/* $Id$ Part of SWI-Prolog Author: Markus Triska E-mail: triska@gmx.at WWW: http://www.swi-prolog.org Copyright (C): 2005, Markus Triska This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA As a special exception, if you link this library with other files, compiled with a Free Software compiler, to produce an executable, this library does not by itself cause the resulting executable to be covered by the GNU General Public License. This exception does not however invalidate any other reasons why the executable file might be covered by the GNU General Public License. */ :- module(clp_distinct, [ vars_in/2, vars_in/3, all_distinct/1 ]). :- use_module(library(lists)). /** Weak arc consistent all_distinct/1 constraint @deprecated Superseded by library(clpfd)'s all_distinct/1. @author Markus Triska */ % For details, see Neng-Fa Zhou, 2005: % "Programming Finite-Domain Constraint Propagators in Action Rules" /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - This library uses the following arribute value: dom_neq(Domain, Left, Right) Domain is an unbounded (GMP) integer representing the domain as a bit-vector, meaning N is in the domain iff 0 =\= Domain /\ (1< ( get_attr(V, clp_distinct, dom_neq(VBV,VLeft,VRight)) -> Bitvec1 is VBV /\ Bitvec, Bitvec1 =\= 0, ( popcount(Bitvec1) =:= 1 -> V is msb(Bitvec1) ; put_attr(V, clp_distinct, dom_neq(Bitvec1,VLeft,VRight)) ) ; ( popcount(Bitvec) =:= 1 -> V is msb(Bitvec) ; put_attr(V, clp_distinct, dom_neq(Bitvec, [], [])) ) ) ; 0 =\= Bitvec /\ (1< get_attr(X, clp_distinct, dom_neq(Dom,Lefts,Rights)), outof_reducer(Lefts, Rights, X, Dom) ; true ), outof_reducer(Xs). /** @pred all_distinct( _Cs_, _Vs_) verifies whether all elements of a list are different. Also tests if all the sums between a list of constants and a list of variables are different. This is a formulation of the queens problem that uses both versions of `all_different`: ~~~~~{.prolog} queens(N, Queens) :- length(Queens, N), Queens ins 1..N, all_distinct(Queens), foldl(inc, Queens, Inc, 0, _), % [0, 1, 2, .... ] foldl(dec, Queens, Dec, 0, _), % [0, -1, -2, ... ] all_distinct(Inc,Queens), all_distinct(Dec,Queens), labeling([], Queens). inc(_, I0, I0, I) :- I is I0+1. dec(_, I0, I0, I) :- I is I0-1. ~~~~~ The next example uses `all_different/1` and the functionality of the matrix package to verify that all squares in sudoku have a different value: ~~~~~{.prolog} foreach( [I,J] ins 0..2 , all_different(M[I*3+(0..2),J*3+(0..2)]) ), ~~~~~ */ all_distinct([], _). all_distinct([X|Right], Left) :- \+ list_contains(Right, X), outof(X, Left, Right), all_distinct(Right, [X|Left]). outof(X, Left, Right) :- ( var(X) -> get_attr(X, clp_distinct, dom_neq(Dom, XLefts, XRights)), put_attr(X, clp_distinct, dom_neq(Dom, [Left|XLefts], [Right|XRights])) ; exclude_fire([Left], [Right], X) ). exclude_fire(Lefts, Rights, E) :- Mask is \ ( 1 << E), exclude_fire(Lefts, Rights, E, Mask). exclude_fire([], [], _, _). exclude_fire([Left|Ls], [Right|Rs], E, Mask) :- exclude_list(Left, E, Mask), exclude_list(Right, E, Mask), exclude_fire(Ls, Rs, E, Mask). exclude_list([], _, _). exclude_list([V|Vs], Val, Mask) :- ( var(V) -> get_attr(V, clp_distinct, dom_neq(VDom0,VLefts,VRights)), VDom1 is VDom0 /\ Mask, VDom1 =\= 0, ( popcount(VDom1) =:= 1 -> V is msb(VDom1) ; put_attr(V, clp_distinct, dom_neq(VDom1,VLefts,VRights)) ) ; V =\= Val ), exclude_list(Vs, Val, Mask). attr_unify_hook(dom_neq(Dom,Lefts,Rights), Y) :- ( ground(Y) -> Dom /\ (1 << Y) =\= 0, exclude_fire(Lefts, Rights, Y) ; \+ lists_contain(Lefts, Y), \+ lists_contain(Rights, Y), ( get_attr(Y, clp_distinct, dom_neq(YDom0,YLefts0,YRights0)) -> YDom1 is YDom0 /\ Dom, YDom1 =\= 0, ( popcount(YDom1) =:= 1 -> Y is msb(YDom1) ; append(YLefts0, Lefts, YLefts1), append(YRights0, Rights, YRights1), put_attr(Y, clp_distinct, dom_neq(YDom1,YLefts1,YRights1)) ) ; put_attr(Y, clp_distinct, dom_neq(Dom,Lefts,Rights)) ) ). lists_contain([X|Xs], Y) :- ( list_contains(X, Y) -> true ; lists_contain(Xs, Y) ). list_contains([X|Xs], Y) :- ( X == Y -> true ; list_contains(Xs, Y) ). outof_reducer([], [], _, _). outof_reducer([L|Ls], [R|Rs], Var, Dom) :- append(L, R, Others), N is popcount(Dom), num_subsets(Others, Dom, 0, Num), ( Num >= N -> fail ; Num =:= (N - 1) -> reduce_from_others(Others, Dom) ; true ), outof_reducer(Ls, Rs, Var, Dom). reduce_from_others([], _). reduce_from_others([X|Xs], Dom) :- ( var(X) -> get_attr(X, clp_distinct, dom_neq(XDom,XLeft,XRight)), ( is_subset(Dom, XDom) -> true ; NXDom is XDom /\ \Dom, NXDom =\= 0, ( popcount(NXDom) =:= 1 -> X is msb(NXDom) ; put_attr(X, clp_distinct, dom_neq(NXDom,XLeft,XRight)) ) ) ; true ), reduce_from_others(Xs, Dom). num_subsets([], _Dom, Num, Num). num_subsets([S|Ss], Dom, Num0, Num) :- ( var(S) -> get_attr(S, clp_distinct, dom_neq(SDom,_,_)), ( is_subset(Dom, SDom) -> Num1 is Num0 + 1 ; Num1 = Num0 ) ; Num1 = Num0 ), num_subsets(Ss, Dom, Num1, Num). % true iff S is a subset of Dom - should be a GMP binding (subsumption) is_subset(Dom, S) :- S \/ Dom =:= Dom. /** @pred attr_portray_hook(+ _AttValue_,+ _Var_) Called by write_term/2 and friends for each attribute if the option `attributes(portray)` is in effect. If the hook succeeds the attribute is considered printed. Otherwise `Module = ...` is printed to indicate the existence of a variable. */ attr_portray_hook(dom_neq(Dom,_,_), _) :- Max is msb(Dom), Min is lsb(Dom), write(Min-Max).