/************************************************************************* * * * YAP Prolog * * * * Yap Prolog was developed at NCCUP - Universidade do Porto * * * * Copyright L.Damas, V. Santos Costa and Universidade do Porto 1985-- * * * ************************************************************************** * * * File: stdpreds.c * * comments: General-purpose C implemented system predicates * * * * Last rev: $Date: 2008-07-24 16:02:00 $,$Author: vsc $ * * * * *************************************************************************/ #ifdef SCCS static char SccsId[] = "%W% %G%"; #endif #define HAS_CACHE_REGS 1 /* * This file includes the definition of a miscellania of standard predicates * for yap refering to: Consulting, Executing a C predicate from call, * Comparisons (both general and numeric), Structure manipulation, Direct * access to atoms and predicates, Basic support for the debugger * * It also includes a table where all C-predicates are initializated * */ #include "Yap.h" #if YAP_JIT #include "amijit.h" #endif #include "Foreign.h" #include "YapHeap.h" #include "Yatom.h" #include "YapEval.h" #include "yapio.h" #ifdef TABLING #include "tab.macros.h" #endif /* TABLING */ #if HAVE_UNISTD_H #include #endif #include #if HAVE_STRING_H #include #endif #if HAVE_MALLOC_H #include #endif #if YAP_JIT #include #endif #include #include static Int p_setval(USES_REGS1); static Int p_value(USES_REGS1); static Int p_values(USES_REGS1); #ifdef undefined static CODEADDR *FindAtom(CODEADDR, int *); #endif /* undefined */ static Int p_opdec(USES_REGS1); static Int p_univ(USES_REGS1); static Int p_abort(USES_REGS1); #ifdef BEAM Int p_halt(USES_REGS1); #else static Int p_halt(USES_REGS1); #endif static Int current_predicate(USES_REGS1); static Int cont_current_predicate(USES_REGS1); static OpEntry *NextOp(OpEntry *CACHE_TYPE); static Int init_current_op(USES_REGS1); static Int cont_current_op(USES_REGS1); static Int init_current_atom_op(USES_REGS1); static Int cont_current_atom_op(USES_REGS1); static Int TrailMax(void); static Int GlobalMax(void); static Int LocalMax(void); static Int p_statistics_heap_max(USES_REGS1); static Int p_statistics_global_max(USES_REGS1); static Int p_statistics_local_max(USES_REGS1); static Int p_statistics_heap_info(USES_REGS1); static Int p_statistics_stacks_info(USES_REGS1); static Int p_statistics_trail_info(USES_REGS1); static Int p_cputime(USES_REGS1); static Int p_systime(USES_REGS1); static Int p_runtime(USES_REGS1); static Int p_walltime(USES_REGS1); static Int p_break(USES_REGS1); #if YAP_JIT void *(*Yap_JitCall)(JIT_Compiler *jc, yamop *p); void (*Yap_llvmShutdown)(void); Int (*Yap_traced_absmi)(void); static Int p_jit(USES_REGS1) { /* '$set_value'(+Atom,+Atomic) */ void *jit_handle; if ((jit_handle = Yap_LoadForeignFile(YAP_YAPJITLIB, 0))) { if (!Yap_CallForeignFile(jit_handle, "init_jit")) fprintf(stderr, "Could not load JIT\n"); return FALSE; } return TRUE; } #endif /* YAP_JIT */ #ifdef BEAM Int use_eam(USES_REGS1); Int eager_split(USES_REGS1); Int force_wait(USES_REGS1); Int commit(USES_REGS1); Int skip_while_var(USES_REGS1); Int wait_while_var(USES_REGS1); Int show_time(USES_REGS1); Int start_eam(USES_REGS1); Int cont_eam(USES_REGS1); extern int EAM; extern int eam_am(PredEntry *); extern int showTime(void); Int start_eam(USES_REGS1) { if (eam_am((PredEntry *)0x1)) return (TRUE); else { cut_fail(); return (FALSE); } } Int cont_eam(USES_REGS1) { if (eam_am((PredEntry *)0x2)) return (TRUE); else { cut_fail(); return (FALSE); } } Int use_eam(USES_REGS1) { if (EAM) EAM = 0; else { Yap_PutValue(AtomCArith, 0); EAM = 1; } return (TRUE); } Int commit(USES_REGS1) { if (EAM) { printf("Nao deveria ter sido chamado commit do stdpreds\n"); exit(1); } return (TRUE); } Int skip_while_var(USES_REGS1) { if (EAM) { printf("Nao deveria ter sido chamado skip_while_var do stdpreds\n"); exit(1); } return (TRUE); } Int wait_while_var(USES_REGS1) { if (EAM) { printf("Nao deveria ter sido chamado wait_while_var do stdpreds\n"); exit(1); } return (TRUE); } Int force_wait(USES_REGS1) { if (EAM) { printf("Nao deveria ter sido chamado force_wait do stdpreds\n"); exit(1); } return (TRUE); } Int eager_split(USES_REGS1) { if (EAM) { printf("Nao deveria ter sido chamado eager_split do stdpreds\n"); exit(1); } return (TRUE); } Int show_time(USES_REGS1) /* MORE PRECISION */ { return (showTime()); } #endif /* BEAM */ // @{ /** @defgroup YAPSetVal @ingroup Internal_Database Maintain a light-weight map where the key is an atom, and the value can be any constant. */ /** @pred set_value(+ _A_,+ _C_) Associate atom _A_ with constant _C_. The `set_value` and `get_value` built-ins give a fast alternative to the internal data-base. This is a simple form of implementing a global counter. ~~~~~ read_and_increment_counter(Value) :- get_value(counter, Value), Value1 is Value+1, set_value(counter, Value1). ~~~~~ This predicate is YAP specific. */ static Int p_setval(USES_REGS1) { /* '$set_value'(+Atom,+Atomic) */ Term t1 = Deref(ARG1), t2 = Deref(ARG2); if (!IsVarTerm(t1) && IsAtomTerm(t1) && (!IsVarTerm(t2) && (IsAtomTerm(t2) || IsNumTerm(t2)))) { Yap_PutValue(AtomOfTerm(t1), t2); return (TRUE); } return (FALSE); } /** @pred get_value(+ _A_,- _V_) In YAP, atoms can be associated with constants. If one such association exists for atom _A_, unify the second argument with the constant. Otherwise, unify _V_ with `[]`. This predicate is YAP specific. */ static Int p_value(USES_REGS1) { /* '$get_value'(+Atom,?Val) */ Term t1 = Deref(ARG1); if (IsVarTerm(t1)) { Yap_Error(INSTANTIATION_ERROR, t1, "get_value/2"); return (FALSE); } if (!IsAtomTerm(t1)) { Yap_Error(TYPE_ERROR_ATOM, t1, "get_value/2"); return (FALSE); } return (Yap_unify_constant(ARG2, Yap_GetValue(AtomOfTerm(t1)))); } static Int p_values(USES_REGS1) { /* '$values'(Atom,Old,New) */ Term t1 = Deref(ARG1), t3 = Deref(ARG3); if (IsVarTerm(t1)) { Yap_Error(INSTANTIATION_ERROR, t1, "set_value/2"); return (FALSE); } if (!IsAtomTerm(t1)) { Yap_Error(TYPE_ERROR_ATOM, t1, "set_value/2"); return (FALSE); } if (!Yap_unify_constant(ARG2, Yap_GetValue(AtomOfTerm(t1)))) { return (FALSE); } if (!IsVarTerm(t3)) { if (IsAtomTerm(t3) || IsNumTerm(t3)) { Yap_PutValue(AtomOfTerm(t1), t3); } else return (FALSE); } return (TRUE); } //@} static Int p_opdec(USES_REGS1) { /* '$opdec'(p,type,atom) */ /* we know the arguments are integer, atom, atom */ Term p = Deref(ARG1), t = Deref(ARG2), at = Deref(ARG3); Term tmod = Deref(ARG4); if (tmod == TermProlog) { tmod = PROLOG_MODULE; } return Yap_OpDec((int)IntOfTerm(p), (char *)RepAtom(AtomOfTerm(t))->StrOfAE, AtomOfTerm(at), tmod); } #ifdef NO_STRTOD #if HAVE_CTYPE_H #include #endif double strtod(s, pe) char *s, **pe; { double r = atof(s); *pe = s; while (*s == ' ') { ++s; } if (*s == '+' || *s == '-') { ++s; } if (!isdigit(*s)) { return (r); } while (isdigit(*s)) { ++s; } if (*s == '.') { ++s; } while (isdigit(*s)) { ++s; } if (*s == 'e' || *s == 'E') { ++s; } if (*s == '+' || *s == '-') { ++s; } while (isdigit(*s)) { ++s; } *pe = s; return (r); } #else #include #endif #ifndef INFINITY #define INFINITY (1.0 / 0.0) #endif static UInt runtime(USES_REGS1) { return (Yap_cputime() - Yap_total_gc_time() - Yap_total_stack_shift_time()); } /* $runtime(-SinceInterval,-SinceStart) */ static Int p_runtime(USES_REGS1) { Int now, interval, gc_time, ss_time; Term tnow, tinterval; Yap_cputime_interval(&now, &interval); gc_time = Yap_total_gc_time(); now -= gc_time; ss_time = Yap_total_stack_shift_time(); now -= ss_time; interval -= (gc_time - LOCAL_LastGcTime) + (ss_time - LOCAL_LastSSTime); LOCAL_LastGcTime = gc_time; LOCAL_LastSSTime = ss_time; tnow = MkIntegerTerm(now); tinterval = MkIntegerTerm(interval); return (Yap_unify_constant(ARG1, tnow) && Yap_unify_constant(ARG2, tinterval)); } /* $cputime(-SinceInterval,-SinceStart) */ static Int p_cputime(USES_REGS1) { Int now, interval; Yap_cputime_interval(&now, &interval); return (Yap_unify_constant(ARG1, MkIntegerTerm(now)) && Yap_unify_constant(ARG2, MkIntegerTerm(interval))); } static Int p_systime(USES_REGS1) { Int now, interval; Yap_systime_interval(&now, &interval); return (Yap_unify_constant(ARG1, MkIntegerTerm(now)) && Yap_unify_constant(ARG2, MkIntegerTerm(interval))); } static Int p_walltime(USES_REGS1) { uint64_t now, interval; uint64_t t = Yap_walltime(); now = t - Yap_StartOfWTimes; interval = t - LOCAL_LastWTime; return (Yap_unify_constant(ARG1, MkIntegerTerm(now / 1000)) && Yap_unify_constant(ARG2, MkIntegerTerm(interval / 1000))); } static Int p_univ(USES_REGS1) { /* A =.. L */ unsigned int arity; register Term tin; Term twork, t2; Atom at; tin = Deref(ARG1); t2 = Deref(ARG2); if (IsVarTerm(tin)) { /* we need to have a list */ Term *Ar; if (IsVarTerm(t2)) { Yap_Error(INSTANTIATION_ERROR, t2, "(=..)/2"); return (FALSE); } if (!IsPairTerm(t2)) { if (t2 == TermNil) Yap_Error(DOMAIN_ERROR_NON_EMPTY_LIST, t2, "(=..)/2"); else Yap_Error(TYPE_ERROR_LIST, ARG2, "(=..)/2"); return (FALSE); } twork = HeadOfTerm(t2); if (IsVarTerm(twork)) { Yap_Error(INSTANTIATION_ERROR, twork, "(=..)/2"); return (FALSE); } if (IsNumTerm(twork)) { Term tt = TailOfTerm(t2); if (IsVarTerm(tt)) { Yap_Error(INSTANTIATION_ERROR, tt, "(=..)/2"); return (FALSE); } if (tt != MkAtomTerm(AtomNil)) { Yap_Error(TYPE_ERROR_ATOMIC, twork, "(=..)/2"); return (FALSE); } return (Yap_unify_constant(ARG1, twork)); } if (!IsAtomTerm(twork)) { Term tt = TailOfTerm(t2); if (IsVarTerm(tt)) { Yap_Error(INSTANTIATION_ERROR, twork, "(=..)/2"); return (FALSE); } else if (tt == MkAtomTerm(AtomNil)) { Yap_Error(TYPE_ERROR_ATOMIC, twork, "(=..)/2"); return (FALSE); } else { Yap_Error(TYPE_ERROR_ATOM, twork, "(=..)/2"); return (FALSE); } } at = AtomOfTerm(twork); twork = TailOfTerm(t2); if (IsVarTerm(twork)) { Yap_Error(INSTANTIATION_ERROR, twork, "(=..)/2"); return (FALSE); } else if (!IsPairTerm(twork)) { if (twork != TermNil) { Yap_Error(TYPE_ERROR_LIST, ARG2, "(=..)/2"); return (FALSE); } return (Yap_unify_constant(ARG1, MkAtomTerm(at))); } build_compound: /* build the term directly on the heap */ Ar = HR; HR++; while (!IsVarTerm(twork) && IsPairTerm(twork)) { *HR++ = HeadOfTerm(twork); if (HR > ASP - 1024) { /* restore space */ HR = Ar; if (!Yap_gcl((ASP - HR) * sizeof(CELL), 2, ENV, gc_P(P, CP))) { Yap_Error(RESOURCE_ERROR_STACK, TermNil, LOCAL_ErrorMessage); return FALSE; } twork = TailOfTerm(Deref(ARG2)); goto build_compound; } twork = TailOfTerm(twork); } if (IsVarTerm(twork)) { Yap_Error(INSTANTIATION_ERROR, twork, "(=..)/2"); return (FALSE); } if (twork != TermNil) { Yap_Error(TYPE_ERROR_LIST, ARG2, "(=..)/2"); return (FALSE); } #ifdef SFUNC DOES_NOT_WORK(); { SFEntry *pe = (SFEntry *)Yap_GetAProp(at, SFProperty); if (pe) twork = MkSFTerm(Yap_MkFunctor(at, SFArity), arity, CellPtr(TR), pe->NilValue); else twork = Yap_MkApplTerm(Yap_MkFunctor(at, arity), arity, CellPtr(TR)); } #else arity = HR - Ar - 1; if (at == AtomDot && arity == 2) { Ar[0] = Ar[1]; Ar[1] = Ar[2]; HR--; twork = AbsPair(Ar); } else { *Ar = (CELL)(Yap_MkFunctor(at, arity)); twork = AbsAppl(Ar); } #endif return (Yap_unify(ARG1, twork)); } if (IsAtomicTerm(tin)) { twork = MkPairTerm(tin, MkAtomTerm(AtomNil)); return (Yap_unify(twork, ARG2)); } if (IsRefTerm(tin)) return (FALSE); if (IsApplTerm(tin)) { Functor fun = FunctorOfTerm(tin); if (IsExtensionFunctor(fun)) { twork = MkPairTerm(tin, MkAtomTerm(AtomNil)); return (Yap_unify(twork, ARG2)); } arity = ArityOfFunctor(fun); at = NameOfFunctor(fun); #ifdef SFUNC if (arity == SFArity) { CELL *p = CellPtr(TR); CELL *q = ArgsOfSFTerm(tin); int argno = 1; while (*q) { while (*q > argno++) *p++ = MkVarTerm(); ++q; *p++ = Deref(*q++); } twork = Yap_ArrayToList(CellPtr(TR), argno - 1); while (IsIntTerm(twork)) { if (!Yap_gc(2, ENV, gc_P(P, CP))) { Yap_Error(RESOURCE_ERROR_STACK, TermNil, LOCAL_ErrorMessage); return (FALSE); } twork = Yap_ArrayToList(CellPtr(TR), argno - 1); } } else #endif { while (HR + arity * 2 > ASP - 1024) { if (!Yap_gcl((arity * 2) * sizeof(CELL), 2, ENV, gc_P(P, CP))) { Yap_Error(RESOURCE_ERROR_STACK, TermNil, LOCAL_ErrorMessage); return (FALSE); } tin = Deref(ARG1); } twork = Yap_ArrayToList(RepAppl(tin) + 1, arity); } } else { /* We found a list */ at = AtomDot; twork = Yap_ArrayToList(RepPair(tin), 2); } twork = MkPairTerm(MkAtomTerm(at), twork); return (Yap_unify(ARG2, twork)); } static Int p_abort(USES_REGS1) { /* abort */ /* make sure we won't go creeping around */ Yap_Error(ABORT_EVENT, TermNil, ""); return (FALSE); } #ifdef BEAM extern void exit_eam(char *s); Int #else static Int #endif p_halt(USES_REGS1) { /* halt */ Term t = Deref(ARG1); Int out; #ifdef BEAM if (EAM) exit_eam("\n\n[ Prolog execution halted ]\n"); #endif if (IsVarTerm(t)) { Yap_Error(INSTANTIATION_ERROR, t, "halt/1"); return (FALSE); } if (!IsIntegerTerm(t)) { Yap_Error(TYPE_ERROR_INTEGER, t, "halt/1"); return (FALSE); } out = IntegerOfTerm(t); #if YAP_JIT if (ExpEnv.analysis_struc.stats_enabled || ExpEnv.analysis_struc.time_pass_enabled) { if (strcmp(((char *)ExpEnv.analysis_struc.outfile), "STDERR")) { int stderrcopy = dup(2); if (strcmp(((char *)ExpEnv.analysis_struc.outfile), "STDOUT") == 0) { dup2(1, 2); #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wimplicit-function-declaration" shutdown_llvm(); #pragma GCC diagnostic pop dup2(stderrcopy, 2); } else { int Outputfile = open(((char *)ExpEnv.analysis_struc.outfile), O_CREAT | O_APPEND | O_WRONLY, 0777); if (Outputfile < 0) { fprintf(stderr, "Error:: I can not write analysis passes's output on %s...\n", ((char *)ExpEnv.analysis_struc.outfile)); fprintf(stderr, " %s...\n", strerror(errno)); errno = 0; exit(1); } dup2(Outputfile, 2); shutdown_llvm(); close(Outputfile); dup2(stderrcopy, 2); } close(stderrcopy); } else shutdown_llvm(); } #endif Yap_exit(out); return TRUE; } static bool valid_prop(Prop p, Term task) { PredEntry *pe = RepPredProp(p); if ((pe->PredFlags & HiddenPredFlag) || (pe->OpcodeOfPred == UNDEF_OPCODE)) { return false; } if (task == TermSystem || task == TermProlog) { return pe->PredFlags & StandardPredFlag; } if (task == TermUser) { return !(pe->PredFlags & StandardPredFlag); } if (IsVarTerm(task)) { return true; } return false; } static PropEntry *followLinkedListOfProps(PropEntry *p, Term task) { while (p) { if (p->KindOfPE == PEProp && valid_prop(p, task)) { // found our baby.. return p; } p = p->NextOfPE; } return NIL; } static PropEntry *getPredProp(PropEntry *p, Term task) { if (p == NIL) return NIL; while (p != NIL) { if (p->KindOfPE == PEProp && valid_prop(p, task)) { return p; } else if (p->KindOfPE == FunctorProperty) { // first search remainder of functor list Prop pf; if ((pf = followLinkedListOfProps(RepFunctorProp(p)->PropsOfFE, task))) { return pf; } } p = p->NextOfPE; } return NIL; } static PropEntry *nextPredForAtom(PropEntry *p, Term task) { PredEntry *pe; if (p == NIL) return NIL; pe = RepPredProp(p); if (pe->ArityOfPE == 0 || (pe->PredFlags & (NumberDBPredFlag | AtomDBPredFlag))) { // if atom prop, search atom list return followLinkedListOfProps(p->NextOfPE, task); } else { FunctorEntry *f = pe->FunctorOfPred; // first search remainder of functor list PropEntry *pf; if ((pf = followLinkedListOfProps(p->NextOfPE, task))) { return pf; } // if that fails, follow the functor return getPredProp(f->NextOfPE, task); } } static Prop initFunctorSearch(Term t3, Term t2, Term task) { if (IsAtomTerm(t3)) { Atom at = AtomOfTerm(t3); // access the entry at key address. return followLinkedListOfProps(RepAtom(at)->PropsOfAE, task); } else if (IsIntTerm(t3)) { if (IsNonVarTerm(t2) && t2 != IDB_MODULE) { Yap_Error(TYPE_ERROR_CALLABLE, t3, "current_predicate/2"); return NULL; } else { Prop p; // access the entry at key address. // a single property (this will be deterministic p = AbsPredProp(Yap_FindLUIntKey(IntOfTerm(t3))); if (valid_prop(p, task)) return p; } Yap_Error(TYPE_ERROR_CALLABLE, t3, "current_predicate/2"); return NULL; } else { Functor f; if (IsPairTerm(t3)) { f = FunctorDot; } else { f = FunctorOfTerm(t3); if (IsExtensionFunctor(f)) { Yap_Error(TYPE_ERROR_CALLABLE, t3, "current_predicate/2"); return NULL; } } return followLinkedListOfProps(f->PropsOfFE, task); } } static PredEntry *firstModulePred(PredEntry *npp, Term task) { if (!npp) return NULL; do { npp = npp->NextPredOfModule; } while (npp && !valid_prop(AbsPredProp(npp), task)); return npp; } static PredEntry *firstModulesPred(PredEntry *npp, ModEntry *m, Term task) { do { while (npp && !valid_prop(AbsPredProp(npp), task)) npp = npp->NextPredOfModule; if (npp) return npp; m = m->NextME; if (m) { npp = m->PredForME; } else return NULL; } while (npp || m); return npp; } static Int cont_current_predicate(USES_REGS1) { UInt Arity; Term name, task; Term t1 = ARG1, t2 = Deref(ARG2), t3 = ARG3; bool rc, will_cut = false; Functor f; PredEntry *pp; t1 = Yap_YapStripModule(t1, &t2); t3 = Yap_YapStripModule(t3, &t2); t1 = Deref(t1); t2 = Deref(t2); task = Deref(ARG4); pp = AddressOfTerm(EXTRA_CBACK_ARG(4, 1)); if (IsNonVarTerm(t3)) { PropEntry *np, *p; if (IsNonVarTerm(t2)) { // module and functor known, should be easy if (IsAtomTerm(t3)) { if ((p = Yap_GetPredPropByAtom(AtomOfTerm(t3), t2)) && valid_prop(p, task)) { cut_succeed(); } else { cut_fail(); } } else { if ((p = Yap_GetPredPropByFunc(FunctorOfTerm(t3), t2)) && valid_prop(p, task)) { cut_succeed(); } else { cut_fail(); } } } // t3 is a functor, or compound term, // just follow the functor chain p = AbsPredProp(pp); if (!p) { // initial search, tracks down what is the first call with // that name, functor.. p = initFunctorSearch(t3, t2, task); // now, we can do lookahead. if (p == NIL) cut_fail(); pp = RepPredProp(p); } np = followLinkedListOfProps(p->NextOfPE, task); Term mod = pp->ModuleOfPred; if (mod == PROLOG_MODULE) mod = TermProlog; bool b = Yap_unify(t2, mod); if (!np) { if (b) cut_succeed(); else cut_fail(); } else { EXTRA_CBACK_ARG(4, 1) = MkAddressTerm(RepPredProp(np)); B->cp_h = HR; return b; } } else if (IsNonVarTerm(t1)) { PropEntry *np, *p; // run over the same atom any predicate defined for that atom // may be fair bait, depends on whether we know the module. p = AbsPredProp(pp); if (!p) { // initialization time if (IsIntTerm(t1)) { // or this or nothing.... p = AbsPredProp(Yap_FindLUIntKey(IntOfTerm(t3))); } else if (IsAtomTerm(t1)) { // should be the usual situation. Atom at = AtomOfTerm(t1); p = getPredProp(RepAtom(at)->PropsOfAE, task); } else { Yap_Error(TYPE_ERROR_CALLABLE, t1, "current_predicate/2"); return false; } if (!p) cut_fail(); pp = RepPredProp(p); } // now, we can do lookahead. np = nextPredForAtom(p, task); if (!np) will_cut = true; else { EXTRA_CBACK_ARG(4, 1) = MkAddressTerm(RepPredProp(np)); B->cp_h = HR; } } else if (IsNonVarTerm(t2)) { // operating within the same module. PredEntry *npp; if (!pp) { if (!IsAtomTerm(t2)) { Yap_Error(TYPE_ERROR_ATOM, t2, "module name"); } ModEntry *m = Yap_GetModuleEntry(t2); pp = m->PredForME; while (pp && !valid_prop(AbsPredProp(pp), task)) { pp = pp->NextPredOfModule; } if (!pp) { /* try Prolog Module */ cut_fail(); } } npp = firstModulePred(pp, task); if (!npp) { will_cut = true; } // just try next one else { EXTRA_CBACK_ARG(4, 1) = MkAddressTerm(npp); B->cp_h = HR; } } else { // operating across all modules. PredEntry *npp = pp; ModEntry *me; if (!pp) { pp = firstModulesPred(CurrentModules->PredForME, CurrentModules, task); } if (!pp) cut_fail(); if (pp->ModuleOfPred == PROLOG_MODULE) me = Yap_GetModuleEntry(TermProlog); else me = Yap_GetModuleEntry(pp->ModuleOfPred); npp = firstModulesPred(pp->NextPredOfModule, me, task); if (!npp) will_cut = true; // just try next module. else { EXTRA_CBACK_ARG(4, 1) = MkAddressTerm(npp); B->cp_h = HR; } } if (pp->ModuleOfPred != IDB_MODULE) { f = pp->FunctorOfPred; Arity = pp->ArityOfPE; if (Arity) name = MkAtomTerm(NameOfFunctor(f)); else name = MkAtomTerm((Atom)f); } else { if (pp->PredFlags & NumberDBPredFlag) { name = MkIntegerTerm(pp->src.IndxId); Arity = 0; } else if (pp->PredFlags & AtomDBPredFlag) { f = pp->FunctorOfPred; name = MkAtomTerm((Atom)f); Arity = 0; } else { f = pp->FunctorOfPred; name = MkAtomTerm(NameOfFunctor(f)); Arity = ArityOfFunctor(pp->FunctorOfPred); } } if (Arity) { rc = Yap_unify(ARG3, Yap_MkNewApplTerm(f, Arity)); } else { rc = Yap_unify(ARG3, name); } rc = rc && (IsAtomTerm(t2) || Yap_unify(ARG2, ModToTerm(pp->ModuleOfPred))) && Yap_unify(ARG1, name); if (will_cut) { if (rc) cut_succeed(); cut_fail(); } return rc; } static Int current_predicate(USES_REGS1) { EXTRA_CBACK_ARG(4, 1) = MkAddressTerm(NULL); // ensure deref access to choice-point fields. return cont_current_predicate(PASS_REGS1); } static OpEntry *NextOp(OpEntry *pp USES_REGS) { while (!EndOfPAEntr(pp) && pp->KindOfPE != OpProperty && (pp->OpModule != PROLOG_MODULE || pp->OpModule != CurrentModule)) pp = RepOpProp(pp->NextOfPE); return (pp); } int Yap_IsOp(Atom at) { CACHE_REGS OpEntry *op = NextOp(RepOpProp((Prop)(RepAtom(at)->PropsOfAE)) PASS_REGS); return (!EndOfPAEntr(op)); } int Yap_IsOpMaxPrio(Atom at) { CACHE_REGS OpEntry *op = NextOp(RepOpProp((Prop)(RepAtom(at)->PropsOfAE)) PASS_REGS); int max; if (EndOfPAEntr(op)) return 0; max = (op->Prefix & 0xfff); if ((op->Infix & 0xfff) > max) max = op->Infix & 0xfff; if ((op->Posfix & 0xfff) > max) max = op->Posfix & 0xfff; return max; } static Int unify_op(OpEntry *op USES_REGS) { Term tmod = op->OpModule; if (tmod == PROLOG_MODULE) tmod = TermProlog; return Yap_unify_constant(ARG2, tmod) && Yap_unify_constant(ARG3, MkIntegerTerm(op->Prefix)) && Yap_unify_constant(ARG4, MkIntegerTerm(op->Infix)) && Yap_unify_constant(ARG5, MkIntegerTerm(op->Posfix)); } static Int cont_current_op(USES_REGS1) { OpEntry *op = (OpEntry *)IntegerOfTerm(EXTRA_CBACK_ARG(5, 1)), *next; READ_LOCK(op->OpRWLock); next = op->OpNext; if (Yap_unify_constant(ARG1, MkAtomTerm(op->OpName)) && unify_op(op PASS_REGS)) { READ_UNLOCK(op->OpRWLock); if (next) { EXTRA_CBACK_ARG(5, 1) = (CELL)MkIntegerTerm((CELL)next); B->cp_h = HR; return TRUE; } else { cut_succeed(); } } else { READ_UNLOCK(op->OpRWLock); if (next) { EXTRA_CBACK_ARG(5, 1) = (CELL)MkIntegerTerm((CELL)next); B->cp_h = HR; return FALSE; } else { cut_fail(); } } } static Int init_current_op( USES_REGS1) { /* current_op(-Precedence,-Type,-Atom) */ EXTRA_CBACK_ARG(5, 1) = (CELL)MkIntegerTerm((CELL)OpList); B->cp_h = HR; return cont_current_op(PASS_REGS1); } static Int cont_current_atom_op(USES_REGS1) { OpEntry *op = (OpEntry *)IntegerOfTerm(EXTRA_CBACK_ARG(5, 1)), *next; READ_LOCK(op->OpRWLock); next = NextOp(RepOpProp(op->NextOfPE) PASS_REGS); if (unify_op(op PASS_REGS)) { READ_UNLOCK(op->OpRWLock); if (next) { EXTRA_CBACK_ARG(5, 1) = (CELL)MkIntegerTerm((CELL)next); B->cp_h = HR; return TRUE; } else { cut_succeed(); } } else { READ_UNLOCK(op->OpRWLock); if (next) { EXTRA_CBACK_ARG(5, 1) = (CELL)MkIntegerTerm((CELL)next); B->cp_h = HR; return FALSE; } else { cut_fail(); } } } static Int init_current_atom_op( USES_REGS1) { /* current_op(-Precedence,-Type,-Atom) */ Term t = Deref(ARG1); AtomEntry *ae; OpEntry *ope; if (IsVarTerm(t) || !IsAtomTerm(t)) { Yap_Error(TYPE_ERROR_ATOM, t, "current_op/3"); cut_fail(); } ae = RepAtom(AtomOfTerm(t)); if (EndOfPAEntr((ope = NextOp(RepOpProp(ae->PropsOfAE) PASS_REGS)))) { cut_fail(); } EXTRA_CBACK_ARG(5, 1) = (CELL)MkIntegerTerm((Int)ope); B->cp_h = HR; return cont_current_atom_op(PASS_REGS1); } #if 0 static Int copy_local_ops(USES_REGS1) { /* current_op(-Precedence,-Type,-Atom) */ Term tmodin = Deref(ARG1); Term t = Deref(ARG1); AtomEntry *ae; OpEntry *ope; if (IsVarTerm(t) || !IsAtomTerm(t)) { Yap_Error(TYPE_ERROR_ATOM, t, "current_op/3"); cut_fail(); } ae = RepAtom(AtomOfTerm(t)); if (EndOfPAEntr((ope = NextOp(RepOpProp(ae->PropsOfAE) PASS_REGS)))) { cut_fail(); } EXTRA_CBACK_ARG(5, 1) = (CELL)MkIntegerTerm((Int)ope); B->cp_h = HR; return cont_current_atom_op(PASS_REGS1); } #endif void Yap_show_statistics(void) { CACHE_REGS unsigned long int heap_space_taken; double frag; #if USE_SYSTEM_MALLOC && HAVE_MALLINFO struct mallinfo mi = mallinfo(); heap_space_taken = (mi.arena + mi.hblkhd) - Yap_HoleSize; #else heap_space_taken = (unsigned long int)(Unsigned(HeapTop) - Unsigned(Yap_HeapBase)) - Yap_HoleSize; #endif frag = (100.0 * (heap_space_taken - HeapUsed)) / heap_space_taken; fprintf(stderr, "Code Space: " UInt_FORMAT " (" UInt_FORMAT " bytes needed, " UInt_FORMAT " bytes used, " "fragmentation %.3f%%).\n", Unsigned(H0) - Unsigned(Yap_HeapBase), Unsigned(HeapTop) - Unsigned(Yap_HeapBase), Unsigned(HeapUsed), frag); fprintf(stderr, "Stack Space: " UInt_FORMAT " (" UInt_FORMAT " for Global, " UInt_FORMAT " for local).\n", Unsigned(sizeof(CELL) * (LCL0 - H0)), Unsigned(sizeof(CELL) * (HR - H0)), Unsigned(sizeof(CELL) * (LCL0 - ASP))); fprintf( stderr, "Trail Space: " UInt_FORMAT " (" UInt_FORMAT " used).\n", Unsigned(sizeof(tr_fr_ptr) * (Unsigned(LOCAL_TrailTop) - Unsigned(LOCAL_TrailBase))), Unsigned(sizeof(tr_fr_ptr) * (Unsigned(TR) - Unsigned(LOCAL_TrailBase)))); fprintf(stderr, "Runtime: " UInt_FORMAT "\n", runtime(PASS_REGS1)); fprintf(stderr, "Cputime: " UInt_FORMAT "\n", Yap_cputime()); fprintf(stderr, "Walltime: %" PRIu64 ".\n", Yap_walltime() / (UInt)1000); } static Int p_statistics_heap_max(USES_REGS1) { Term tmax = MkIntegerTerm(HeapMax); return (Yap_unify(tmax, ARG1)); } /* The results of the next routines are not to be trusted too */ /* much. Basically, any stack shifting will seriously confuse the */ /* results */ static Int TrailTide = -1, LocalTide = -1, GlobalTide = -1; /* maximum Trail usage */ static Int TrailMax(void) { CACHE_REGS Int i; Int TrWidth = Unsigned(LOCAL_TrailTop) - Unsigned(LOCAL_TrailBase); CELL *pt; if (TrailTide != TrWidth) { pt = (CELL *)TR; while (pt + 2 < (CELL *)LOCAL_TrailTop) { if (pt[0] == 0 && pt[1] == 0 && pt[2] == 0) break; else pt++; } if (pt + 2 < (CELL *)LOCAL_TrailTop) i = Unsigned(pt) - Unsigned(LOCAL_TrailBase); else i = TrWidth; } else return (TrWidth); if (TrailTide > i) i = TrailTide; else TrailTide = i; return (i); } static Int p_statistics_trail_max(USES_REGS1) { Term tmax = MkIntegerTerm(TrailMax()); return (Yap_unify(tmax, ARG1)); } /* maximum Global usage */ static Int GlobalMax(void) { CACHE_REGS Int i; Int StkWidth = Unsigned(LCL0) - Unsigned(H0); CELL *pt; if (GlobalTide != StkWidth) { pt = HR; while (pt + 2 < ASP) { if (pt[0] == 0 && pt[1] == 0 && pt[2] == 0) break; else pt++; } if (pt + 2 < ASP) i = Unsigned(pt) - Unsigned(H0); else /* so that both Local and Global have reached maximum width */ GlobalTide = LocalTide = i = StkWidth; } else return (StkWidth); if (GlobalTide > i) i = GlobalTide; else GlobalTide = i; return (i); } static Int p_statistics_global_max(USES_REGS1) { Term tmax = MkIntegerTerm(GlobalMax()); return (Yap_unify(tmax, ARG1)); } static Int LocalMax(void) { CACHE_REGS Int i; Int StkWidth = Unsigned(LCL0) - Unsigned(H0); CELL *pt; if (LocalTide != StkWidth) { pt = LCL0; while (pt - 3 > HR) { if (pt[-1] == 0 && pt[-2] == 0 && pt[-3] == 0) break; else --pt; } if (pt - 3 > HR) i = Unsigned(LCL0) - Unsigned(pt); else /* so that both Local and Global have reached maximum width */ GlobalTide = LocalTide = i = StkWidth; } else return (StkWidth); if (LocalTide > i) i = LocalTide; else LocalTide = i; return (i); } static Int p_statistics_local_max(USES_REGS1) { Term tmax = MkIntegerTerm(LocalMax()); return (Yap_unify(tmax, ARG1)); } static Int p_statistics_heap_info(USES_REGS1) { Term tusage = MkIntegerTerm(HeapUsed); #if USE_SYSTEM_MALLOC && HAVE_MALLINFO struct mallinfo mi = mallinfo(); UInt sstack = Yap_HoleSize + (LOCAL_TrailTop - LOCAL_GlobalBase); UInt mmax = (mi.arena + mi.hblkhd); Term tmax = MkIntegerTerm(mmax - sstack); tusage = MkIntegerTerm(mmax - (mi.fordblks + sstack)); #else Term tmax = MkIntegerTerm((LOCAL_GlobalBase - Yap_HeapBase) - Yap_HoleSize); #endif return (Yap_unify(tmax, ARG1) && Yap_unify(tusage, ARG2)); } static Int p_statistics_stacks_info(USES_REGS1) { Term tmax = MkIntegerTerm(Unsigned(LCL0) - Unsigned(H0)); Term tgusage = MkIntegerTerm(Unsigned(HR) - Unsigned(H0)); Term tlusage = MkIntegerTerm(Unsigned(LCL0) - Unsigned(ASP)); return (Yap_unify(tmax, ARG1) && Yap_unify(tgusage, ARG2) && Yap_unify(tlusage, ARG3)); } static Int p_statistics_trail_info(USES_REGS1) { Term tmax = MkIntegerTerm(Unsigned(LOCAL_TrailTop) - Unsigned(LOCAL_TrailBase)); Term tusage = MkIntegerTerm(Unsigned(TR) - Unsigned(LOCAL_TrailBase)); return (Yap_unify(tmax, ARG1) && Yap_unify(tusage, ARG2)); } static Int p_statistics_atom_info(USES_REGS1) { UInt count = 0, spaceused = 0, i; for (i = 0; i < AtomHashTableSize; i++) { Atom catom; READ_LOCK(HashChain[i].AERWLock); catom = HashChain[i].Entry; if (catom != NIL) { READ_LOCK(RepAtom(catom)->ARWLock); } READ_UNLOCK(HashChain[i].AERWLock); while (catom != NIL) { Atom ncatom; count++; spaceused += sizeof(AtomEntry) + strlen((char *)RepAtom(catom)->StrOfAE) + 1; ncatom = RepAtom(catom)->NextOfAE; if (ncatom != NIL) { READ_LOCK(RepAtom(ncatom)->ARWLock); } READ_UNLOCK(RepAtom(catom)->ARWLock); catom = ncatom; } } for (i = 0; i < WideAtomHashTableSize; i++) { Atom catom; READ_LOCK(WideHashChain[i].AERWLock); catom = WideHashChain[i].Entry; if (catom != NIL) { READ_LOCK(RepAtom(catom)->ARWLock); } READ_UNLOCK(WideHashChain[i].AERWLock); while (catom != NIL) { Atom ncatom; count++; spaceused += sizeof(AtomEntry) + sizeof(wchar_t) * (wcslen((wchar_t *)(RepAtom(catom)->StrOfAE) + 1)); ncatom = RepAtom(catom)->NextOfAE; if (ncatom != NIL) { READ_LOCK(RepAtom(ncatom)->ARWLock); } READ_UNLOCK(RepAtom(catom)->ARWLock); catom = ncatom; } } return Yap_unify(ARG1, MkIntegerTerm(count)) && Yap_unify(ARG2, MkIntegerTerm(spaceused)); } static Int p_statistics_db_size(USES_REGS1) { Term t = MkIntegerTerm(Yap_ClauseSpace); Term tit = MkIntegerTerm(Yap_IndexSpace_Tree); Term tis = MkIntegerTerm(Yap_IndexSpace_SW); Term tie = MkIntegerTerm(Yap_IndexSpace_EXT); return Yap_unify(t, ARG1) && Yap_unify(tit, ARG2) && Yap_unify(tis, ARG3) && Yap_unify(tie, ARG4); } static Int p_statistics_lu_db_size(USES_REGS1) { Term t = MkIntegerTerm(Yap_LUClauseSpace); Term tit = MkIntegerTerm(Yap_LUIndexSpace_Tree); Term tic = MkIntegerTerm(Yap_LUIndexSpace_CP); Term tix = MkIntegerTerm(Yap_LUIndexSpace_EXT); Term tis = MkIntegerTerm(Yap_LUIndexSpace_SW); return Yap_unify(t, ARG1) && Yap_unify(tit, ARG2) && Yap_unify(tic, ARG3) && Yap_unify(tis, ARG4) && Yap_unify(tix, ARG5); } static Int p_executable(USES_REGS1) { if (GLOBAL_argv && GLOBAL_argv[0]) Yap_findFile(GLOBAL_argv[0], NULL, NULL, LOCAL_FileNameBuf, true, YAP_EXE, true, true); else strncpy(LOCAL_FileNameBuf, Yap_FindExecutable(), YAP_FILENAME_MAX - 1); return Yap_unify(MkAtomTerm(Yap_LookupAtom(LOCAL_FileNameBuf)), ARG1); } static Int p_system_mode(USES_REGS1) { Term t1 = Deref(ARG1); if (IsVarTerm(t1)) { if (LOCAL_PrologMode & SystemMode) return Yap_unify(t1, MkAtomTerm(AtomTrue)); else return Yap_unify(t1, MkAtomTerm(AtomFalse)); } else { Atom at = AtomOfTerm(t1); if (at == AtomFalse) LOCAL_PrologMode &= ~SystemMode; else LOCAL_PrologMode |= SystemMode; } return TRUE; } static Int p_lock_system(USES_REGS1) { LOCK(GLOBAL_BGL); return TRUE; } static Int p_unlock_system(USES_REGS1) { UNLOCK(GLOBAL_BGL); return TRUE; } static Int enter_undefp(USES_REGS1) { if (LOCAL_DoingUndefp) { return FALSE; } LOCAL_DoingUndefp = TRUE; return TRUE; } static Int exit_undefp(USES_REGS1) { if (LOCAL_DoingUndefp) { LOCAL_DoingUndefp = FALSE; return TRUE; } return FALSE; } #ifdef DEBUG extern void DumpActiveGoals(void); static Int p_dump_active_goals(USES_REGS1) { DumpActiveGoals(); return (TRUE); } #endif #ifdef INES static Int p_euc_dist(USES_REGS1) { Term t1 = Deref(ARG1); Term t2 = Deref(ARG2); double d1 = (double)(IntegerOfTerm(ArgOfTerm(1, t1)) - IntegerOfTerm(ArgOfTerm(1, t2))); double d2 = (double)(IntegerOfTerm(ArgOfTerm(2, t1)) - IntegerOfTerm(ArgOfTerm(2, t2))); double d3 = (double)(IntegerOfTerm(ArgOfTerm(3, t1)) - IntegerOfTerm(ArgOfTerm(3, t2))); Int result = (Int)sqrt(d1 * d1 + d2 * d2 + d3 * d3); return (Yap_unify(ARG3, MkIntegerTerm(result))); } volatile int loop_counter = 0; static Int p_loop(USES_REGS1) { while (loop_counter == 0) ; return (TRUE); } #endif static Int p_break(USES_REGS1) { Atom at = AtomOfTerm(Deref(ARG1)); if (at == AtomTrue) { LOCAL_BreakLevel++; return TRUE; } if (at == AtomFalse) { LOCAL_BreakLevel--; return TRUE; } return FALSE; } void Yap_InitBackCPreds(void) { Yap_InitCPredBack("$current_predicate", 4, 1, current_predicate, cont_current_predicate, SafePredFlag | SyncPredFlag); Yap_InitCPredBack("$current_op", 5, 1, init_current_op, cont_current_op, SafePredFlag | SyncPredFlag); Yap_InitCPredBack("$current_atom_op", 5, 1, init_current_atom_op, cont_current_atom_op, SafePredFlag | SyncPredFlag); #ifdef BEAM Yap_InitCPredBack("eam", 1, 0, start_eam, cont_eam, SafePredFlag); #endif Yap_InitBackAtoms(); Yap_InitBackIO(); Yap_InitBackDB(); Yap_InitUserBacks(); } typedef void (*Proc)(void); Proc E_Modules[] = {/* init_fc,*/ (Proc)0}; #ifdef YAPOR static Int p_parallel_mode(USES_REGS1) { return FALSE; } static Int p_yapor_workers(USES_REGS1) { return FALSE; } #endif /* YAPOR */ void Yap_InitCPreds(void) { /* numerical comparison */ Yap_InitCPred("set_value", 2, p_setval, SafePredFlag | SyncPredFlag); Yap_InitCPred("get_value", 2, p_value, TestPredFlag | SafePredFlag | SyncPredFlag); Yap_InitCPred("$values", 3, p_values, SafePredFlag | SyncPredFlag); /* general purpose */ Yap_InitCPred("$opdec", 4, p_opdec, SafePredFlag | SyncPredFlag); Yap_InitCPred("=..", 2, p_univ, 0); /** @pred _T_ =.. _L_ is iso The list _L_ is built with the functor and arguments of the term _T_. If _T_ is instantiated to a variable, then _L_ must be instantiated either to a list whose head is an atom, or to a list consisting of just a number. */ Yap_InitCPred("$statistics_trail_max", 1, p_statistics_trail_max, SafePredFlag | SyncPredFlag); Yap_InitCPred("$statistics_heap_max", 1, p_statistics_heap_max, SafePredFlag | SyncPredFlag); Yap_InitCPred("$statistics_global_max", 1, p_statistics_global_max, SafePredFlag | SyncPredFlag); Yap_InitCPred("$statistics_local_max", 1, p_statistics_local_max, SafePredFlag | SyncPredFlag); Yap_InitCPred("$statistics_heap_info", 2, p_statistics_heap_info, SafePredFlag | SyncPredFlag); Yap_InitCPred("$statistics_stacks_info", 3, p_statistics_stacks_info, SafePredFlag | SyncPredFlag); Yap_InitCPred("$statistics_trail_info", 2, p_statistics_trail_info, SafePredFlag | SyncPredFlag); Yap_InitCPred("$statistics_atom_info", 2, p_statistics_atom_info, SafePredFlag | SyncPredFlag); Yap_InitCPred("$statistics_db_size", 4, p_statistics_db_size, SafePredFlag | SyncPredFlag); Yap_InitCPred("$statistics_lu_db_size", 5, p_statistics_lu_db_size, SafePredFlag | SyncPredFlag); Yap_InitCPred("$executable", 1, p_executable, SafePredFlag); Yap_InitCPred("$runtime", 2, p_runtime, SafePredFlag | SyncPredFlag); Yap_InitCPred("$cputime", 2, p_cputime, SafePredFlag | SyncPredFlag); Yap_InitCPred("$systime", 2, p_systime, SafePredFlag | SyncPredFlag); Yap_InitCPred("$walltime", 2, p_walltime, SafePredFlag | SyncPredFlag); Yap_InitCPred("$system_mode", 1, p_system_mode, SafePredFlag | SyncPredFlag); Yap_InitCPred("abort", 0, p_abort, SyncPredFlag); /** @pred abort Abandons the execution of the current goal and returns to top level. All break levels (see break/0 below) are terminated. It is mainly used during debugging or after a serious execution error, to return to the top-level. */ Yap_InitCPred("$break", 1, p_break, SafePredFlag); #ifdef BEAM Yap_InitCPred("@", 0, eager_split, SafePredFlag); Yap_InitCPred(":", 0, force_wait, SafePredFlag); Yap_InitCPred("/", 0, commit, SafePredFlag); Yap_InitCPred("skip_while_var", 1, skip_while_var, SafePredFlag); Yap_InitCPred("wait_while_var", 1, wait_while_var, SafePredFlag); Yap_InitCPred("eamtime", 0, show_time, SafePredFlag); Yap_InitCPred("eam", 0, use_eam, SafePredFlag); #endif Yap_InitCPred("$halt", 1, p_halt, SyncPredFlag); Yap_InitCPred("$lock_system", 0, p_lock_system, SafePredFlag); Yap_InitCPred("$unlock_system", 0, p_unlock_system, SafePredFlag); Yap_InitCPred("$enter_undefp", 0, enter_undefp, SafePredFlag); Yap_InitCPred("$exit_undefp", 0, exit_undefp, SafePredFlag); #ifdef YAP_JIT Yap_InitCPred("$jit_init", 1, p_jit, SafePredFlag | SyncPredFlag); #endif /* YAPOR */ #ifdef INES Yap_InitCPred("euc_dist", 3, p_euc_dist, SafePredFlag); Yap_InitCPred("loop", 0, p_loop, SafePredFlag); #endif #if QSAR Yap_InitCPred("in_range", 8, p_in_range, TestPredFlag | SafePredFlag); Yap_InitCPred("in_range", 4, p_in_range2, TestPredFlag | SafePredFlag); #endif #ifdef DEBUG Yap_InitCPred("dump_active_goals", 0, p_dump_active_goals, SafePredFlag | SyncPredFlag); #endif Yap_InitArrayPreds(); Yap_InitAtomPreds(); Yap_InitBBPreds(); Yap_InitBigNums(); Yap_InitCdMgr(); Yap_InitCmpPreds(); Yap_InitCoroutPreds(); Yap_InitDBPreds(); Yap_InitErrorPreds(); Yap_InitExecFs(); Yap_InitGlobals(); Yap_InitInlines(); Yap_InitIOPreds(); Yap_InitExoPreds(); Yap_InitLoadForeign(); Yap_InitModulesC(); Yap_InitSavePreds(); Yap_InitRange(); Yap_InitSysPreds(); Yap_InitUnify(); Yap_InitQLY(); Yap_InitQLYR(); Yap_InitStInfo(); Yap_udi_init(); Yap_udi_Interval_init(); Yap_InitSignalCPreds(); Yap_InitUserCPreds(); Yap_InitUtilCPreds(); Yap_InitSortPreds(); Yap_InitMaVarCPreds(); #ifdef DEPTH_LIMIT Yap_InitItDeepenPreds(); #endif #ifdef ANALYST Yap_InitAnalystPreds(); #endif Yap_InitLowLevelTrace(); Yap_InitEval(); Yap_InitGrowPreds(); Yap_InitLowProf(); #if defined(YAPOR) || defined(TABLING) Yap_init_optyap_preds(); #endif /* YAPOR || TABLING */ #if YAP_JIT Yap_InitCPred("jit", 0, p_jit, SafePredFlag | SyncPredFlag); #endif Yap_InitThreadPreds(); { void (*(*(p)))(void) = E_Modules; while (*p) (*(*p++))(); } #if USE_MYDDAS init_myddas(); #endif #if CAMACHO { extern void InitForeignPreds(void); Yap_InitForeignPreds(); } #endif #if APRIL { extern void init_ol(void), init_time(void); init_ol(); init_time(); } #endif #if SUPPORT_CONDOR init_sys(); init_random(); // init_tries(); init_regexp(); #endif }