to_visit[2] = (CELL *)*pt0; to_visit[3] = (CELL *)(depth--); to_visit += 4; *pt0 = TermFoundVar; #else /* store the terms to visit */ if (pt0 < pt0_end) { to_visit[0] = pt0; to_visit[1] = pt0_end; to_visit[2] = depth--; to_visit += 3; } #endif d0 = ArityOfFunctor(f); pt0 = ap2; pt0_end = ap2 + d0; } continue; } deref_body(d0, ptd0, hash_complex_unk, hash_complex_nvar); if (!variant) return NULL; else continue; } /* Do we still have compound terms to visit */ if (to_visit > to_visit0) { #ifdef RATIONAL_TREES to_visit -= 4; pt0 = to_visit[0]; pt0_end = to_visit[1]; *pt0 = (CELL)to_visit[2]; depth = (CELL)to_visit[3]; #else to_visit -= 3; pt0 = to_visit[0]; pt0_end = to_visit[1]; depth = (CELL)to_visit[2]; #endif goto loop; } return st; aux_overflow: /* unwind stack */ #ifdef RATIONAL_TREES while (to_visit > to_visit0) { to_visit -= 4; pt0 = to_visit[0]; *pt0 = (CELL)to_visit[2]; } #endif return (CELL *)-1; global_overflow: /* unwind stack */ #ifdef RATIONAL_TREES while (to_visit > to_visit0) { to_visit -= 4; pt0 = to_visit[0]; *pt0 = (CELL)to_visit[2]; } #endif return (CELL *) -2; } Int Yap_TermHash(Term t, Int size, Int depth, int variant) { CACHE_REGS unsigned int i1; Term t1 = Deref(t); while (TRUE) { CELL *ar = hash_complex_term(&t1-1, &t1, depth, H, FALSE PASS_REGS); if (ar == (CELL *)-1) { if (!Yap_ExpandPreAllocCodeSpace(0, NULL, TRUE)) { Yap_Error(OUT_OF_AUXSPACE_ERROR, ARG1, "overflow in term_hash"); return FALSE; } t1 = Deref(ARG1); } else if(ar == (CELL *)-2) { if (!Yap_gcl((ASP-H)*sizeof(CELL), 0, ENV, gc_P(P,CP))) { Yap_Error(OUT_OF_STACK_ERROR, TermNil, "in term_hash"); return FALSE; } t1 = Deref(ARG1); } else if (ar == NULL) { return FALSE; } else { i1 = MurmurHashNeutral2((const void *)H, CellSize*(ar-H),0x1a3be34a); break; } } /* got the seed and hash from SWI-Prolog */ return i1 % size; } static Int p_term_hash( USES_REGS1 ) { unsigned int i1; Term t1 = Deref(ARG1); Term t2 = Deref(ARG2); Term t3 = Deref(ARG3); Term result; Int size, depth; if (IsVarTerm(t2)) { Yap_Error(INSTANTIATION_ERROR,t2,"term_hash/4"); return(FALSE); } if (!IsIntegerTerm(t2)) { Yap_Error(TYPE_ERROR_INTEGER,t2,"term_hash/4"); return(FALSE); } depth = IntegerOfTerm(t2); if (depth == 0) { if (IsVarTerm(t1)) return(TRUE); return(Yap_unify(ARG4,MkIntTerm(0))); } if (IsVarTerm(t3)) { Yap_Error(INSTANTIATION_ERROR,t3,"term_hash/4"); return(FALSE); } if (!IsIntegerTerm(t3)) { Yap_Error(TYPE_ERROR_INTEGER,t3,"term_hash/4"); return(FALSE); } size = IntegerOfTerm(t3); while (TRUE) { CELL *ar = hash_complex_term(&t1-1, &t1, depth, H, FALSE PASS_REGS); if (ar == (CELL *)-1) { if (!Yap_ExpandPreAllocCodeSpace(0, NULL, TRUE)) { Yap_Error(OUT_OF_AUXSPACE_ERROR, ARG1, "overflow in term_hash"); return FALSE; } t1 = Deref(ARG1); } else if(ar == (CELL *)-2) { if (!Yap_gcl((ASP-H)*sizeof(CELL), 4, ENV, gc_P(P,CP))) { Yap_Error(OUT_OF_STACK_ERROR, TermNil, "in term_hash"); return FALSE; } t1 = Deref(ARG1); } else if (ar == NULL) { return FALSE; } else { i1 = MurmurHashNeutral2((const void *)H, CellSize*(ar-H),0x1a3be34a); break; } } /* got the seed and hash from SWI-Prolog */ result = MkIntegerTerm(i1 % size); return Yap_unify(ARG4,result); } static Int p_instantiated_term_hash( USES_REGS1 ) { unsigned int i1; Term t1 = Deref(ARG1); Term t2 = Deref(ARG2); Term t3 = Deref(ARG3); Term result; Int size, depth; if (IsVarTerm(t2)) { Yap_Error(INSTANTIATION_ERROR,t2,"term_hash/4"); return(FALSE); } if (!IsIntegerTerm(t2)) { Yap_Error(TYPE_ERROR_INTEGER,t2,"term_hash/4"); return(FALSE); } depth = IntegerOfTerm(t2); if (depth == 0) { if (IsVarTerm(t1)) return(TRUE); return(Yap_unify(ARG4,MkIntTerm(0))); } if (IsVarTerm(t3)) { Yap_Error(INSTANTIATION_ERROR,t3,"term_hash/4"); return(FALSE); } if (!IsIntegerTerm(t3)) { Yap_Error(TYPE_ERROR_INTEGER,t3,"term_hash/4"); return(FALSE); } size = IntegerOfTerm(t3); while (TRUE) { CELL *ar = hash_complex_term(&t1-1, &t1, depth, H, TRUE PASS_REGS); if (ar == (CELL *)-1) { if (!Yap_ExpandPreAllocCodeSpace(0, NULL, TRUE)) { Yap_Error(OUT_OF_AUXSPACE_ERROR, ARG1, "overflow in term_hash"); return FALSE; } t1 = Deref(ARG1); } else if(ar == (CELL *)-2) { if (!Yap_gcl((ASP-H)*sizeof(CELL), 4, ENV, gc_P(P,CP))) { Yap_Error(OUT_OF_STACK_ERROR, TermNil, "in term_hash"); return FALSE; } t1 = Deref(ARG1); } else if (ar == NULL) { return FALSE; } else { i1 = MurmurHashNeutral2((const void *)H, CellSize*(ar-H),0x1a3be34a); break; } } /* got the seed and hash from SWI-Prolog */ result = MkIntegerTerm(i1 % size); return Yap_unify(ARG4,result); } static int variant_complex(register CELL *pt0, register CELL *pt0_end, register CELL *pt1 USES_REGS) { tr_fr_ptr OLDTR = TR; register CELL **to_visit = (CELL **)ASP; /* make sure that unification always forces trailing */ HBREG = H; loop: while (pt0 < pt0_end) { register CELL d0, d1; ++ pt0; ++ pt1; d0 = Derefa(pt0); d1 = Derefa(pt1); if (IsVarTerm(d0)) { if (IsVarTerm(d1)) { CELL *pt0 = VarOfTerm(d0); CELL *pt1 = VarOfTerm(d1); if (pt0 >= HBREG || pt1 >= HBREG) { /* one of the variables has been found before */ if (VarOfTerm(d0)+1 == VarOfTerm(d1)) continue; goto fail; } else { /* two new occurrences of the same variable */ Term n0 = MkVarTerm(), n1 = MkVarTerm(); Bind_Global(VarOfTerm(d0), n0); Bind_Global(VarOfTerm(d1), n1); } continue; } else { goto fail; } } else if (IsVarTerm(d1)) { goto fail; } else { if (d0 == d1) continue; else if (IsAtomOrIntTerm(d0)) { goto fail; } else if (IsPairTerm(d0)) { if (!IsPairTerm(d1)) { goto fail; } #ifdef RATIONAL_TREES /* now link the two structures so that no one else will */ /* come here */ to_visit -= 4; if ((CELL *)to_visit < H+1024) goto out_of_stack; to_visit[0] = pt0; to_visit[1] = pt0_end; to_visit[2] = pt1; to_visit[3] = (CELL *)*pt0; *pt0 = d1; #else /* store the terms to visit */ if (pt0 < pt0_end) { to_visit -= 3; if ((CELL *)to_visit < H+1024) goto out_of_stack; to_visit[0] = pt0; to_visit[1] = pt0_end; to_visit[2] = pt1; } #endif pt0 = RepPair(d0) - 1; pt0_end = RepPair(d0) + 1; pt1 = RepPair(d1) - 1; continue; } else if (IsApplTerm(d0)) { register Functor f; register CELL *ap2, *ap3; if (!IsApplTerm(d1)) { goto fail; } else { /* store the terms to visit */ Functor f2; ap2 = RepAppl(d0); ap3 = RepAppl(d1); f = (Functor)(*ap2); f2 = (Functor)(*ap3); if (f != f2) goto fail; if (IsExtensionFunctor(f)) { if (!unify_extension(f, d0, ap2, d1)) goto fail; continue; } #ifdef RATIONAL_TREES /* now link the two structures so that no one else will */ /* come here */ to_visit -= 4; if ((CELL *)to_visit < H+1024) goto out_of_stack; to_visit[0] = pt0; to_visit[1] = pt0_end; to_visit[2] = pt1; to_visit[3] = (CELL *)*pt0; *pt0 = d1; #else /* store the terms to visit */ if (pt0 < pt0_end) { to_visit -= 3; if ((CELL *)to_visit < H+1024) goto out_of_stack; to_visit[0] = pt0; to_visit[1] = pt0_end; to_visit[2] = pt1; } #endif d0 = ArityOfFunctor(f); pt0 = ap2; pt0_end = ap2 + d0; pt1 = ap3; continue; } } } } /* Do we still have compound terms to visit */ if (to_visit < (CELL **)ASP) { #ifdef RATIONAL_TREES pt0 = to_visit[0]; pt0_end = to_visit[1]; pt1 = to_visit[2]; *pt0 = (CELL)to_visit[3]; to_visit += 4; #else pt0 = to_visit[0]; pt0_end = to_visit[1]; pt1 = to_visit[2]; to_visit += 3; #endif goto loop; } H = HBREG; /* untrail all bindings made by variant */ while (TR != (tr_fr_ptr)OLDTR) { CELL *pt1 = (CELL *) TrailTerm(--TR); RESET_VARIABLE(pt1); } HBREG = B->cp_h; return TRUE; out_of_stack: H = HBREG; /* untrail all bindings made by variant */ #ifdef RATIONAL_TREES while (to_visit < (CELL **)ASP) { pt0 = to_visit[0]; pt0_end = to_visit[1]; pt1 = to_visit[2]; *pt0 = (CELL)to_visit[3]; to_visit += 4; } #endif while (TR != (tr_fr_ptr)OLDTR) { CELL *pt1 = (CELL *) TrailTerm(--TR); RESET_VARIABLE(pt1); } HBREG = B->cp_h; return -1; fail: /* failure */ H = HBREG; #ifdef RATIONAL_TREES while (to_visit < (CELL **)ASP) { pt0 = to_visit[0]; pt0_end = to_visit[1]; pt1 = to_visit[2]; *pt0 = (CELL)to_visit[3]; to_visit += 4; } #endif /* untrail all bindings made by variant */ while (TR != (tr_fr_ptr)OLDTR) { CELL *pt1 = (CELL *) TrailTerm(--TR); RESET_VARIABLE(pt1); } HBREG = B->cp_h; return FALSE; } static int is_variant(Term t1, Term t2, int parity USES_REGS) { int out; if (t1 == t2) return (TRUE); if (IsVarTerm(t1)) { if (IsVarTerm(t2)) return(TRUE); return(FALSE); } else if (IsVarTerm(t2)) return(FALSE); if (IsAtomOrIntTerm(t1)) { return(t1 == t2); } if (IsPairTerm(t1)) { if (IsPairTerm(t2)) { out = variant_complex(RepPair(t1)-1, RepPair(t1)+1, RepPair(t2)-1 PASS_REGS); if (out < 0) goto error; return out; } else return (FALSE); } if (!IsApplTerm(t2)) { return FALSE; } else { Functor f1 = FunctorOfTerm(t1); if (f1 != FunctorOfTerm(t2)) return(FALSE); if (IsExtensionFunctor(f1)) { return(unify_extension(f1, t1, RepAppl(t1), t2)); } out = variant_complex(RepAppl(t1), RepAppl(t1)+ArityOfFunctor(f1), RepAppl(t2) PASS_REGS); if (out < 0) goto error; return out; } error: if (out == -1) { if (!Yap_gcl((ASP-H)*sizeof(CELL), parity, ENV, gc_P(P,CP))) { Yap_Error(OUT_OF_STACK_ERROR, TermNil, "in variant"); return FALSE; } return is_variant(t1, t2, parity PASS_REGS); } return FALSE; } int Yap_Variant(Term t1, Term t2) { CACHE_REGS return is_variant(t1, t2, 0 PASS_REGS); } static Int p_variant( USES_REGS1 ) /* variant terms t1 and t2 */ { return is_variant(Deref(ARG1), Deref(ARG2), 2 PASS_REGS); } static int subsumes_complex(register CELL *pt0, register CELL *pt0_end, register CELL *pt1 USES_REGS) { register CELL **to_visit = (CELL **)ASP; tr_fr_ptr OLDTR = TR, new_tr; UInt write_mode = TRUE; HBREG = H; loop: while (pt0 < pt0_end) { register CELL d0, d1; Int our_write_mode = write_mode; ++ pt0; ++ pt1; /* this is a version of Derefa that checks whether we are trying to do something evil */ { CELL *npt0 = pt0; restart_d0: if (npt0 >= HBREG) { our_write_mode = FALSE; } d0 = *npt0; if (IsVarTerm(d0) && d0 != (CELL)npt0 ) { npt0 = (CELL *)d0; goto restart_d0; } } { CELL *npt1 = pt1; restart_d1: d1 = *npt1; if (IsVarTerm(d1) && d1 != (CELL)npt1 ) { /* never dereference through a variable from the left-side */ if (npt1 >= HBREG) { goto fail; } else { npt1 = (CELL *)d1; goto restart_d1; } } } if (IsVarTerm(d0)) { if (our_write_mode) { /* generate a new binding */ CELL *pt0 = VarOfTerm(d0); Term new = MkVarTerm(); Bind_Global(pt0, new); if (d0 != d1) { /* avoid loops */ Bind_Global(VarOfTerm(new), d1); if (Yap_rational_tree_loop(VarOfTerm(new)-1,VarOfTerm(new),(CELL **)AuxSp,(CELL **)AuxBase)) goto fail; } } else { if (d0 == d1) continue; goto fail; } continue; } else if (IsVarTerm(d1)) { goto fail; } else { if (d0 == d1) continue; else if (IsAtomOrIntTerm(d0)) { goto fail; } else if (IsPairTerm(d0)) { if (!IsPairTerm(d1)) { goto fail; } #ifdef RATIONAL_TREES /* now link the two structures so that no one else will */ /* come here */ to_visit -= 5; to_visit[0] = pt0; to_visit[1] = pt0_end; to_visit[2] = pt1; to_visit[3] = (CELL *)*pt0; to_visit[4] = (CELL *)write_mode; *pt0 = d1; #else /* store the terms to visit */ if (pt0 < pt0_end) { to_visit -= 4; to_visit[0] = pt0; to_visit[1] = pt0_end; to_visit[2] = pt1; to_visit[3] = (CELL *)write_mode; } #endif write_mode = our_write_mode; pt0 = RepPair(d0) - 1; pt0_end = RepPair(d0) + 1; pt1 = RepPair(d1) - 1; continue; } else if (IsApplTerm(d0)) { register Functor f; register CELL *ap2, *ap3; if (!IsApplTerm(d1)) { goto fail; } else { /* store the terms to visit */ Functor f2; ap2 = RepAppl(d0); ap3 = RepAppl(d1); f = (Functor)(*ap2); f2 = (Functor)(*ap3); if (f != f2) goto fail; if (IsExtensionFunctor(f)) { if (!unify_extension(f, d0, ap2, d1)) goto fail; continue; } #ifdef RATIONAL_TREES /* now link the two structures so that no one else will */ /* come here */ to_visit -= 5; to_visit[0] = pt0; to_visit[1] = pt0_end; to_visit[2] = pt1; to_visit[3] = (CELL *)*pt0; to_visit[4] = (CELL *)write_mode; *pt0 = d1; #else /* store the terms to visit */ if (pt0 < pt0_end) { to_visit -= 4; to_visit[0] = pt0; to_visit[1] = pt0_end; to_visit[2] = pt1; to_visit[3] = (CELL *)write_mode; } #endif write_mode = our_write_mode; d0 = ArityOfFunctor(f); pt0 = ap2; pt0_end = ap2 + d0; pt1 = ap3; continue; } } } } /* Do we still have compound terms to visit */ if (to_visit < (CELL **)ASP) { #ifdef RATIONAL_TREES pt0 = to_visit[0]; pt0_end = to_visit[1]; pt1 = to_visit[2]; *pt0 = (CELL)to_visit[3]; write_mode = (Int)to_visit[ 4]; to_visit += 5; #else pt0 = to_visit[0]; pt0_end = to_visit[1]; pt1 = to_visit[2]; write_mode = (UInt)to_visit[3]; to_visit += 4; #endif goto loop; } H = HBREG; /* get rid of intermediate variables */ new_tr = TR; while (TR != OLDTR) { /* cell we bound */ CELL *pt1 = (CELL *) TrailTerm(--TR); /* cell we created */ CELL *npt1 = (CELL *)*pt1; /* shorten the chain */ if (IsVarTerm(*pt1) && IsUnboundVar(pt1)) { RESET_VARIABLE(pt1); } else { *pt1 = *npt1; } } TR = new_tr; HBREG = B->cp_h; return TRUE; fail: H = HBREG; #ifdef RATIONAL_TREES while (to_visit < (CELL **)ASP) { pt0 = to_visit[0]; pt0_end = to_visit[1]; pt1 = to_visit[2]; *pt0 = (CELL)to_visit[3]; to_visit += 5; } #endif /* untrail all bindings made by variant */ while (TR != (tr_fr_ptr)OLDTR) { CELL *pt1 = (CELL *) TrailTerm(--TR); RESET_VARIABLE(pt1); } HBREG = B->cp_h; return FALSE; } static Int p_subsumes( USES_REGS1 ) /* subsumes terms t1 and t2 */ { Term t1 = Deref(ARG1); Term t2 = Deref(ARG2); if (t1 == t2) return (TRUE); if (IsVarTerm(t1)) { Bind(VarOfTerm(t1), t2); if (Yap_rational_tree_loop(VarOfTerm(t1)-1,VarOfTerm(t1),(CELL **)AuxSp,(CELL **)AuxBase)) return FALSE; return TRUE; } else if (IsVarTerm(t2)) return(FALSE); if (IsAtomOrIntTerm(t1)) { return(t1 == t2); } if (IsPairTerm(t1)) { if (IsPairTerm(t2)) { return(subsumes_complex(RepPair(t1)-1, RepPair(t1)+1, RepPair(t2)-1 PASS_REGS)); } else return (FALSE); } else { Functor f1; if (!IsApplTerm(t2)) return(FALSE); f1 = FunctorOfTerm(t1); if (f1 != FunctorOfTerm(t2)) return(FALSE); if (IsExtensionFunctor(f1)) { return(unify_extension(f1, t1, RepAppl(t1), t2)); } return(subsumes_complex(RepAppl(t1), RepAppl(t1)+ArityOfFunctor(f1), RepAppl(t2) PASS_REGS)); } } #ifdef DEBUG static Int p_force_trail_expansion( USES_REGS1 ) { Int i = IntOfTerm(Deref(ARG1))*1024, j = 0; tr_fr_ptr OTR = TR; for (j = 0; j < i; j++) { TrailTerm(TR) = 0; TR++; } TR = OTR; return(TRUE); } static Int camacho_dum( USES_REGS1 ) { Term t1, t2; int max = 3; /* build output list */ t1 = TermNil; t2 = MkPairTerm(MkIntegerTerm(max), t1); return(Yap_unify(t2, ARG1)); } #endif /* DEBUG */ int Yap_IsListTerm(Term t) { while (!IsVarTerm(t) && IsPairTerm(t)) { t = TailOfTerm(t); } return t == TermNil; } static Int p_is_list( USES_REGS1 ) { return Yap_IsListTerm(Deref(ARG1)); } void Yap_InitUtilCPreds(void) { CACHE_REGS Term cm = CurrentModule; Yap_InitCPred("copy_term", 2, p_copy_term, 0); Yap_InitCPred("duplicate_term", 2, p_duplicate_term, 0); Yap_InitCPred("copy_term_nat", 2, p_copy_term_no_delays, 0); Yap_InitCPred("ground", 1, p_ground, SafePredFlag); Yap_InitCPred("$variables_in_term", 3, p_variables_in_term, HiddenPredFlag); Yap_InitCPred("$non_singletons_in_term", 3, p_non_singletons_in_term, SafePredFlag|HiddenPredFlag); Yap_InitCPred("term_variables", 2, p_term_variables, 0); Yap_InitCPred("term_variables", 3, p_term_variables3, 0); Yap_InitCPred("term_attvars", 2, p_term_attvars, 0); Yap_InitCPred("is_list", 1, p_is_list, SafePredFlag); Yap_InitCPred("rational_term_to_tree", 2, p_break_rational, 0); Yap_InitCPred("tree_to_rational_term", 2, p_restore_rational, 0); Yap_InitCPred("=@=", 2, p_variant, 0); #ifdef DEBUG_IMPORT Yap_InitCPred("import_term", 1, p_import_term, 0); Yap_InitCPred("export_term", 1, p_export_term, 0); #endif CurrentModule = TERMS_MODULE; Yap_InitCPred("variable_in_term", 2, p_var_in_term, SafePredFlag); Yap_InitCPred("term_hash", 4, p_term_hash, SafePredFlag); Yap_InitCPred("instantiated_term_hash", 4, p_instantiated_term_hash, SafePredFlag); Yap_InitCPred("variant", 2, p_variant, 0); Yap_InitCPred("subsumes", 2, p_subsumes, 0); Yap_InitCPred("variables_within_term", 3, p_variables_within_term, 0); Yap_InitCPred("new_variables_in_term", 3, p_new_variables_in_term, 0); CurrentModule = cm; #ifdef DEBUG Yap_InitCPred("$force_trail_expansion", 1, p_force_trail_expansion, SafePredFlag|HiddenPredFlag); Yap_InitCPred("dum", 1, camacho_dum, SafePredFlag); #endif }