/************************************************************************* * * * YAP Prolog * * * * Yap Prolog was developed at NCCUP - Universidade do Porto * * * * Copyright L.Damas, V.S.Costa and Universidade do Porto 1985-1997 * * * ************************************************************************** * * * File: sort.pl * * Last rev: * * mods: * * comments: sorting in Prolog * * * *************************************************************************/ :- system_module( '$_sort', [keysort/2, length/2, msort/2, predmerge/4, predmerge/7, predsort/3, predsort/5, sort/2, sort2/4], []). :- use_system_module( '$_errors', ['$do_error'/2]). /* The three sorting routines are all variations of merge-sort, done by bisecting the list, sorting the nearly equal halves, and merging the results. The half-lists aren't actually constructed, the number of elements is counted instead (which is why 'length' is in this file). */ % length of a list. /** @pred length(? _L_,? _S_) Unify the well-defined list _L_ with its length. The procedure can be used to find the length of a pre-defined list, or to build a list of length _S_. */ length(L, M) :- '$skip_list'(L, M, M0, R), ( var(R) -> '$$_length'(R, M, M0) ; R == [] ). % % in case A1 is unbound or a difference list, things get tricky % '$$_length'(R, M, M0) :- ( var(M) -> '$$_length1'(R,M,M0) ; M >= M0 -> '$$_length2'(R,M,M0) ). % % Size is unbound, generate lists % '$$_length1'([], M, M). '$$_length1'([_|L], O, N) :- M is N + 1, '$$_length1'(L, O, M). % % Size is bound, generate single list % '$$_length2'(NL, O, N) :- ( N =:= O -> NL = []; M is N + 1, NL = [_|L], '$$_length2'(L, O, M) ). /** @pred sort(+ _L_,- _S_) is iso Unifies _S_ with the list obtained by sorting _L_ and merging identical (in the sense of `==`) elements. */ sort(L,O) :- '$skip_list'(NL,L,RL), ( RL == [] -> true ; var(RL) -> '$do_error'(instantiation_error,sort(L,O)) ; '$do_error'(type_error(list,L),sort(L,O)) ), ( nonvar(O) -> ( O == [] -> L == [] ; '$skip_list'(NO,O,RO), ( RO == [] -> NO =< NL ; var(RO) -> NO =< NL ; '$do_error'(type_error(list,O),sort(L,O)) ) ) ; true ), '$sort'(L,O). msort(L,O) :- '$msort'(L,O). /** @pred keysort(+ _L_, _S_) is iso Assuming L is a list of the form ` _Key_- _Value_`, `keysort(+ _L_, _S_)` unifies _S_ with the list obtained from _L_, by sorting its elements according to the value of _Key_. ~~~~~{.prolog} ?- keysort([3-a,1-b,2-c,1-a,1-b],S). ~~~~~ would return: ~~~~~{.prolog} S = [1-b,1-a,1-b,2-c,3-a] ~~~~~ */ keysort(L,O) :- '$skip_list'(NL,L,RL), ( RL == [] -> true ; var(RL) -> '$do_error'(instantiation_error,sort(L,O)) ; '$do_error'(type_error(list,L),sort(L,O)) ), ( nonvar(O) -> '$skip_list'(NO,O,RO), ( RO == [] -> NO =:= NL ; var(RO) -> NO =< NL ; '$do_error'(type_error(list,O),sort(L,O)) ) ; true ), '$keysort'(L,O). :- meta_predicate prolog:predsort(3,+,-). %% predsort(:Compare, +List, -Sorted) is det. % % Sorts similar to sort/2, but determines the order of two terms % by calling Compare(-Delta, +E1, +E2). This call must unify % Delta with one of <, > or =. If built-in predicate compare/3 is % used, the result is the same as sort/2. See also keysort/2. /** @pred predsort(+ _Pred_, + _List_, - _Sorted_) Sorts similar to sort/2, but determines the order of two terms by calling _Pred_(- _Delta_, + _E1_, + _E2_) . This call must unify _Delta_ with one of `<`, `>` or `=`. If built-in predicate compare/3 is used, the result is the same as sort/2. */ predsort(P, L, R) :- length(L, N), predsort(P, N, L, _, R1), !, R = R1. predsort(P, 2, [X1, X2|L], L, R) :- !, call(P, Delta, X1, X2), sort2(Delta, X1, X2, R). predsort(_, 1, [X|L], L, [X]) :- !. predsort(_, 0, L, L, []) :- !. predsort(P, N, L1, L3, R) :- N1 is N // 2, plus(N1, N2, N), predsort(P, N1, L1, L2, R1), predsort(P, N2, L2, L3, R2), predmerge(P, R1, R2, R). sort2(<, X1, X2, [X1, X2]). sort2(=, X1, _, [X1]). sort2(>, X1, X2, [X2, X1]). predmerge(_, [], R, R) :- !. predmerge(_, R, [], R) :- !. predmerge(P, [H1|T1], [H2|T2], Result) :- call(P, Delta, H1, H2), predmerge(Delta, P, H1, H2, T1, T2, Result). predmerge(>, P, H1, H2, T1, T2, [H2|R]) :- predmerge(P, [H1|T1], T2, R). predmerge(=, P, H1, _, T1, T2, [H1|R]) :- predmerge(P, T1, T2, R). predmerge(<, P, H1, H2, T1, T2, [H1|R]) :- predmerge(P, T1, [H2|T2], R).