g/************************************************************************* * * * YAP Prolog * * * * Yap Prolog was developed at NCCUP - Universidade do Porto * * * * Copyright L.Damas, V.S.Costa and Universidade do Porto 1985-1997 * * * ************************************************************************** * * * File: control.yap * * Last rev: 20/08/09 * * mods: * * comments: control predicates available in yap * * * *************************************************************************/ /** @addtogroup YAPControl @{ */ :- system_module( '$_control', [at_halt/1, b_getval/2, break/0, call/2, call/3, call/4, call/5, call/6, call/7, call/8, call/9, call/10, call/11, call/12, call_cleanup/2, call_cleanup/3, forall/2, garbage_collect/0, garbage_collect_atoms/0, gc/0, grow_heap/1, grow_stack/1, halt/0, halt/1, if/3, ignore/1, nb_getval/2, nogc/0, notrace/1, once/1, prolog_current_frame/1, prolog_initialization/1, setup_call_catcher_cleanup/4, setup_call_cleanup/3, version/0, version/1], ['$run_atom_goal'/1, '$set_toplevel_hook'/1]). :- use_system_module( '$_boot', ['$call'/4, '$disable_debugging'/0, '$do_live'/0, '$enable_debugging'/0, '$system_catch'/4, '$version'/0]). :- use_system_module( '$_debug', ['$init_debugger'/0]). :- use_system_module( '$_errors', ['$do_error'/2]). :- use_system_module( '$_utils', ['$getval_exception'/3]). :- use_system_module( '$coroutining', [freeze_goal/2]). /** @pred once(: _G_) is iso Execute the goal _G_ only once. The predicate is defined by: ~~~~~{.prolog} once(G) :- call(G), !. ~~~~~ Note that cuts inside once/1 can only cut the other goals inside once/1. */ once(G) :- '$execute'(G), !. /** @pred forall(: _Cond_,: _Action_) For all alternative bindings of _Cond_ _Action_ can be proven. The example verifies that all arithmetic statements in the list _L_ are correct. It does not say which is wrong if one proves wrong. ~~~~~{.prolog} ?- forall(member(Result = Formula, [2 = 1 + 1, 4 = 2 * 2]), Result =:= Formula). ~~~~~ */ /** @pred forall(+ _Cond_,+ _Action_) For all alternative bindings of _Cond_ _Action_ can be proven. The next example verifies that all arithmetic statements in the list _L_ are correct. It does not say which is wrong if one proves wrong. ~~~~~ ?- forall(member(Result = Formula, [2 = 1 + 1, 4 = 2 * 2]), Result =:= Formula). ~~~~~ */ forall(Cond, Action) :- \+((Cond, \+(Action))). /** @pred ignore(: _Goal_) Calls _Goal_ as once/1, but succeeds, regardless of whether `Goal` succeeded or not. Defined as: ~~~~~{.prolog} ignore(Goal) :- Goal, !. ignore(_). ~~~~~ */ ignore(Goal) :- (Goal->true;true). notrace(G) :- strip_module(G, M, G1), ( '$$save_by'(CP), '$debug_stop'( State ), '$call'(G1, CP, G, M), '$$save_by'(CP2), (CP == CP2 -> ! ; '$debug_state'( NState ), ( true ; '$debug_restart'(NStart), fail ) ), '$debug_restart'( State ) ; '$debug_restart'( State ), fail ). /** @pred if(? _G_,? _H_,? _I_) Call goal _H_ once per each solution of goal _H_. If goal _H_ has no solutions, call goal _I_. The built-in `if/3` is similar to `->/3`, with the difference that it will backtrack over the test goal. Consider the following small data-base: ~~~~~{.prolog} a(1). b(a). c(x). a(2). b(b). c(y). ~~~~~ Execution of an `if/3` query will proceed as follows: ~~~~~{.prolog} ?- if(a(X),b(Y),c(Z)). X = 1, Y = a ? ; X = 1, Y = b ? ; X = 2, Y = a ? ; X = 2, Y = b ? ; no ~~~~~ The system will backtrack over the two solutions for `a/1` and the two solutions for `b/1`, generating four solutions. Cuts are allowed inside the first goal _G_, but they will only prune over _G_. If you want _G_ to be deterministic you should use if-then-else, as it is both more efficient and more portable. */ if(X,Y,Z) :- yap_hacks:env_choice_point(CP0), ( CP is '$last_choice_pt', '$call'(X,CP,if(X,Y,Z),M), '$execute'(X), '$clean_ifcp'(CP), '$call'(Y,CP,if(X,Y,Z),M) ; '$call'(Z,CP,if(X,Y,Z),M) ). call(X,A) :- '$execute'(X,A). call(X,A1,A2) :- '$execute'(X,A1,A2). /** @pred call(+ _Closure_,...,? _Ai_,...) is iso Meta-call where _Closure_ is a closure that is converted into a goal by appending the _Ai_ additional arguments. The number of arguments varies between 0 and 10. */ call(X,A1,A2,A3) :- '$execute'(X,A1,A2,A3). call(X,A1,A2,A3,A4) :- '$execute'(X,A1,A2,A3,A4). call(X,A1,A2,A3,A4,A5) :- '$execute'(X,A1,A2,A3,A4,A5). call(X,A1,A2,A3,A4,A5,A6) :- '$execute'(X,A1,A2,A3,A4,A5,A6). call(X,A1,A2,A3,A4,A5,A6,A7) :- '$execute'(X,A1,A2,A3,A4,A5,A6,A7). call(X,A1,A2,A3,A4,A5,A6,A7,A8) :- '$execute'(X,A1,A2,A3,A4,A5,A6,A7,A8). call(X,A1,A2,A3,A4,A5,A6,A7,A8,A9) :- '$execute'(X,A1,A2,A3,A4,A5,A6,A7,A8,A9). call(X,A1,A2,A3,A4,A5,A6,A7,A8,A9,A10) :- '$execute'(X,A1,A2,A3,A4,A5,A6,A7,A8,A9,A10). call(X,A1,A2,A3,A4,A5,A6,A7,A8,A9,A10,A11) :- '$execute'(X,A1,A2,A3,A4,A5,A6,A7,A8,A9,A10,A11). /** @pred call_cleanup(: _Goal_, : _CleanUpGoal_) This is similar to call_cleanup/1 with an additional _CleanUpGoal_ which gets called after _Goal_ is finished. */ call_cleanup(Goal, Cleanup) :- setup_call_catcher_cleanup(true, Goal, _Catcher, Cleanup). call_cleanup(Goal, Catcher, Cleanup) :- setup_call_catcher_cleanup(true, Goal, Catcher, Cleanup). /** @pred setup_call_cleanup(: _Setup_,: _Goal_, : _CleanUpGoal_) Calls `(Setup, Goal)`. For each sucessful execution of _Setup_, calling _Goal_, the cleanup handler _Cleanup_ is guaranteed to be called exactly once. This will happen after _Goal_ completes, either through failure, deterministic success, commit, or an exception. _Setup_ will contain the goals that need to be protected from asynchronous interrupts such as the ones received from `call_with_time_limit/2` or thread_signal/2. In most uses, _Setup_ will perform temporary side-effects required by _Goal_ that are finally undone by _Cleanup_. Success or failure of _Cleanup_ is ignored and choice-points it created are destroyed (as once/1). If _Cleanup_ throws an exception, this is executed as normal. Typically, this predicate is used to cleanup permanent data storage required to execute _Goal_, close file-descriptors, etc. The example below provides a non-deterministic search for a term in a file, closing the stream as needed. ~~~~~{.prolog} term_in_file(Term, File) :- setup_call_cleanup(open(File, read, In), term_in_stream(Term, In), close(In) ). term_in_stream(Term, In) :- repeat, read(In, T), ( T == end_of_file -> !, fail ; T = Term ). ~~~~~ Note that it is impossible to implement this predicate in Prolog other than by reading all terms into a list, close the file and call member/2. Without setup_call_cleanup/3 there is no way to gain control if the choice-point left by `repeat` is removed by a cut or an exception. `setup_call_cleanup/2` can also be used to test determinism of a goal: ~~~~~ ?- setup_call_cleanup(true,(X=1;X=2), Det=yes). X = 1 ; X = 2, Det = yes ; ~~~~~ This predicate is under consideration for inclusion into the ISO standard. For compatibility with other Prolog implementations see `call_cleanup/2`. */ setup_call_cleanup(Setup, Goal, Cleanup) :- setup_call_catcher_cleanup(Setup, Goal, _Catcher, Cleanup). /** @pred setup_call_catcher_cleanup(: _Setup_,: _Goal_, + _Catcher_,: _CleanUpGoal_) Similar to `setup_call_cleanup( _Setup_, _Goal_, _Cleanup_)` with additional information on the reason of calling _Cleanup_. Prior to calling _Cleanup_, _Catcher_ unifies with the termination code. If this unification fails, _Cleanup_ is *not* called. */ setup_call_catcher_cleanup(Setup, Goal, Catcher, Cleanup) :- yap_hacks:disable_interrupts, '$check_goal_for_setup_call_cleanup'(Setup, setup_call_cleanup(Setup, Goal, Cleanup)), catch('$do_setup'(Setup),Exception,'$handle_broken_setup'(Exception)), '$check_goal_for_setup_call_cleanup'(Cleanup, setup_call_cleanup(Setup, Goal, Cleanup)), '$safe_call_cleanup'(Goal,Cleanup,Catcher,Exception). % make sure we don't lose interrupts if we get exceptions % with setup. '$handle_broken_setup'(Exception) :- yap_hacks:enable_interrupts, throw(Exception). '$check_goal_for_setup_call_cleanup'(Goal, G) :- strip_module(Goal, _, MG), ( var(MG) -> yap_hacks:enable_interrupts, '$do_error'(instantiation_error,G) ; true ). % this is simple, do nothing '$do_setup'(A:true) :- atom(A), !. % this is tricky: please don't forget that interrupts are disabled at this point % and that they will only be enabled after setting up Cleanup '$do_setup'(Setup) :- ( '$execute'(Setup), % we don't need to care about enabling interrupts ! ; % reenable interrupts if Setup failed yap_hacks:enable_interrupts, fail ). '$cleanup_exception'(Exception, exception(Exception), Cleanup) :- !, % whatever happens, let exception go through catch('$clean_call'(_,Cleanup),_,true), throw(Exception). '$cleanup_exception'(Exception, _, _) :- throw(Exception). '$safe_call_cleanup'(Goal, Cleanup, Catcher, Exception) :- '$current_choice_point'(MyCP1), '$coroutining':freeze_goal(Catcher, '$clean_call'(Active, Cleanup)), ( yap_hacks:trail_suspension_marker(Catcher), yap_hacks:enable_interrupts, '$current_choice_point'(CP0), '$execute'(Goal), '$current_choice_point'(CPF), ( CP0 =:= CPF -> Catcher = exit, ! ; true ) ; Catcher = fail, fail ). '$holds_true'. % The first argument is used by JumpEnv to verify if a throw % is going to be handled by the cleanup catcher. If it is so, % clean_call will not be called from JumpToEnv. '$clean_call'(_, Cleanup) :- '$execute'(Cleanup), !. '$clean_call'(_, _). '$cc_check_throw' :- '$nb_getval'('$catch', Ball, fail), throw(Ball). %%% Some "dirty" predicates % Only efective if yap compiled with -DDEBUG % this predicate shows the code produced by the compiler '$show_code' :- '$debug'(0'f). %' just make emacs happy /** @pred grow_heap(+ _Size_) Increase heap size _Size_ kilobytes. */ grow_heap(X) :- '$grow_heap'(X). /** @pred grow_stack(+ _Size_) Increase stack size _Size_ kilobytes */ grow_stack(X) :- '$grow_stack'(X). % % gc() expects to be called from "call". Make sure it has an % environment to return to. % %garbage_collect :- save(dump), '$gc', save(dump2). /** @pred garbage_collect The goal `garbage_collect` forces a garbage collection. */ garbage_collect :- '$gc'. /** @pred gc The goal `gc` enables garbage collection. The same as `yap_flag(gc,on)`. */ gc :- yap_flag(gc,on). /** @pred nogc The goal `nogc` disables garbage collection. The same as `yap_flag(gc,off)`. */ nogc :- yap_flag(gc,off). /** @pred garbage_collect_atoms The goal `garbage_collect` forces a garbage collection of the atoms in the data-base. Currently, only atoms are recovered. */ garbage_collect_atoms :- '$atom_gc'. '$force_environment_for_gc'. '$good_list_of_character_codes'(V) :- var(V), !. '$good_list_of_character_codes'([]). '$good_list_of_character_codes'([X|L]) :- '$good_character_code'(X), '$good_list_of_character_codes'(L). '$good_character_code'(X) :- var(X), !. '$good_character_code'(X) :- integer(X), X > -2, X < 256. /** @pred prolog_initialization( _G_) Add a goal to be executed on system initialization. This is compatible with SICStus Prolog's initialization/1. */ prolog_initialization(G) :- var(G), !, '$do_error'(instantiation_error,initialization(G)). prolog_initialization(T) :- callable(T), !, '$assert_init'(T). prolog_initialization(T) :- '$do_error'(type_error(callable,T),initialization(T)). '$assert_init'(T) :- recordz('$startup_goal',T,_), fail. '$assert_init'(_). /** @pred version Write YAP's boot message. */ version :- '$version'. /** @pred version(- _Message_) Add a message to be written when yap boots or after aborting. It is not possible to remove messages. */ version(V) :- var(V), !, '$do_error'(instantiation_error,version(V)). version(T) :- atom(T), !, '$assert_version'(T). version(T) :- '$do_error'(type_error(atom,T),version(T)). '$assert_version'(T) :- recordz('$version',T,_), fail. '$assert_version'(_). '$set_toplevel_hook'(_) :- recorded('$toplevel_hooks',_,R), erase(R), fail. '$set_toplevel_hook'(H) :- recorda('$toplevel_hooks',H,_), fail. '$set_toplevel_hook'(_). /** @pred nb_getval(+ _Name_, - _Value_) The nb_getval/2 predicate is a synonym for b_getval/2, introduced for compatibility and symmetry. As most scenarios will use a particular global variable either using non-backtrackable or backtrackable assignment, using nb_getval/2 can be used to document that the variable is used non-backtrackable. */ /** @pred nb_getval(+ _Name_,- _Value_) The nb_getval/2 predicate is a synonym for b_getval/2, introduced for compatibility and symmetry. As most scenarios will use a particular global variable either using non-backtrackable or backtrackable assignment, using nb_getval/2 can be used to document that the variable is used non-backtrackable. */ nb_getval(GlobalVariable, Val) :- '$nb_getval'(GlobalVariable, Val, Error), (var(Error) -> true ; '$getval_exception'(GlobalVariable, Val, nb_getval(GlobalVariable, Val)) -> nb_getval(GlobalVariable, Val) ; '$do_error'(existence_error(variable, GlobalVariable),nb_getval(GlobalVariable, Val)) ). /** @pred b_getval(+ _Name_, - _Value_) Get the value associated with the global variable _Name_ and unify it with _Value_. Note that this unification may further instantiate the value of the global variable. If this is undesirable the normal precautions (double negation or copy_term/2) must be taken. The b_getval/2 predicate generates errors if _Name_ is not an atom or the requested variable does not exist. Notice that for compatibility with other systems _Name_ must be already associated with a term: otherwise the system will generate an error. */ /** @pred b_getval(+ _Name_,- _Value_) Get the value associated with the global variable _Name_ and unify it with _Value_. Note that this unification may further instantiate the value of the global variable. If this is undesirable the normal precautions (double negation or copy_term/2) must be taken. The b_getval/2 predicate generates errors if _Name_ is not an atom or the requested variable does not exist. */ b_getval(GlobalVariable, Val) :- '$nb_getval'(GlobalVariable, Val, Error), (var(Error) -> true ; '$getval_exception'(GlobalVariable, Val, b_getval(GlobalVariable, Val)) -> true ; '$do_error'(existence_error(variable, GlobalVariable),b_getval(GlobalVariable, Val)) ). /* This is the break predicate, it saves the importante data about current streams and debugger state */ '$debug_state'(state(Trace, Debug, Jump, Run, SPY_GN, GList)) :- '$init_debugger', nb_getval('$trace',Trace), nb_getval('$debug_jump',Jump), nb_getval('$debug_run',Run), '$swi_current_prolog_flag'(debug, Debug), nb_getval('$spy_gn',SPY_GN), b_getval('$spy_glist',GList). '$debug_stop'( State ) :- '$debug_state'( State ), b_setval('$trace',off), '$swi_set_prolog_flag'(debug, false), b_setval('$spy_glist',[]), '$disable_debugging'. '$debug_restart'(state(Trace, Debug, Jump, Run, SPY_GN, GList)) :- b_setval('$spy_glist',GList), b_setval('$spy_gn',SPY_GN), '$swi_set_prolog_flag'(debug, Debug), b_setval('$debug_jump',Jump), b_setval('$debug_run',Run), b_setval('$trace',Trace), '$enable_debugging'. /** @pred break Suspends the execution of the current goal and creates a new execution level similar to the top level, displaying the following message: ~~~~~{.prolog} [ Break (level ) ] ~~~~~ telling the depth of the break level just entered. To return to the previous level just type the end-of-file character or call the end_of_file predicate. This predicate is especially useful during debugging. */ break :- '$init_debugger', nb_getval('$trace',Trace), nb_setval('$trace',off), nb_getval('$debug_jump',Jump), nb_getval('$debug_run',Run), '$swi_current_prolog_flag'(debug, Debug), '$swi_set_prolog_flag'(debug, false), '$break'( true ), nb_getval('$spy_gn',SPY_GN), b_getval('$spy_glist',GList), b_setval('$spy_glist',[]), current_output(OutStream), current_input(InpStream), '$swi_current_prolog_flag'(break_level, NBL ), format(user_error, '% Break (level ~w)~n', [NBL]), '$do_live', !, set_value('$live','$true'), b_setval('$spy_glist',GList), nb_setval('$spy_gn',SPY_GN), set_input(InpStream), set_output(OutStream), '$swi_set_prolog_flag'(debug, Debug), nb_setval('$debug_jump',Jump), nb_setval('$debug_run',Run), nb_setval('$trace',Trace), '$break'( false ). at_halt(G) :- recorda('$halt', G, _), fail. at_halt(_). /** @pred halt is iso Halts Prolog, and exits to the calling application. In YAP, halt/0 returns the exit code `0`. */ halt :- print_message(informational, halt), fail. halt :- '$halt'(0). /** @pred halt(+ _I_) is iso Halts Prolog, and exits to the calling application returning the code given by the integer _I_. */ halt(_) :- recorded('$halt', G, _), call(G), fail. halt(X) :- '$sync_mmapped_arrays', set_value('$live','$false'), '$halt'(X). prolog_current_frame(Env) :- Env is '$env'. '$run_atom_goal'(GA) :- '$current_module'(Module), atom_to_term(GA, G, _), '$system_catch'('$query'(once(G), []),Module,Error,user:'$Error'(Error)). '$add_dot_to_atom_goal'([],[0'.]) :- !. %' '$add_dot_to_atom_goal'([0'.],[0'.]) :- !. '$add_dot_to_atom_goal'([C|Gs0],[C|Gs]) :- '$add_dot_to_atom_goal'(Gs0,Gs). /** @} */