/************************************************************************* * * * YAP Prolog * * * * Yap Prolog was developed at NCCUP - Universidade do Porto * * * * Copyright L.Damas, V.S.Costa and Universidade do Porto 1985-1997 * * * ************************************************************************** * * * File: arith2.c * * Last rev: * * mods: * * comments: arithmetical expression evaluation * * * *************************************************************************/ #ifdef SCCS static char SccsId[] = "%W% %G%"; #endif /* * This file implements unary arithmetic operations in YAP * */ #include "Yap.h" #include "Yatom.h" #include "Heap.h" #include "eval.h" #include "arith2.h" typedef struct init_un_eval { char *OpName; arith2_op f; } InitBinEntry; #ifdef USE_GMP static Float fdiv_bigint(MP_INT *b1,MP_INT *b2) { Float f1 = mpz_get_d(b1); Float f2 = mpz_get_d(b2); if (1) { mpf_t f1,f2; Float res; mpf_init(f1); mpf_init(f2); mpf_set_z(f1, b1); mpf_set_z(f2, b2); mpf_div(f1, f1, f2); res = mpf_get_d(f1); mpf_clear(f1); mpf_clear(f2); return(res); } else { return(f1/f2); } } #endif static Term p_mod(Term t1, Term t2) { switch (ETypeOfTerm(t1)) { case (CELL)long_int_e: switch (ETypeOfTerm(t2)) { case (CELL)long_int_e: /* two integers */ { Int i1 = IntegerOfTerm(t1); Int i2 = IntegerOfTerm(t2); Int mod; if (i2 == 0) goto zero_divisor; if (i1 == Int_MIN && i2 == -1) { #ifdef USE_GMP return Yap_gmp_add_ints(Int_MAX, 1); #else return Yap_ArithError(EVALUATION_ERROR_INT_OVERFLOW, t1, "// /2 with %d and %d", i1, i2); #endif } mod = i1%i2; if (mod && (mod ^ i2) < 0) mod += i2; RINT(mod); } case (CELL)double_e: return Yap_ArithError(TYPE_ERROR_INTEGER, t2, "mod/2"); #ifdef USE_GMP case (CELL)big_int_e: return Yap_gmp_mod_int_big(IntegerOfTerm(t1), Yap_BigIntOfTerm(t2)); #endif case db_ref_e: RERROR(); break; } case (CELL)double_e: return Yap_ArithError(TYPE_ERROR_INTEGER, t2, "mod/2"); case (CELL)big_int_e: #ifdef USE_GMP switch (ETypeOfTerm(t2)) { case long_int_e: /* modulo between bignum and integer */ { Int i2 = IntegerOfTerm(t2); if (i2 == 0) goto zero_divisor; return Yap_gmp_mod_big_int(Yap_BigIntOfTerm(t1), i2); } case (CELL)big_int_e: /* two bignums */ return Yap_gmp_mod_big_big(Yap_BigIntOfTerm(t1), Yap_BigIntOfTerm(t2)); case double_e: return Yap_ArithError(TYPE_ERROR_INTEGER, t2, "mod/2"); case db_ref_e: RERROR(); } #endif case db_ref_e: RERROR(); } zero_divisor: return Yap_ArithError(EVALUATION_ERROR_ZERO_DIVISOR, t2, "X is mod 0"); } static Term p_rem(Term t1, Term t2) { switch (ETypeOfTerm(t1)) { case (CELL)long_int_e: switch (ETypeOfTerm(t2)) { case (CELL)long_int_e: /* two integers */ { Int i1 = IntegerOfTerm(t1); Int i2 = IntegerOfTerm(t2); Int mod; if (i2 == 0) goto zero_divisor; if (i1 == Int_MIN && i2 == -1) { #ifdef USE_GMP return Yap_gmp_add_ints(Int_MAX, 1); #else return Yap_ArithError(EVALUATION_ERROR_INT_OVERFLOW, t1, "rem/2 with %d and %d", i1, i2); #endif } mod = i1%i2; RINT(i1%i2); } case (CELL)double_e: return Yap_ArithError(TYPE_ERROR_INTEGER, t2, "mod/2"); #ifdef USE_GMP case (CELL)big_int_e: /* I know the term is much larger, so: */ RINT(IntegerOfTerm(t1)); #endif case db_ref_e: RERROR(); } break; case (CELL)double_e: return Yap_ArithError(TYPE_ERROR_INTEGER, t1, "mod/2"); #ifdef USE_GMP case (CELL)big_int_e: switch (ETypeOfTerm(t2)) { case long_int_e: /* modulo between bignum and integer */ { mpz_t tmp; MP_INT new; Int i2 = IntegerOfTerm(t2); if (i2 == 0) goto zero_divisor; mpz_init(&new); mpz_init_set_si(tmp, i2); mpz_tdiv_r(&new, Yap_BigIntOfTerm(t1), tmp); mpz_clear(tmp); RBIG(&new); } case (CELL)big_int_e: /* two bignums */ { MP_INT new; mpz_init(&new); mpz_tdiv_r(&new, Yap_BigIntOfTerm(t1), Yap_BigIntOfTerm(t2)); RBIG(&new); } case double_e: return Yap_ArithError(TYPE_ERROR_INTEGER, t2, "mod/2"); case db_ref_e: RERROR(); } #endif case db_ref_e: RERROR(); } zero_divisor: return Yap_ArithError(EVALUATION_ERROR_ZERO_DIVISOR, t2, "X is mod 0"); } /* Floating point division: / */ static Term p_fdiv(Term t1, Term t2) { switch (ETypeOfTerm(t1)) { case long_int_e: switch (ETypeOfTerm(t2)) { case long_int_e: { Int i2 = IntegerOfTerm(t2); /* two integers */ RFLOAT((((Float)IntegerOfTerm(t1))/(Float)i2)); } case double_e: { /* integer, double */ Float fl1 = (Float)IntegerOfTerm(t1); Float fl2 = FloatOfTerm(t2); RFLOAT(fl1/fl2); } #ifdef USE_GMP case (CELL)big_int_e: { Int i1 = IntegerOfTerm(t1); Float f2 = mpz_get_d(Yap_BigIntOfTerm(t2)); RFLOAT(((Float)i1/f2)); } #endif case db_ref_e: RERROR(); } break; case double_e: switch (ETypeOfTerm(t2)) { case long_int_e: /* float / integer */ { Int i2 = IntegerOfTerm(t2); RFLOAT(FloatOfTerm(t1)/(Float)i2); } case double_e: { Float f2 = FloatOfTerm(t2); RFLOAT(FloatOfTerm(t1)/f2); } #ifdef USE_GMP case big_int_e: { RFLOAT(FloatOfTerm(t1)/mpz_get_d(Yap_BigIntOfTerm(t2))); } #endif case db_ref_e: RERROR(); } break; #ifdef USE_GMP case big_int_e: switch (ETypeOfTerm(t2)) { case long_int_e: { Int i = IntegerOfTerm(t2); RFLOAT(mpz_get_d(Yap_BigIntOfTerm(t1))/(Float)i); } case big_int_e: /* two bignums*/ RFLOAT(fdiv_bigint(Yap_BigIntOfTerm(t1),Yap_BigIntOfTerm(t2))); // RFLOAT(mpz_get_d(Yap_BigIntOfTerm(t1))/mpz_get_d(Yap_BigIntOfTerm(t2))); case double_e: { Float dbl = FloatOfTerm(t2); RFLOAT(mpz_get_d(Yap_BigIntOfTerm(t1))/dbl); } case db_ref_e: RERROR(); } #endif case db_ref_e: RERROR(); } RERROR(); } #if USE_GMP #if !defined(HAVE_MPZ_XOR) static void mpz_xor(MP_INT *new, MP_INT *r1, MP_INT *r2) { MP_INT *n2, *n3; mpz_new(n2); mpz_new(n3); mpz_ior(new, r1, r2); mpz_com(n2, r1); mpz_and(n2, n2, new); mpz_com(n3, r2); mpz_and(n3, n3, new); mpz_ior(new, n2, n3); mpz_clear(n2); mpz_clear(n3); } #endif #endif /* xor # */ static Term p_xor(Term t1, Term t2) { switch (ETypeOfTerm(t1)) { case long_int_e: switch (ETypeOfTerm(t2)) { case long_int_e: /* two integers */ RINT(IntegerOfTerm(t1) ^ IntegerOfTerm(t2)); case double_e: return Yap_ArithError(TYPE_ERROR_INTEGER, t2, "#/2"); #ifdef USE_GMP case big_int_e: { MP_INT new; mpz_init_set_si(&new,IntegerOfTerm(t1)); mpz_xor(&new, &new, Yap_BigIntOfTerm(t2)); RBIG(&new); } #endif case db_ref_e: RERROR(); } break; case double_e: return Yap_ArithError(TYPE_ERROR_INTEGER, t1, "#/2"); #ifdef USE_GMP case big_int_e: switch (ETypeOfTerm(t2)) { case long_int_e: { MP_INT new; mpz_init_set_si(&new,IntegerOfTerm(t2)); mpz_xor(&new, Yap_BigIntOfTerm(t1), &new); RBIG(&new); } case big_int_e: /* two bignums */ { MP_INT new; mpz_init_set(&new, Yap_BigIntOfTerm(t1)); mpz_xor(&new, &new, Yap_BigIntOfTerm(t2)); RBIG(&new); } case double_e: return Yap_ArithError(TYPE_ERROR_INTEGER, t2, "#/2"); case db_ref_e: RERROR(); } #endif case db_ref_e: RERROR(); } RERROR(); } /* atan2: arc tangent x/y */ static Term p_atan2(Term t1, Term t2) { switch (ETypeOfTerm(t1)) { case long_int_e: switch (ETypeOfTerm(t2)) { case long_int_e: /* two integers */ RFLOAT(atan2(IntegerOfTerm(t1),IntegerOfTerm(t2))); case double_e: RFLOAT(atan2(IntegerOfTerm(t1),FloatOfTerm(t2))); #ifdef USE_GMP case big_int_e: { Int i1 = IntegerOfTerm(t1); Float f2 = mpz_get_d(Yap_BigIntOfTerm(t2)); RFLOAT(atan2(i1,f2)); } #endif case db_ref_e: RERROR(); break; } case double_e: switch (ETypeOfTerm(t2)) { case long_int_e: /* float / integer */ { Int i2 = IntegerOfTerm(t2); RFLOAT(atan2(FloatOfTerm(t1),i2)); } case double_e: { Float f2 = FloatOfTerm(t2); RFLOAT(atan2(FloatOfTerm(t1),f2)); } #ifdef USE_GMP case big_int_e: { RFLOAT(atan2(FloatOfTerm(t1),mpz_get_d(Yap_BigIntOfTerm(t2)))); } #endif case db_ref_e: RERROR(); } break; #ifdef USE_GMP case big_int_e: switch (ETypeOfTerm(t2)) { case long_int_e: { Int i = IntegerOfTerm(t2); RFLOAT(atan2(mpz_get_d(Yap_BigIntOfTerm(t1)),i)); } case big_int_e: /* two bignums */ RFLOAT(atan2(mpz_get_d(Yap_BigIntOfTerm(t1)),mpz_get_d(Yap_BigIntOfTerm(t2)))); case double_e: { Float dbl = FloatOfTerm(t2); RFLOAT(atan2(mpz_get_d(Yap_BigIntOfTerm(t1)),dbl)); } case db_ref_e: RERROR(); } #endif case db_ref_e: RERROR(); } RERROR(); } /* power: x^y */ static Term p_power(Term t1, Term t2) { switch (ETypeOfTerm(t1)) { case long_int_e: switch (ETypeOfTerm(t2)) { case long_int_e: { Int i2 = IntegerOfTerm(t2); /* two integers */ RFLOAT(pow(IntegerOfTerm(t1),i2)); } case double_e: { /* integer, double */ Float fl1 = (Float)IntegerOfTerm(t1); Float fl2 = FloatOfTerm(t2); RFLOAT(pow(fl1,fl2)); } #ifdef USE_GMP case big_int_e: { Int i1 = IntegerOfTerm(t1); Float f2 = mpz_get_d(Yap_BigIntOfTerm(t2)); RFLOAT(pow(i1,f2)); } #endif case db_ref_e: RERROR(); } break; case double_e: switch (ETypeOfTerm(t2)) { case long_int_e: /* float / integer */ { Int i2 = IntegerOfTerm(t2); RFLOAT(pow(FloatOfTerm(t1),i2)); } case double_e: { Float f2 = FloatOfTerm(t2); RFLOAT(pow(FloatOfTerm(t1),f2)); } #ifdef USE_GMP case big_int_e: { RFLOAT(pow(FloatOfTerm(t1),mpz_get_d(Yap_BigIntOfTerm(t2)))); } #endif case db_ref_e: RERROR(); } break; case big_int_e: #ifdef USE_GMP switch (ETypeOfTerm(t2)) { case long_int_e: { Int i = IntegerOfTerm(t2); RFLOAT(pow(mpz_get_d(Yap_BigIntOfTerm(t1)),i)); } case big_int_e: /* two bignums */ RFLOAT(pow(mpz_get_d(Yap_BigIntOfTerm(t1)),mpz_get_d(Yap_BigIntOfTerm(t2)))); case double_e: { Float dbl = FloatOfTerm(t2); RFLOAT(pow(mpz_get_d(Yap_BigIntOfTerm(t1)),dbl)); } case db_ref_e: RERROR(); } #endif case db_ref_e: RERROR(); } RERROR(); } /* next function is adapted from: Inline C++ integer exponentiation routines Version 1.01 Copyright (C) 1999-2004 John C. Bowman */ static inline Int ipow(Int x, Int p) { Int r; if (p == 0) return 1L; if (x == 0 && p > 0) return 0L; if(p < 0) return (-p % 2) ? x : 1L; r = 1L; for(;;) { if(p & 1) { if (mul_overflow((r*x), r, x)) { return 0; } r *= x; } if((p >>= 1) == 0) return r; if (mul_overflow((x*x), x, x)) { return 0; } x *= x; } } /* power: x^y */ static Term p_exp(Term t1, Term t2) { switch (ETypeOfTerm(t1)) { case long_int_e: switch (ETypeOfTerm(t2)) { case long_int_e: { Int i1 = IntegerOfTerm(t1); Int i2 = IntegerOfTerm(t2); Int pow = ipow(i1,i2); if (i2 < 0) { return Yap_ArithError(DOMAIN_ERROR_NOT_LESS_THAN_ZERO, t2, "%d ^ %d", i1, i2); } #ifdef USE_GMP /* two integers */ if ((i1 && !pow)) { /* overflow */ return Yap_gmp_exp_ints(i1, i2); } #endif RINT(pow); } case double_e: { /* integer, double */ Float fl1 = (Float)IntegerOfTerm(t1); Float fl2 = FloatOfTerm(t2); RFLOAT(pow(fl1,fl2)); } #ifdef USE_GMP case big_int_e: { return Yap_ArithError(RESOURCE_ERROR_HUGE_INT, t2, "^/2"); } #endif case db_ref_e: RERROR(); } break; case double_e: switch (ETypeOfTerm(t2)) { case long_int_e: /* float / integer */ { Int i2 = IntegerOfTerm(t2); RFLOAT(pow(FloatOfTerm(t1),i2)); } case double_e: { Float f2 = FloatOfTerm(t2); RFLOAT(pow(FloatOfTerm(t1),f2)); } #ifdef USE_GMP case big_int_e: { return Yap_ArithError(RESOURCE_ERROR_HUGE_INT, t2, "^/2"); } #endif case db_ref_e: RERROR(); } break; case big_int_e: #ifdef USE_GMP switch (ETypeOfTerm(t2)) { case long_int_e: { Int i = IntegerOfTerm(t2); return Yap_gmp_exp_big_int(Yap_BigIntOfTerm(t1),i); } case big_int_e: /* two bignums, makes no sense */ // return Yap_ArithError(RESOURCE_ERROR_HUGE_INT, t1, "^/2"); case double_e: { Float dbl = FloatOfTerm(t2); RFLOAT(pow(mpz_get_d(Yap_BigIntOfTerm(t1)),dbl)); } case db_ref_e: RERROR(); } #endif case db_ref_e: RERROR(); } RERROR(); } static Int gcd(Int m11,Int m21) { /* Blankinship algorithm, provided by Miguel Filgueiras */ Int m12=1, m22=0, k; while (m11>0 && m21>0) if (m11= 0 ? i1 : -i1); i2 = (i2 >= 0 ? i2 : -i2); RINT(gcd(i1,i2)); } case double_e: return Yap_ArithError(TYPE_ERROR_INTEGER, t2, "gcd/2"); #ifdef USE_GMP case big_int_e: /* I know the term is much larger, so: */ { Int i = IntegerOfTerm(t1); if (i > 0) { RINT(mpz_gcd_ui(NULL,Yap_BigIntOfTerm(t2),i)); } else if (i == 0) { RINT(0); } else { RINT(mpz_gcd_ui(NULL,Yap_BigIntOfTerm(t2),-i)); } } #endif case db_ref_e: RERROR(); } break; case double_e: return Yap_ArithError(TYPE_ERROR_INTEGER, t1, "gcd/2"); #ifdef USE_GMP case big_int_e: switch (ETypeOfTerm(t2)) { case long_int_e: /* modulo between bignum and integer */ { Int i = IntegerOfTerm(t2); if (i > 0) { RINT(mpz_gcd_ui(NULL,Yap_BigIntOfTerm(t1),i)); } else if (i == 0) { RINT(0); } else { RINT(mpz_gcd_ui(NULL,Yap_BigIntOfTerm(t1),-i)); } } case big_int_e: /* two bignums */ { MP_INT new; mpz_init_set(&new, Yap_BigIntOfTerm(t1)); mpz_gcd(&new, &new, Yap_BigIntOfTerm(t2)); RBIG(&new); } case double_e: return Yap_ArithError(TYPE_ERROR_INTEGER, t2, "gcd/2"); case db_ref_e: RERROR(); } #endif case db_ref_e: RERROR(); } RERROR(); } /* minimum: min(x,y) */ static Term p_min(Term t1, Term t2) { switch (ETypeOfTerm(t1)) { case long_int_e: switch (ETypeOfTerm(t2)) { case long_int_e: { Int i1 = IntegerOfTerm(t1); Int i2 = IntegerOfTerm(t2); return((i1 < i2 ? t1 : t2)); } case double_e: { /* integer, double */ Int i = IntegerOfTerm(t1); Float fl = FloatOfTerm(t2); if (i <= fl) { return t1; } return t2; } #ifdef USE_GMP case big_int_e: { Int i = IntegerOfTerm(t1); MP_INT *b = Yap_BigIntOfTerm(t2); if (mpz_cmp_si(b,i) < 0) { return t2; } return t1; } #endif case db_ref_e: RERROR(); } break; case double_e: switch (ETypeOfTerm(t2)) { case long_int_e: /* float / integer */ { Int i = IntegerOfTerm(t2); Float fl = FloatOfTerm(t1); if (i <= fl) { return t2; } return t1; } case double_e: { Float fl1 = FloatOfTerm(t1); Float fl2 = FloatOfTerm(t2); if (fl1 <= fl2) { return t1; } return t2; } #ifdef USE_GMP case big_int_e: { Float fl1 = FloatOfTerm(t1); Float fl2 = mpz_get_d(Yap_BigIntOfTerm(t2)); if (fl1 <= fl2) { return t1; } else { return t2; } } #endif case db_ref_e: RERROR(); } break; #ifdef USE_GMP case big_int_e: switch (ETypeOfTerm(t2)) { case long_int_e: { Int i = IntegerOfTerm(t2); MP_INT *b = Yap_BigIntOfTerm(t1); if (mpz_cmp_si(b,i) < 0) { return t1; } return t2; } case big_int_e: /* two bignums */ { MP_INT *b1 = Yap_BigIntOfTerm(t1); MP_INT *b2 = Yap_BigIntOfTerm(t2); if (mpz_cmp(b1,b2) < 0) { return t1; } else { return t2; } } case double_e: { Float fl1 = FloatOfTerm(t2); Float fl2 = mpz_get_d(Yap_BigIntOfTerm(t1)); if (fl1 <= fl2) { return t2; } else { return t1; } } case db_ref_e: RERROR(); } #endif case db_ref_e: RERROR(); } RERROR(); } /* maximum: max(x,y) */ static Term p_max(Term t1, Term t2) { switch (ETypeOfTerm(t1)) { case long_int_e: switch (ETypeOfTerm(t2)) { case long_int_e: { Int i1 = IntegerOfTerm(t1); Int i2 = IntegerOfTerm(t2); return((i1 > i2 ? t1 : t2)); } case double_e: { /* integer, double */ Int i = IntegerOfTerm(t1); Float fl = FloatOfTerm(t2); if (i >= fl) { return t1; } return t2; } #ifdef USE_GMP case big_int_e: { Int i = IntegerOfTerm(t1); MP_INT *b = Yap_BigIntOfTerm(t2); if (mpz_cmp_si(b,i) > 0) { return t2; } return t1; } #endif case db_ref_e: RERROR(); } break; case double_e: switch (ETypeOfTerm(t2)) { case long_int_e: /* float / integer */ { Int i = IntegerOfTerm(t2); Float fl = FloatOfTerm(t1); if (i >= fl) { return t2; } return t1; } case double_e: { Float fl1 = FloatOfTerm(t1); Float fl2 = FloatOfTerm(t2); if (fl1 >= fl2) { return t1; } return t2; } #ifdef USE_GMP case big_int_e: { Float fl1 = FloatOfTerm(t1); Float fl2 = mpz_get_d(Yap_BigIntOfTerm(t2)); if (fl1 >= fl2) { return t1; } else { return t2; } } #endif case db_ref_e: RERROR(); } break; #ifdef USE_GMP case big_int_e: switch (ETypeOfTerm(t2)) { case long_int_e: { Int i = IntegerOfTerm(t2); MP_INT *b = Yap_BigIntOfTerm(t1); if (mpz_cmp_si(b,i) > 0) { return t1; } return t2; } case big_int_e: /* two bignums */ { MP_INT *b1 = Yap_BigIntOfTerm(t1); MP_INT *b2 = Yap_BigIntOfTerm(t2); if (mpz_cmp(b1,b2) > 0) { return t1; } else { return t2; } } case double_e: { Float fl1 = FloatOfTerm(t2); Float fl2 = mpz_get_d(Yap_BigIntOfTerm(t1)); if (fl1 >= fl2) { return t2; } else { return t1; } } case db_ref_e: RERROR(); } #endif case db_ref_e: RERROR(); } RERROR(); } static Term eval2(Int fi, Term t1, Term t2) { arith2_op f = fi; switch (f) { case op_plus: return p_plus(t1, t2); case op_minus: return p_minus(t1, t2); case op_times: return p_times(t1, t2); case op_div: return p_div(t1, t2); case op_and: return p_and(t1, t2); case op_or: return p_or(t1, t2); case op_sll: return p_sll(t1, t2); case op_slr: return p_slr(t1, t2); case op_mod: return p_mod(t1, t2); case op_rem: return p_rem(t1, t2); case op_fdiv: return p_fdiv(t1, t2); case op_xor: return p_xor(t1, t2); case op_atan2: return p_atan2(t1, t2); case op_power: return p_exp(t1, t2); case op_power2: return p_power(t1, t2); case op_gcd: return p_gcd(t1, t2); case op_min: return p_min(t1, t2); case op_max: return p_max(t1, t2); } RERROR(); } Term Yap_eval_binary(Int f, Term t1, Term t2) { return Yap_FoundArithError(eval2(f,t1,t2), 0L); } static InitBinEntry InitBinTab[] = { {"+", op_plus}, {"-", op_minus}, {"*", op_times}, {"/", op_fdiv}, {"mod", op_mod}, {"rem", op_rem}, {"//", op_div}, {"<<", op_sll}, {">>", op_slr}, {"/\\", op_and}, {"\\/", op_or}, {"#", op_xor}, {"atan2", op_atan2}, /* C-Prolog exponentiation */ {"^", op_power}, /* ISO-Prolog exponentiation */ {"**", op_power2}, /* Quintus exponentiation */ {"exp", op_power2}, {"gcd", op_gcd}, {"min", op_min}, {"max", op_max} }; static Int p_binary_is(void) { /* X is Y */ Term t = Deref(ARG2); Term t1, t2; if (IsVarTerm(t)) { Yap_ArithError(INSTANTIATION_ERROR,t, "X is Y"); return(FALSE); } t1 = Yap_Eval(Deref(ARG3)); if (t1 == 0L) return FALSE; t2 = Yap_Eval(Deref(ARG4)); if (t2 == 0L) return FALSE; if (IsIntTerm(t)) { Term tout = Yap_FoundArithError(eval2(IntegerOfTerm(t), t1, t2), 0L); if (!tout) return FALSE; return Yap_unify_constant(ARG1,tout); } if (IsAtomTerm(t)) { Atom name = AtomOfTerm(t); ExpEntry *p; Term out; if (EndOfPAEntr(p = RepExpProp(Yap_GetExpProp(name, 2)))) { Term ti[2]; /* error */ ti[0] = t; ti[1] = MkIntTerm(1); t = Yap_MkApplTerm(FunctorSlash, 2, ti); Yap_Error(TYPE_ERROR_EVALUABLE, t, "functor %s/%d for arithmetic expression", RepAtom(name)->StrOfAE,2); P = FAILCODE; return(FALSE); } if (!(out=Yap_FoundArithError(eval2(p->FOfEE, t1, t2), 0L))) return FALSE; return Yap_unify_constant(ARG1,out); } return FALSE; } static Int p_binary_op_as_integer(void) { /* X is Y */ Term t = Deref(ARG1); if (IsVarTerm(t)) { Yap_Error(INSTANTIATION_ERROR,t, "X is Y"); return(FALSE); } if (IsIntTerm(t)) { return Yap_unify_constant(ARG2,t); } if (IsAtomTerm(t)) { Atom name = AtomOfTerm(t); ExpEntry *p; if (EndOfPAEntr(p = RepExpProp(Yap_GetExpProp(name, 2)))) { Term ti[2]; /* error */ ti[0] = t; ti[1] = MkIntTerm(1); t = Yap_MkApplTerm(FunctorSlash, 2, ti); Yap_Error(TYPE_ERROR_EVALUABLE, t, "functor %s/%d for arithmetic expression", RepAtom(name)->StrOfAE,2); P = FAILCODE; return(FALSE); } return Yap_unify_constant(ARG2,MkIntTerm(p->FOfEE)); } return(FALSE); } void Yap_InitBinaryExps(void) { unsigned int i; ExpEntry *p; for (i = 0; i < sizeof(InitBinTab)/sizeof(InitBinEntry); ++i) { AtomEntry *ae = RepAtom(Yap_LookupAtom(InitBinTab[i].OpName)); if (ae == NULL) { Yap_Error(OUT_OF_HEAP_ERROR,TermNil,"at InitBinaryExps"); return; } WRITE_LOCK(ae->ARWLock); if (Yap_GetExpPropHavingLock(ae, 2)) { WRITE_UNLOCK(ae->ARWLock); break; } p = (ExpEntry *) Yap_AllocAtomSpace(sizeof(ExpEntry)); p->KindOfPE = ExpProperty; p->ArityOfEE = 2; p->ENoOfEE = 2; p->FOfEE = InitBinTab[i].f; p->NextOfPE = ae->PropsOfAE; ae->PropsOfAE = AbsExpProp(p); WRITE_UNLOCK(ae->ARWLock); } Yap_InitCPred("is", 4, p_binary_is, TestPredFlag | SafePredFlag); Yap_InitCPred("$binary_op_as_integer", 2, p_binary_op_as_integer, TestPredFlag|SafePredFlag); } /* This routine is called from Restore to make sure we have the same arithmetic operators */ int Yap_ReInitBinaryExps(void) { return(TRUE); }