/************************************************************************* * * YAP Prolog * * Yap Prolog was developed at NCCUP - Universidade do Porto * * * * Copyright L.Damas, V.Santos Costa and Universidade do Porto 1985-- * * * ************************************************************************** * * * File: c_interface.c * * comments: c_interface primitives definition * * * * Last rev: $Date: 2008-08-07 20:51:21 $,$Author: vsc $ ** * $Log: not supported by cvs2svn $ * * * * *************************************************************************/ /** @file c_interface.c */ #ifndef C_INTERFACE_C #define C_INTERFACE_C 1 #include "Yap.h" #include "attvar.h" #include "clause.h" #include "yapio.h" #include #if HAVE_UNISTD_H #include #endif #include #include #if HAVE_STDARG_H #include #endif #if _MSC_VER || defined(__MINGW32__) #include #endif #include "iopreds.h" // we cannot consult YapInterface.h, that conflicts with what we declare, though // it shouldn't #include "YapInterface.h" #include "YapText.h" #ifdef TABLING #include "tab.macros.h" #endif /* TABLING */ #ifdef YAPOR #include "or.macros.h" #endif /* YAPOR */ #include "cut_c.h" #include "threads.h" #if HAVE_MALLOC_H #include #endif typedef void *atom_t; typedef void *functor_t; typedef enum { FRG_FIRST_CALL = 0, /* Initial call */ FRG_CUTTED = 1, /* Context was cutted */ FRG_REDO = 2 /* Normal redo */ } frg_code; struct foreign_context { uintptr_t context; /* context value */ frg_code control; /* FRG_* action */ struct PL_local_data *engine; /* invoking engine */ }; X_API int YAP_Reset(yap_reset_t mode); #if !HAVE_STRNCPY #define strncpy(X, Y, Z) strcpy(X, Y) #endif #if !HAVE_STRNCAT #define strncat(X, Y, Z) strcat(X, Y) #endif #if defined(_WIN32) && !defined(X_API) #define X_API __declspec(dllexport) #endif /** @defgroup slotInterface Term Handles or Slots @ingroup ChYInterface @{ Term handles correspond to SWI-Prolog's term_t datatype: they are a safe representation of terms. Slots are safe houses in the stack, the garbage collector and the stack shifter know about them and make sure they have correct values. In this case, we use a slot to preserve _t_ during the execution of YAP_RunGoal). When the execution of _t_ is over we read the (possibly changed) value of _t_ back from the slot _sl_ and tell YAP that the slot _sl_ is not needed and can be given back to the system. YAP supports storing and manipulating term_t like slots or handles, but in the C the programmer needs to take care as most operations still require unwrapping the term inside. For implementation details and more information, please check term_t_slots in the implementation section. */ /// @brief report the current position of the slots, assuming that they occupy /// the top of the stack. /// /// X_API yhandle_t YAP_CurrentSlot(void); /// @brief allocate n empty new slots /// /// Return a handle to the system's default slot. X_API yhandle_t YAP_NewSlots(int NumberOfSlots); /// @brief allocate n empty new slots /// /// Allocate _NumberOfSlots_ from the stack and return an handle to the /// last one. The other handle can be obtained by decrementing the handle. X_API yhandle_t YAP_InitSlot(YAP_Term t); /// @brief read from a slot. /// /// X_API YAP_Term YAP_GetFromSlot(YAP_handle_t slot); /// @brief get the memory address of a slot /// /// Return the address of slot _slot_: please use with care. X_API YAP_Term *YAP_AddressFromSlot(YAP_handle_t); /// @brief get the memory address of the term actually stored in a slot /// /// X_API YAP_Term *YAP_AddressOfTermInSlot(YAP_handle_t); /// @brief store term in a slot /// /// X_API void YAP_PutInSlot(YAP_handle_t slot, YAP_Term t); /// @brief Succeeds if it recovers the space allocated for $n$ contiguous slots /// starting at topSlot. /// /// Set the contents of slot _slot_ to _t_. X_API int YAP_RecoverSlots(int, YAP_handle_t topSlot); /// @brief copies the first new n YAAM registers to slots /// /// Store the current first _HowMany_ arguments in new slots. X_API YAP_handle_t YAP_ArgsToSlots(int HowMany); /// @brief copies n slots such that sl is copied to the last abstract ,achine /// register. /// /// Set the first _HowMany_ arguments to the _HowMany_ slots // starting at _slot_. X_API void YAP_SlotsToArgs(int HowMany, YAP_handle_t slot); /// @} /** @addtogroup c-interface @{ */ static arity_t current_arity(void) { CACHE_REGS if (P && PREVOP(P, Osbpp)->opc == Yap_opcode(_call_usercpred)) { return PREVOP(P, Osbpp)->y_u.Osbpp.p->ArityOfPE; } else { return 0; } } static int doexpand(UInt sz) { CACHE_REGS UInt arity; if (P && PREVOP(P, Osbpp)->opc == Yap_opcode(_call_usercpred)) { arity = PREVOP(P, Osbpp)->y_u.Osbpp.p->ArityOfPE; } else { arity = 0; } if (!Yap_gcl(sz, arity, ENV, gc_P(P, CP))) { return FALSE; } return TRUE; } X_API YAP_Term YAP_A(int i) { CACHE_REGS return (Deref(XREGS[i])); } X_API YAP_Bool YAP_IsIntTerm(YAP_Term t) { return IsIntegerTerm(t); } X_API YAP_Bool YAP_IsNumberTerm(YAP_Term t) { return IsIntegerTerm(t) || IsIntTerm(t) || IsFloatTerm(t) || IsBigIntTerm(t); } X_API YAP_Bool YAP_IsLongIntTerm(YAP_Term t) { return IsLongIntTerm(t); } X_API YAP_Bool YAP_IsBigNumTerm(YAP_Term t) { #if USE_GMP CELL *pt; if (IsVarTerm(t)) return FALSE; if (!IsBigIntTerm(t)) return FALSE; pt = RepAppl(t); return pt[1] == BIG_INT; #else return FALSE; #endif } X_API YAP_Bool YAP_IsRationalTerm(YAP_Term t) { #if USE_GMP CELL *pt; if (IsVarTerm(t)) return FALSE; if (!IsBigIntTerm(t)) return FALSE; pt = RepAppl(t); return pt[1] == BIG_RATIONAL; #else return FALSE; #endif } X_API YAP_Bool YAP_IsVarTerm(YAP_Term t) { return (IsVarTerm(t)); } X_API YAP_Bool YAP_IsNonVarTerm(YAP_Term t) { return (IsNonVarTerm(t)); } X_API YAP_Bool YAP_IsFloatTerm(Term t) { return (IsFloatTerm(t)); } X_API YAP_Bool YAP_IsDbRefTerm(Term t) { return (IsDBRefTerm(t)); } X_API YAP_Bool YAP_IsAtomTerm(Term t) { return (IsAtomTerm(t)); } X_API YAP_Bool YAP_IsPairTerm(Term t) { return (IsPairTerm(t)); } X_API YAP_Bool YAP_IsApplTerm(Term t) { return (IsApplTerm(t) && !IsExtensionFunctor(FunctorOfTerm(t))); } X_API YAP_Bool YAP_IsCompoundTerm(Term t) { return (IsApplTerm(t) && !IsExtensionFunctor(FunctorOfTerm(t))) || IsPairTerm(t); } X_API Term YAP_MkIntTerm(Int n) { CACHE_REGS Term I; BACKUP_H(); I = MkIntegerTerm(n); RECOVER_H(); return I; } X_API Int YAP_IntOfTerm(Term t) { if (!IsApplTerm(t)) return IntOfTerm(t); else { return LongIntOfTerm(t); } } X_API Term YAP_MkBigNumTerm(void *big) { #if USE_GMP Term I; BACKUP_H(); I = Yap_MkBigIntTerm((MP_INT *)big); RECOVER_H(); return I; #else return TermNil; #endif /* USE_GMP */ } X_API YAP_Bool YAP_BigNumOfTerm(Term t, void *b) { #if USE_GMP MP_INT *bz = (MP_INT *)b; if (IsVarTerm(t)) return FALSE; if (!IsBigIntTerm(t)) return FALSE; mpz_set(bz, Yap_BigIntOfTerm(t)); return TRUE; #else return FALSE; #endif /* USE_GMP */ } X_API Term YAP_MkRationalTerm(void *big) { #if USE_GMP Term I; BACKUP_H(); I = Yap_MkBigRatTerm((MP_RAT *)big); RECOVER_H(); return I; #else return TermNil; #endif /* USE_GMP */ } X_API YAP_Bool YAP_RationalOfTerm(Term t, void *b) { #if USE_GMP MP_RAT *br = (MP_RAT *)b; if (IsVarTerm(t)) return FALSE; if (!IsBigIntTerm(t)) return FALSE; mpq_set(br, Yap_BigRatOfTerm(t)); return TRUE; #else return FALSE; #endif /* USE_GMP */ } X_API Term YAP_MkBlobTerm(unsigned int sz) { CACHE_REGS Term I; MP_INT *dst; BACKUP_H(); while (HR + (sz + sizeof(MP_INT) / sizeof(CELL) + 2) > ASP - 1024) { if (!doexpand((sz + sizeof(MP_INT) / sizeof(CELL) + 2) * sizeof(CELL))) { Yap_Error(RESOURCE_ERROR_STACK, TermNil, "YAP failed to grow the stack while constructing a blob: %s", LOCAL_ErrorMessage); return TermNil; } } I = AbsAppl(HR); HR[0] = (CELL)FunctorBigInt; HR[1] = ARRAY_INT; dst = (MP_INT *)(HR + 2); dst->_mp_size = 0L; dst->_mp_alloc = sz; HR += (2 + sizeof(MP_INT) / sizeof(CELL)); HR[sz] = EndSpecials; HR += sz + 1; RECOVER_H(); return I; } X_API void *YAP_BlobOfTerm(Term t) { MP_INT *src; if (IsVarTerm(t)) return NULL; if (!IsBigIntTerm(t)) return NULL; src = (MP_INT *)(RepAppl(t) + 2); return (void *)(src + 1); } X_API Term YAP_MkFloatTerm(double n) { CACHE_REGS Term t; BACKUP_H(); t = MkFloatTerm(n); RECOVER_H(); return t; } X_API YAP_Float YAP_FloatOfTerm(YAP_Term t) { return (FloatOfTerm(t)); } X_API Term YAP_MkAtomTerm(Atom n) { Term t; t = MkAtomTerm(n); return t; } X_API Atom YAP_AtomOfTerm(Term t) { return (AtomOfTerm(t)); } X_API bool YAP_IsWideAtom(Atom a) { return IsWideAtom(a); } X_API const char *YAP_AtomName(Atom a) { const char *o; o = AtomName(a); return (o); } X_API const wchar_t *YAP_WideAtomName(Atom a) { return RepAtom(a)->WStrOfAE; } X_API Atom YAP_LookupAtom(const char *c) { CACHE_REGS Atom a; while (TRUE) { a = Yap_LookupAtom(c); if (a == NIL || Yap_get_signal(YAP_CDOVF_SIGNAL)) { if (!Yap_locked_growheap(FALSE, 0, NULL)) { Yap_Error(RESOURCE_ERROR_HEAP, TermNil, "YAP failed to grow heap: %s", LOCAL_ErrorMessage); } } else { return a; } } return NULL; } X_API Atom YAP_LookupWideAtom(const wchar_t *c) { CACHE_REGS Atom a; while (TRUE) { a = Yap_LookupWideAtom((wchar_t *)c); if (a == NIL || Yap_get_signal(YAP_CDOVF_SIGNAL)) { if (!Yap_locked_growheap(FALSE, 0, NULL)) { Yap_Error(RESOURCE_ERROR_HEAP, TermNil, "YAP failed to grow heap: %s", LOCAL_ErrorMessage); } } else { return a; } } return NULL; } X_API Atom YAP_FullLookupAtom(const char *c) { CACHE_REGS Atom at; while (TRUE) { at = Yap_FullLookupAtom(c); if (at == NIL || Yap_get_signal(YAP_CDOVF_SIGNAL)) { if (!Yap_locked_growheap(FALSE, 0, NULL)) { Yap_Error(RESOURCE_ERROR_HEAP, TermNil, "YAP failed to grow heap: %s", LOCAL_ErrorMessage); } } else { return at; } } return NULL; } X_API size_t YAP_AtomNameLength(Atom at) { if (IsBlob(at)) { return RepAtom(at)->rep.blob->length; } if (IsWideAtom(at)) { wchar_t *c = RepAtom(at)->WStrOfAE; return wcslen(c); } else { unsigned char *c = RepAtom(at)->UStrOfAE; return strlen((char *)c); } } X_API Term YAP_MkVarTerm(void) { CACHE_REGS CELL t; BACKUP_H(); t = MkVarTerm(); RECOVER_H(); return t; } X_API Term YAP_MkPairTerm(Term t1, Term t2) { CACHE_REGS Term t; BACKUP_H(); while (HR > ASP - 1024) { Int sl1 = Yap_InitSlot(t1); Int sl2 = Yap_InitSlot(t2); RECOVER_H(); if (!Yap_dogc(0, NULL PASS_REGS)) { return TermNil; } BACKUP_H(); t1 = Yap_GetFromSlot(sl1); t2 = Yap_GetFromSlot(sl2); Yap_RecoverSlots(2, sl2); } t = MkPairTerm(t1, t2); RECOVER_H(); return t; } X_API Term YAP_MkListFromTerms(Term *ta, Int sz) { CACHE_REGS Term t; CELL *h; if (sz == 0) return TermNil; BACKUP_H(); while (HR + sz * 2 > ASP - 1024) { Int sl1 = Yap_InitSlot((CELL)ta); RECOVER_H(); if (!Yap_dogc(0, NULL PASS_REGS)) { return TermNil; } BACKUP_H(); ta = (CELL *)Yap_GetFromSlot(sl1); Yap_RecoverSlots(1, sl1); } h = HR; t = AbsPair(h); while (sz--) { Term ti = *ta++; if (IsVarTerm(ti)) { RESET_VARIABLE(h); Yap_unify(ti, h[0]); } else { h[0] = ti; } h[1] = AbsPair(h + 2); h += 2; } h[-1] = TermNil; HR = h; RECOVER_H(); return t; } X_API Term YAP_MkNewPairTerm() { CACHE_REGS Term t; BACKUP_H(); if (HR > ASP - 1024) t = TermNil; else t = Yap_MkNewPairTerm(); RECOVER_H(); return t; } X_API Term YAP_HeadOfTerm(Term t) { return (HeadOfTerm(t)); } X_API Term YAP_TailOfTerm(Term t) { return (TailOfTerm(t)); } X_API Int YAP_SkipList(Term *l, Term **tailp) { return Yap_SkipList(l, tailp); Int length = 0; Term *s; /* slow */ Term v; /* temporary */ do_derefa(v, l, derefa_unk, derefa_nonvar); s = l; if (IsPairTerm(*l)) { intptr_t power = 1, lam = 0; do { if (power == lam) { s = l; power *= 2; lam = 0; } lam++; length++; l = RepPair(*l) + 1; do_derefa(v, l, derefa2_unk, derefa2_nonvar); } while (*l != *s && IsPairTerm(*l)); } *tailp = l; return length; } X_API Term YAP_MkApplTerm(Functor f, UInt arity, Term args[]) { CACHE_REGS Term t; BACKUP_H(); if (HR + arity > ASP - 1024) t = TermNil; else t = Yap_MkApplTerm(f, arity, args); RECOVER_H(); return t; } X_API Term YAP_MkNewApplTerm(Functor f, UInt arity) { CACHE_REGS Term t; BACKUP_H(); if (HR + arity > ASP - 1024) t = TermNil; else t = Yap_MkNewApplTerm(f, arity); RECOVER_H(); return t; } X_API Functor YAP_FunctorOfTerm(Term t) { return (FunctorOfTerm(t)); } X_API Term YAP_ArgOfTerm(UInt n, Term t) { return (ArgOfTerm(n, t)); } X_API Term *YAP_ArgsOfTerm(Term t) { if (IsApplTerm(t)) return RepAppl(t) + 1; else if (IsPairTerm(t)) return RepPair(t); return NULL; } X_API Functor YAP_MkFunctor(Atom a, UInt n) { return (Yap_MkFunctor(a, n)); } X_API Atom YAP_NameOfFunctor(Functor f) { return (NameOfFunctor(f)); } X_API UInt YAP_ArityOfFunctor(Functor f) { return (ArityOfFunctor(f)); } X_API void *YAP_ExtraSpaceCut(void) { CACHE_REGS void *ptr; BACKUP_B(); ptr = (void *)(((CELL *)(Yap_REGS.CUT_C_TOP)) - (((yamop *)Yap_REGS.CUT_C_TOP->try_userc_cut_yamop) ->y_u.OtapFs.extra)); RECOVER_B(); return (ptr); } X_API void *YAP_ExtraSpace(void) { CACHE_REGS void *ptr; BACKUP_B(); BACKUP_H(); /* find a pointer to extra space allocable */ ptr = (void *)((CELL *)(B + 1) + P->y_u.OtapFs.s); B->cp_h = HR; RECOVER_H(); RECOVER_B(); return (ptr); } X_API void YAP_cut_up(void) { CACHE_REGS BACKUP_B(); { while (POP_CHOICE_POINT(B->cp_b)) { POP_EXECUTE(); } } /* This is complicated: make sure we can restore the ASP pointer back to where cut_up called it. Slots depend on it. */ if (ENV > B->cp_env) { ASP = B->cp_env; } #ifdef YAPOR { choiceptr cut_pt; cut_pt = B->cp_b; /* make sure we prune C-choicepoints */ if (POP_CHOICE_POINT(B->cp_b)) { POP_EXECUTE(); } CUT_prune_to(cut_pt); Yap_TrimTrail(); B = cut_pt; } #else /* make sure we prune C-choicepoints */ if (POP_CHOICE_POINT(B->cp_b)) { POP_EXECUTE(); } Yap_TrimTrail(); B = B->cp_b; /* cut_fail */ #endif HB = B->cp_h; /* cut_fail */ RECOVER_B(); } X_API bool YAP_Unify(Term t1, Term t2) { Int out; BACKUP_MACHINE_REGS(); out = Yap_unify(t1, t2); RECOVER_MACHINE_REGS(); return out; } X_API int YAP_Unifiable(Term t1, Term t2) { int out; BACKUP_MACHINE_REGS(); out = Yap_Unifiable(t1, t2); RECOVER_MACHINE_REGS(); return out; } /* == */ X_API int YAP_ExactlyEqual(Term t1, Term t2) { int out; BACKUP_MACHINE_REGS(); out = Yap_eq(t1, t2); RECOVER_MACHINE_REGS(); return out; } /* =@= */ X_API int YAP_Variant(Term t1, Term t2) { int out; BACKUP_MACHINE_REGS(); out = Yap_Variant(Deref(t1), Deref(t2)); RECOVER_MACHINE_REGS(); return out; } /* =@= */ X_API Int YAP_TermHash(Term t, Int sz, Int depth, int variant) { Int out; BACKUP_MACHINE_REGS(); out = Yap_TermHash(t, sz, depth, variant); RECOVER_MACHINE_REGS(); return out; } X_API Int YAP_CurrentSlot(void) { CACHE_REGS return Yap_CurrentSlot(); } X_API Int YAP_NewSlots(int n) { CACHE_REGS return Yap_NewSlots(n); } X_API Int YAP_InitSlot(Term t) { CACHE_REGS return Yap_InitSlot(t); } X_API int YAP_RecoverSlots(int n, Int top_slot) { CACHE_REGS return Yap_RecoverSlots(n, top_slot); } X_API Term YAP_GetFromSlot(Int slot) { CACHE_REGS return Yap_GetFromSlot(slot); } X_API Term *YAP_AddressFromSlot(Int slot) { CACHE_REGS return Yap_AddressFromSlot(slot); } X_API Term *YAP_AddressOfTermInSlot(Int slot) { CACHE_REGS Term *b = Yap_AddressFromSlot(slot); Term a = *b; restart: if (!IsVarTerm(a)) { return (b); } else if (a == (CELL)b) { return (b); } else { b = (CELL *)a; a = *b; goto restart; } } X_API void YAP_PutInSlot(Int slot, Term t) { CACHE_REGS Yap_PutInSlot(slot, t); } typedef Int (*CPredicate0)(void); typedef Int (*CPredicate1)(yhandle_t); typedef Int (*CPredicate2)(yhandle_t, yhandle_t); typedef Int (*CPredicate3)(yhandle_t, yhandle_t, yhandle_t); typedef Int (*CPredicate4)(yhandle_t, yhandle_t, yhandle_t, yhandle_t); typedef Int (*CPredicate5)(yhandle_t, yhandle_t, yhandle_t, yhandle_t, yhandle_t); typedef Int (*CPredicate6)(yhandle_t, yhandle_t, yhandle_t, yhandle_t, yhandle_t, yhandle_t); typedef Int (*CPredicate7)(yhandle_t, yhandle_t, yhandle_t, yhandle_t, yhandle_t, yhandle_t, yhandle_t); typedef Int (*CPredicate8)(yhandle_t, yhandle_t, yhandle_t, yhandle_t, yhandle_t, yhandle_t, yhandle_t, yhandle_t); typedef Int (*CPredicate9)(yhandle_t, yhandle_t, yhandle_t, yhandle_t, yhandle_t, yhandle_t, yhandle_t, yhandle_t, yhandle_t); typedef Int (*CPredicate10)(yhandle_t, yhandle_t, yhandle_t, yhandle_t, yhandle_t, yhandle_t, yhandle_t, yhandle_t, yhandle_t, yhandle_t); typedef Int (*CPredicateV)(yhandle_t, yhandle_t, struct foreign_context *); static Int execute_cargs(PredEntry *pe, CPredicate exec_code USES_REGS) { switch (pe->ArityOfPE) { case 0: { CPredicate0 code0 = (CPredicate0)exec_code; return code0(); } case 1: { CPredicate1 code1 = (CPredicate1)exec_code; yhandle_t a1 = Yap_InitSlots(1, &ARG1); return code1(a1); } case 2: { CPredicate2 code2 = (CPredicate2)exec_code; yhandle_t a1 = Yap_InitSlots(2, &ARG1); return code2(a1, a1 + 1); } case 3: { CPredicate3 code3 = (CPredicate3)exec_code; yhandle_t a1 = Yap_InitSlots(3, &ARG1); return code3(a1, a1 + 1, a1 + 2); } case 4: { CPredicate4 code4 = (CPredicate4)exec_code; yhandle_t a1 = Yap_InitSlots(4, &ARG1); return code4(a1, a1 + 1, a1 + 2, a1 + 3); } case 5: { CPredicate5 code5 = (CPredicate5)exec_code; yhandle_t a1 = Yap_InitSlots(5, &ARG1); return code5(a1, a1 + 1, a1 + 2, a1 + 3, a1 + 4); } case 6: { CPredicate6 code6 = (CPredicate6)exec_code; yhandle_t a1 = Yap_InitSlots(6, &ARG1); return code6(a1, a1 + 1, a1 + 2, a1 + 3, a1 + 4, a1 + 5); } case 7: { CPredicate7 code7 = (CPredicate7)exec_code; yhandle_t a1 = Yap_InitSlots(7, &ARG1); return code7(a1, a1 + 1, a1 + 2, a1 + 3, a1 + 4, a1 + 5, a1 + 6); } case 8: { CPredicate8 code8 = (CPredicate8)exec_code; yhandle_t a1 = Yap_InitSlots(8, &ARG1); return code8(a1, a1 + 1, a1 + 2, a1 + 3, a1 + 4, a1 + 5, a1 + 6, a1 + 7); } case 9: { CPredicate9 code9 = (CPredicate9)exec_code; yhandle_t a1 = Yap_InitSlots(9, &ARG1); return code9(a1, a1 + 1, a1 + 2, a1 + 3, a1 + 4, a1 + 5, a1 + 6, a1 + 7, a1 + 8); } case 10: { CPredicate10 code10 = (CPredicate10)exec_code; yhandle_t a1 = Yap_InitSlots(10, &ARG1); return code10(a1, a1 + 1, a1 + 2, a1 + 3, a1 + 4, a1 + 5, a1 + 6, a1 + 7, a1 + 8, a1 + 9); } default: YAP_Error(SYSTEM_ERROR_INTERNAL, TermNil, "YAP only supports SWI C-call with arity =< 10"); return (FALSE); } } typedef uintptr_t (*CBPredicate0)(struct foreign_context *); typedef uintptr_t (*CBPredicate1)(yhandle_t, struct foreign_context *); typedef uintptr_t (*CBPredicate2)(yhandle_t, yhandle_t, struct foreign_context *); typedef uintptr_t (*CBPredicate3)(yhandle_t, yhandle_t, yhandle_t, struct foreign_context *); typedef uintptr_t (*CBPredicate4)(yhandle_t, yhandle_t, yhandle_t, yhandle_t, struct foreign_context *); typedef uintptr_t (*CBPredicate5)(yhandle_t, yhandle_t, yhandle_t, yhandle_t, yhandle_t, struct foreign_context *); typedef uintptr_t (*CBPredicate6)(yhandle_t, yhandle_t, yhandle_t, yhandle_t, yhandle_t, yhandle_t, struct foreign_context *); typedef uintptr_t (*CBPredicate7)(yhandle_t, yhandle_t, yhandle_t, yhandle_t, yhandle_t, yhandle_t, yhandle_t, struct foreign_context *); typedef uintptr_t (*CBPredicate8)(yhandle_t, yhandle_t, yhandle_t, yhandle_t, yhandle_t, yhandle_t, yhandle_t, yhandle_t, struct foreign_context *); typedef uintptr_t (*CBPredicate9)(yhandle_t, yhandle_t, yhandle_t, yhandle_t, yhandle_t, yhandle_t, yhandle_t, yhandle_t, yhandle_t, struct foreign_context *); typedef uintptr_t (*CBPredicate10)(yhandle_t, yhandle_t, yhandle_t, yhandle_t, yhandle_t, yhandle_t, yhandle_t, yhandle_t, yhandle_t, yhandle_t, struct foreign_context *); static uintptr_t execute_cargs_back(PredEntry *pe, CPredicate exec_code, struct foreign_context *ctx USES_REGS) { switch (pe->ArityOfPE) { case 0: { CBPredicate0 code0 = (CBPredicate0)exec_code; return code0(ctx); } case 1: { CBPredicate1 code1 = (CBPredicate1)exec_code; yhandle_t a1 = Yap_InitSlots(1, &B->cp_a1); return code1(a1, ctx); } case 2: { CBPredicate2 code2 = (CBPredicate2)exec_code; yhandle_t a1 = Yap_InitSlots(2, &B->cp_a1); return code2(a1, a1 + 1, ctx); } case 3: { CBPredicate3 code3 = (CBPredicate3)exec_code; yhandle_t a1 = Yap_InitSlots(3, &B->cp_a1); return code3(a1, a1 + 1, a1 + 2, ctx); } case 4: { CBPredicate4 code4 = (CBPredicate4)exec_code; yhandle_t a1 = Yap_InitSlots(4, &B->cp_a1); return code4(a1, a1 + 1, a1 + 2, a1 + 3, ctx); } case 5: { CBPredicate5 code5 = (CBPredicate5)exec_code; yhandle_t a1 = Yap_InitSlots(5, &B->cp_a1); return code5(a1, a1 + 1, a1 + 2, a1 + 3, a1 + 4, ctx); } case 6: { CBPredicate6 code6 = (CBPredicate6)exec_code; yhandle_t a1 = Yap_InitSlots(6, &B->cp_a1); return code6(a1, a1 + 1, a1 + 2, a1 + 3, a1 + 4, a1 + 5, ctx); } case 7: { CBPredicate7 code7 = (CBPredicate7)exec_code; yhandle_t a1 = Yap_InitSlots(7, &B->cp_a1); return code7(a1, a1 + 1, a1 + 2, a1 + 3, a1 + 4, a1 + 5, a1 + 6, ctx); } case 8: { CBPredicate8 code8 = (CBPredicate8)exec_code; yhandle_t a1 = Yap_InitSlots(8, &B->cp_a1); return code8(a1, a1 + 1, a1 + 2, a1 + 3, a1 + 4, a1 + 5, a1 + 6, a1 + 7, ctx); } case 9: { CBPredicate9 code9 = (CBPredicate9)exec_code; yhandle_t a1 = Yap_InitSlots(9, &B->cp_a1); return code9(a1, a1 + 1, a1 + 2, a1 + 3, a1 + 4, a1 + 5, a1 + 6, a1 + 7, a1 + 8, ctx); } case 10: { CBPredicate10 code10 = (CBPredicate10)exec_code; yhandle_t a1 = Yap_InitSlots(10, &B->cp_a1); return code10(a1, a1 + 1, a1 + 2, a1 + 3, a1 + 4, a1 + 5, a1 + 6, a1 + 7, a1 + 8, a1 + 9, ctx); } default: YAP_Error(SYSTEM_ERROR_INTERNAL, TermNil, "YAP only supports SWI C-call with arity =< 10"); return (FALSE); } } static uintptr_t complete_fail(choiceptr ptr, int has_cp USES_REGS) { // this case is easy, jut be sure to throw everything // after the old B; while (B && B->cp_b && B->cp_b <= ptr) { B = B->cp_b; } if (has_cp) return do_cut(FALSE); return FALSE; } static uintptr_t complete_exit(choiceptr ptr, int has_cp, int cut_all USES_REGS) { // the user often leaves open frames, especially in forward execution while (B && (!ptr || B < ptr)) { if (cut_all || B->cp_ap == NOCODE) { /* separator */ do_cut(TRUE); // pushes B up continue; } else if (B->cp_ap->opc == RETRY_USERC_OPCODE && B->cp_b == ptr) { // started the current choicepoint, I hope return do_cut(TRUE); } else break; // oops, there is something else } if (!ptr || B < ptr) { // we're still not there yet choiceptr new = B; while (new &&new < ptr) { if (new->cp_ap == NOCODE) /* separator */ new->cp_ap = FAILCODE; // there are choice-points above but at least, // these won't harm innocent code else if (new->cp_ap->opc == RETRY_USERC_OPCODE && new->cp_b == ptr) { // I can't cut, but I can tag it as done new->cp_ap = FAILCODE; // there are choice-points above but at least, // these won't harm innocent code } new = new->cp_b; } } if (has_cp) { if (B == ptr) { return do_cut(TRUE); } else { ptr->cp_ap = FAILCODE; } } return TRUE; } Int YAP_Execute(PredEntry *pe, CPredicate exec_code) { CACHE_REGS Int ret; Int OASP = LCL0 - (CELL *)B; yhandle_t CurSlot = Yap_StartSlots(); // Term omod = CurrentModule; // if (pe->PredFlags & CArgsPredFlag) { // CurrentModule = pe->ModuleOfPred; //} if (pe->PredFlags & SWIEnvPredFlag) { CPredicateV codev = (CPredicateV)exec_code; struct foreign_context ctx; ctx.engine = NULL; yhandle_t s0 = Yap_InitSlots(pe->ArityOfPE, &ARG1); PP = pe; ret = codev(s0, 0, &ctx); } else if (pe->PredFlags & CArgsPredFlag) { PP = pe; ret = execute_cargs(pe, exec_code PASS_REGS); } else { PP = pe; ret = (exec_code)(PASS_REGS1); } PP = NULL; // check for junk: open frames, etc */ Yap_CloseSlots(CurSlot); if (ret) complete_exit(((choiceptr)(LCL0 - OASP)), FALSE, FALSE PASS_REGS); else complete_fail(((choiceptr)(LCL0 - OASP)), FALSE PASS_REGS); // CurrentModule = omod; if (!ret) { Yap_RaiseException(); } return ret; } #define FRG_REDO_MASK 0x00000003L #define FRG_REDO_BITS 2 #define REDO_INT 0x02 /* Returned an integer */ #define REDO_PTR 0x03 /* returned a pointer */ Int YAP_ExecuteFirst(PredEntry *pe, CPredicate exec_code) { CACHE_REGS CELL ocp = LCL0 - (CELL *)B; /* for slots to work */ Int CurSlot = Yap_StartSlots(); if (pe->PredFlags & (SWIEnvPredFlag | CArgsPredFlag | ModuleTransparentPredFlag)) { uintptr_t val; CPredicateV codev = (CPredicateV)exec_code; struct foreign_context *ctx = (struct foreign_context *)(&EXTRA_CBACK_ARG(pe->ArityOfPE, 1)); PP = pe; ctx->control = FRG_FIRST_CALL; ctx->engine = NULL; //(PL_local_data *)Yap_regp; ctx->context = (uintptr_t)NULL; if (pe->PredFlags & CArgsPredFlag) { val = execute_cargs_back(pe, exec_code, ctx PASS_REGS); } else { val = codev(Yap_InitSlots(pe->ArityOfPE, &ARG1), 0, ctx); } Yap_CloseSlots(CurSlot); PP = NULL; if (val == 0) { if (Yap_RaiseException()) { return false; } return complete_fail(((choiceptr)(LCL0 - ocp)), TRUE PASS_REGS); } else if (val == 1) { /* TRUE */ return complete_exit(((choiceptr)(LCL0 - ocp)), TRUE, FALSE PASS_REGS); } else { if ((val & REDO_PTR) == REDO_PTR) ctx->context = (uintptr_t)(val & ~REDO_PTR); else ctx->context = (uintptr_t)((val & ~REDO_PTR) >> FRG_REDO_BITS); /* fix dropped cps */ return complete_exit(((choiceptr)(LCL0 - ocp)), FALSE, FALSE PASS_REGS); } } else { Int ret = (exec_code)(PASS_REGS1); Yap_CloseSlots(CurSlot); if (!ret) { Yap_RaiseException(); } return ret; } } Int YAP_ExecuteOnCut(PredEntry *pe, CPredicate exec_code, struct cut_c_str *top) { CACHE_REGS Int oB = LCL0 - (CELL *)B; Int val; /* for slots to work */ yhandle_t CurSlot = Yap_StartSlots(); /* find out where we belong */ while (B < (choiceptr)top) { oB = LCL0 - (CELL *)B; B = B->cp_b; } PP = pe; if (pe->PredFlags & (SWIEnvPredFlag | CArgsPredFlag)) { // SWI Emulation CPredicateV codev = (CPredicateV)exec_code; struct foreign_context *ctx = (struct foreign_context *)(&EXTRA_CBACK_ARG(pe->ArityOfPE, 1)); CELL *args = B->cp_args; B = (choiceptr)(LCL0 - oB); ctx->control = FRG_CUTTED; ctx->engine = NULL; //(PL_local_data *)Yap_regp; if (pe->PredFlags & CArgsPredFlag) { val = execute_cargs_back(pe, exec_code, ctx PASS_REGS); } else { val = codev(Yap_InitSlots(pe->ArityOfPE, args), 0, ctx); } } else { Int oYENV = LCL0 - YENV; yamop *oP = P, *oCP = CP; // YAP Native B = (choiceptr)(LCL0 - oB); val = exec_code(PASS_REGS1); YENV = LCL0 - oYENV; P = oP; CP = oCP; } Yap_CloseSlots(CurSlot); PP = NULL; // B = LCL0-(CELL*)oB; if (false && Yap_RaiseException()) { return false; } else { /* TRUE */ return true; } } Int YAP_ExecuteNext(PredEntry *pe, CPredicate exec_code) { CACHE_REGS /* for slots to work */ Yap_StartSlots(); UInt ocp = LCL0 - (CELL *)B; yhandle_t CurSlot = Yap_StartSlots(); if (pe->PredFlags & (SWIEnvPredFlag | CArgsPredFlag)) { Int val; CPredicateV codev = (CPredicateV)exec_code; struct foreign_context *ctx = (struct foreign_context *)(&EXTRA_CBACK_ARG(pe->ArityOfPE, 1)); PP = pe; ctx->control = FRG_REDO; if (pe->PredFlags & CArgsPredFlag) { val = execute_cargs_back(pe, exec_code, ctx PASS_REGS); } else { val = codev(Yap_InitSlots(pe->ArityOfPE, &ARG1), 0, ctx); } Yap_CloseSlots(CurSlot); /* we are below the original choice point ?? */ /* make sure we clean up the frames left by the user */ PP = NULL; if (val == 0) { if (Yap_RaiseException()) { return FALSE; } else { return complete_fail(((choiceptr)(LCL0 - ocp)), TRUE PASS_REGS); } } else if (val == 1) { /* TRUE */ return complete_exit(((choiceptr)(LCL0 - ocp)), TRUE, FALSE PASS_REGS); } else { if ((val & REDO_PTR) == REDO_PTR) ctx->context = (uintptr_t)(val & ~REDO_PTR); else ctx->context = (uintptr_t)((val & ~REDO_PTR) >> FRG_REDO_BITS); } /* fix dropped cps */ return complete_exit(((choiceptr)(LCL0 - ocp)), FALSE, FALSE PASS_REGS); } else { Int ret = (exec_code)(PASS_REGS1); Yap_CloseSlots(CurSlot); if (!ret) { Yap_RaiseException(); } return ret; } } X_API Int YAP_CallProlog(Term t) { CACHE_REGS Int out; Term mod = CurrentModule; BACKUP_MACHINE_REGS(); while (!IsVarTerm(t) && IsApplTerm(t) && FunctorOfTerm(t) == FunctorModule) { Term tmod = ArgOfTerm(1, t); if (IsVarTerm(tmod)) return (FALSE); if (!IsAtomTerm(tmod)) return (FALSE); mod = tmod; t = ArgOfTerm(2, t); } out = Yap_execute_goal(t, 0, mod, true); RECOVER_MACHINE_REGS(); return (out); } X_API void *YAP_ReallocSpaceFromYap(void *ptr, size_t size) { CACHE_REGS void *new_ptr; BACKUP_MACHINE_REGS(); while ((new_ptr = Yap_ReallocCodeSpace(ptr, size)) == NULL) { if (!Yap_growheap(FALSE, size, NULL)) { Yap_Error(RESOURCE_ERROR_HEAP, TermNil, LOCAL_ErrorMessage); return NULL; } } RECOVER_MACHINE_REGS(); return new_ptr; } X_API void *YAP_AllocSpaceFromYap(size_t size) { CACHE_REGS void *ptr; BACKUP_MACHINE_REGS(); while ((ptr = Yap_AllocCodeSpace(size)) == NULL) { if (!Yap_growheap(FALSE, size, NULL)) { Yap_Error(RESOURCE_ERROR_HEAP, TermNil, LOCAL_ErrorMessage); return NULL; } } RECOVER_MACHINE_REGS(); return ptr; } X_API void YAP_FreeSpaceFromYap(void *ptr) { Yap_FreeCodeSpace(ptr); } /* */ /** * copy a string to a buffer, the buffer must have been malloced * * @param t the text, or string * @param buf the user-provided buffer * @param bufsize bu * * @return */ X_API char *YAP_StringToBuffer(Term t, char *buf, unsigned int bufsize) { CACHE_REGS seq_tv_t inp, out; inp.val.t = t; inp.type = YAP_STRING_ATOMS_CODES | YAP_STRING_STRING | YAP_STRING_ATOM | YAP_STRING_TRUNC | YAP_STRING_MALLOC; inp.max = bufsize; out.type = YAP_STRING_CHARS; out.val.c = buf; out.enc = ENC_ISO_UTF8; if (!Yap_CVT_Text(&inp, &out PASS_REGS)) return NULL; return out.val.c; } /* copy a string to a buffer */ X_API Term YAP_BufferToString(const char *s) { Term t; BACKUP_H(); CACHE_REGS seq_tv_t inp, out; inp.val.c0 = s; inp.type = YAP_STRING_CHARS; out.type = YAP_STRING_CODES; if (!Yap_CVT_Text(&inp, &out PASS_REGS)) return 0L; t = out.val.t; RECOVER_H(); return t; } /* copy a string to a buffer */ X_API Term YAP_NBufferToString(const char *s, size_t len) { Term t; BACKUP_H(); CACHE_REGS seq_tv_t inp, out; inp.val.c0 = s; inp.type = YAP_STRING_CHARS; out.type = YAP_STRING_CODES | YAP_STRING_NCHARS | YAP_STRING_TRUNC; out.sz = len; out.max = len; if (!Yap_CVT_Text(&inp, &out PASS_REGS)) return 0L; t = out.val.t; RECOVER_H(); return t; } /* copy a string to a buffer */ X_API Term YAP_WideBufferToString(const wchar_t *s) { Term t; BACKUP_H(); CACHE_REGS seq_tv_t inp, out; inp.val.w0 = s; inp.type = YAP_STRING_WCHARS; out.type = YAP_STRING_CODES; if (!Yap_CVT_Text(&inp, &out PASS_REGS)) return 0L; t = out.val.t; RECOVER_H(); return t; } /* copy a string to a buffer */ X_API Term YAP_NWideBufferToString(const wchar_t *s, size_t len) { Term t; BACKUP_H(); CACHE_REGS seq_tv_t inp, out; inp.val.w0 = s; inp.type = YAP_STRING_WCHARS; out.type = YAP_STRING_CODES | YAP_STRING_NCHARS | YAP_STRING_TRUNC; out.sz = len; out.max = len; if (!Yap_CVT_Text(&inp, &out PASS_REGS)) return 0L; t = out.val.t; RECOVER_H(); return t; } /* copy a string to a buffer */ X_API Term YAP_ReadBuffer(const char *s, Term *tp) { CACHE_REGS Term t; BACKUP_H(); LOCAL_ErrorMessage = NULL; while (!(t = Yap_StringToTerm(s, strlen(s) + 1, &LOCAL_encoding, GLOBAL_MaxPriority, tp))) { if (LOCAL_ErrorMessage) { if (!strcmp(LOCAL_ErrorMessage, "Stack Overflow")) { if (!Yap_dogc(0, NULL PASS_REGS)) { *tp = MkAtomTerm(Yap_LookupAtom(LOCAL_ErrorMessage)); LOCAL_ErrorMessage = NULL; RECOVER_H(); return 0L; } } else if (!strcmp(LOCAL_ErrorMessage, "Heap Overflow")) { if (!Yap_growheap(FALSE, 0, NULL)) { *tp = MkAtomTerm(Yap_LookupAtom(LOCAL_ErrorMessage)); LOCAL_ErrorMessage = NULL; RECOVER_H(); return 0L; } } else if (!strcmp(LOCAL_ErrorMessage, "Trail Overflow")) { if (!Yap_growtrail(0, FALSE)) { *tp = MkAtomTerm(Yap_LookupAtom(LOCAL_ErrorMessage)); LOCAL_ErrorMessage = NULL; RECOVER_H(); return 0L; } } else { RECOVER_H(); return 0L; } LOCAL_ErrorMessage = NULL; continue; } else { break; } } RECOVER_H(); return t; } /* copy a string to a buffer */ X_API YAP_Term YAP_BufferToAtomList(const char *s) { Term t; BACKUP_H(); CACHE_REGS seq_tv_t inp, out; inp.val.c0 = s; inp.type = YAP_STRING_CHARS; out.type = YAP_STRING_ATOMS; if (!Yap_CVT_Text(&inp, &out PASS_REGS)) return 0L; t = out.val.t; RECOVER_H(); return t; } /* copy a string of size len to a buffer */ X_API Term YAP_NBufferToAtomList(const char *s, size_t len) { Term t; BACKUP_H(); CACHE_REGS seq_tv_t inp, out; inp.val.c0 = s; inp.type = YAP_STRING_CHARS; out.type = YAP_STRING_ATOMS | YAP_STRING_NCHARS | YAP_STRING_TRUNC; out.sz = len; out.max = len; if (!Yap_CVT_Text(&inp, &out PASS_REGS)) return 0L; t = out.val.t; RECOVER_H(); return t; } /* copy a string to a buffer */ X_API Term YAP_WideBufferToAtomList(const wchar_t *s) { Term t; BACKUP_H(); CACHE_REGS seq_tv_t inp, out; inp.val.w0 = s; inp.type = YAP_STRING_WCHARS; out.type = YAP_STRING_ATOMS; if (!Yap_CVT_Text(&inp, &out PASS_REGS)) return 0L; t = out.val.t; RECOVER_H(); return t; } /* copy a string of size len to a buffer */ X_API Term YAP_NWideBufferToAtomList(const wchar_t *s, size_t len) { Term t; BACKUP_H(); CACHE_REGS seq_tv_t inp, out; inp.val.w0 = s; inp.type = YAP_STRING_WCHARS; out.type = YAP_STRING_ATOMS | YAP_STRING_NCHARS | YAP_STRING_TRUNC; out.sz = len; out.max = len; if (!Yap_CVT_Text(&inp, &out PASS_REGS)) return 0L; t = out.val.t; RECOVER_H(); return t; } /* copy a string of size len to a buffer */ X_API Term YAP_NWideBufferToAtomDiffList(const wchar_t *s, Term t0, size_t len) { Term t; BACKUP_H(); CACHE_REGS seq_tv_t inp, out; inp.val.w0 = s; inp.type = YAP_STRING_WCHARS; out.type = YAP_STRING_ATOMS | YAP_STRING_NCHARS | YAP_STRING_TRUNC | YAP_STRING_DIFF; out.sz = len; out.max = len; out.dif = t0; if (!Yap_CVT_Text(&inp, &out PASS_REGS)) return 0L; t = out.val.t; RECOVER_H(); return t; } /* copy a string to a buffer */ X_API Term YAP_BufferToDiffList(const char *s, Term t0) { Term t; BACKUP_H(); CACHE_REGS seq_tv_t inp, out; inp.val.c0 = s; inp.type = YAP_STRING_CHARS; out.type = YAP_STRING_CODES | YAP_STRING_DIFF; out.dif = t0; if (!Yap_CVT_Text(&inp, &out PASS_REGS)) return 0L; t = out.val.t; RECOVER_H(); return t; } /* copy a string of size len to a buffer */ X_API Term YAP_NBufferToDiffList(const char *s, Term t0, size_t len) { Term t; BACKUP_H(); CACHE_REGS seq_tv_t inp, out; inp.val.c0 = s; inp.type = YAP_STRING_CHARS; out.type = YAP_STRING_CODES | YAP_STRING_NCHARS | YAP_STRING_TRUNC | YAP_STRING_DIFF; out.sz = len; out.max = len; out.dif = t0; if (!Yap_CVT_Text(&inp, &out PASS_REGS)) return 0L; t = out.val.t; RECOVER_H(); return t; } /* copy a string to a buffer */ X_API Term YAP_WideBufferToDiffList(const wchar_t *s, Term t0) { Term t; BACKUP_H(); CACHE_REGS seq_tv_t inp, out; inp.val.w0 = s; inp.type = YAP_STRING_WCHARS; out.type = YAP_STRING_CODES | YAP_STRING_DIFF; out.dif = t0; if (!Yap_CVT_Text(&inp, &out PASS_REGS)) return 0L; t = out.val.t; RECOVER_H(); return t; } /* copy a string of size len to a buffer */ X_API Term YAP_NWideBufferToDiffList(const wchar_t *s, Term t0, size_t len) { Term t; BACKUP_H(); CACHE_REGS seq_tv_t inp, out; inp.val.w0 = s; inp.type = YAP_STRING_WCHARS; out.type = YAP_STRING_CODES | YAP_STRING_NCHARS | YAP_STRING_TRUNC | YAP_STRING_DIFF; out.sz = len; out.max = len; out.dif = t0; if (!Yap_CVT_Text(&inp, &out PASS_REGS)) return 0L; t = out.val.t; RECOVER_H(); return t; } X_API void YAP_Error(int myerrno, Term t, const char *buf, ...) { #define YAP_BUF_SIZE 512 va_list ap; char tmpbuf[YAP_BUF_SIZE]; if (!myerrno) myerrno = SYSTEM_ERROR_INTERNAL; if (t == 0L) t = TermNil; if (buf != NULL) { va_start(ap, buf); #if HAVE_VSNPRINTF (void)vsnprintf(tmpbuf, YAP_BUF_SIZE, buf, ap); #else (void)vsprintf(tmpbuf, buf, ap); #endif va_end(ap); } else { tmpbuf[0] = '\0'; } Yap_Error(myerrno, t, tmpbuf); } X_API PredEntry *YAP_FunctorToPred(Functor func) { CACHE_REGS return RepPredProp(PredPropByFunc(func, CurrentModule)); } X_API PredEntry *YAP_AtomToPred(Atom at) { CACHE_REGS return RepPredProp(PredPropByAtom(at, CurrentModule)); } X_API PredEntry *YAP_FunctorToPredInModule(Functor func, Term mod) { return RepPredProp(PredPropByFunc(func, mod)); } X_API PredEntry *YAP_AtomToPredInModule(Atom at, Term mod) { return RepPredProp(PredPropByAtom(at, mod)); } static int run_emulator(USES_REGS1) { int out; LOCAL_PrologMode &= ~(UserCCallMode | CCallMode); out = Yap_absmi(0); LOCAL_PrologMode |= UserCCallMode; return out; } X_API bool YAP_EnterGoal(PredEntry *pe, yhandle_t ptr, YAP_dogoalinfo *dgi) { CACHE_REGS bool out; BACKUP_MACHINE_REGS(); LOCAL_PrologMode = UserMode; dgi->p = P; dgi->cp = CP; dgi->CurSlot = LOCAL_CurSlot; // ensure our current ENV receives current P. Yap_PrepGoal(pe->ArityOfPE, Yap_AddressFromSlot(ptr), B PASS_REGS); P = pe->CodeOfPred; // __android_log_print(ANDROID_LOG_INFO, "YAP ", "ap=%p %d %x %x args=%x,%x // slot=%d", pe, pe->CodeOfPred->opc, FAILCODE, Deref(ARG1), Deref(ARG2), // LOCAL_CurSlot); dgi->b = LCL0 - (CELL *)B; out = run_emulator(PASS_REGS1); RECOVER_MACHINE_REGS(); if (out) { dgi->EndSlot = LOCAL_CurSlot; Yap_StartSlots(); } else { LOCAL_CurSlot = dgi->CurSlot; // ignore any slots created within the called goal } return out; } X_API bool YAP_RetryGoal(YAP_dogoalinfo *dgi) { CACHE_REGS choiceptr myB; bool out; BACKUP_MACHINE_REGS(); myB = (choiceptr)(LCL0 - dgi->b); CP = myB->cp_cp; /* sanity check */ if (B >= myB) { return FALSE; } P = FAILCODE; /* make sure we didn't leave live slots when we backtrack */ ASP = (CELL *)B; LOCAL_CurSlot = dgi->EndSlot; out = run_emulator(PASS_REGS1); RECOVER_MACHINE_REGS(); if (out) { LOCAL_CurSlot = dgi->CurSlot; Yap_StartSlots(); } return out; } X_API bool YAP_LeaveGoal(int backtrack, YAP_dogoalinfo *dgi) { CACHE_REGS choiceptr myB; BACKUP_MACHINE_REGS(); myB = (choiceptr)(LCL0 - dgi->b); if (B > myB) { /* someone cut us */ return FALSE; } /* prune away choicepoints */ if (B != myB) { #ifdef YAPOR CUT_prune_to(myB); #endif B = myB; } /* if backtracking asked for, recover space and bindings */ if (backtrack) { P = FAILCODE; Yap_exec_absmi(true, YAP_EXEC_ABSMI); /* recover stack space */ HR = B->cp_h; TR = B->cp_tr; #ifdef DEPTH_LIMIT DEPTH = B->cp_depth; #endif /* DEPTH_LIMIT */ YENV = ENV = B->cp_env; } else { Yap_TrimTrail(); } /* recover local stack */ #ifdef DEPTH_LIMIT DEPTH = ENV[E_DEPTH]; #endif /* make sure we prune C-choicepoints */ if (POP_CHOICE_POINT(B->cp_b)) { POP_EXECUTE(); } ENV = (CELL *)(ENV[E_E]); /* ASP should be set to the top of the local stack when we did the call */ ASP = B->cp_env; /* YENV should be set to the current environment */ YENV = ENV = (CELL *)((B->cp_env)[E_E]); B = B->cp_b; // SET_BB(B); HB = PROTECT_FROZEN_H(B); CP = dgi->cp; P = dgi->p; LOCAL_CurSlot = dgi->CurSlot; RECOVER_MACHINE_REGS(); return TRUE; } X_API Int YAP_RunGoal(Term t) { CACHE_REGS Term out; yamop *old_CP = CP; BACKUP_MACHINE_REGS(); LOCAL_AllowRestart = FALSE; LOCAL_PrologMode = UserMode; out = Yap_RunTopGoal(t, true); LOCAL_PrologMode = UserCCallMode; // should we catch the exception or pass it through? // We'll pass it through Yap_RaiseException(); if (out) { P = (yamop *)ENV[E_CP]; ENV = (CELL *)ENV[E_E]; CP = old_CP; LOCAL_AllowRestart = TRUE; // we are back to user code again, need slots */ Yap_StartSlots(); } else { ENV = B->cp_env; ENV = (CELL *)ENV[E_E]; CP = old_CP; HR = B->cp_h; TR = B->cp_tr; B = B->cp_b; LOCAL_AllowRestart = FALSE; SET_ASP(ENV, E_CB * sizeof(CELL)); // make sure the slots are ok. } RECOVER_MACHINE_REGS(); return out; } X_API Term YAP_AllocExternalDataInStack(size_t bytes) { Term t = Yap_AllocExternalDataInStack(EXTERNAL_BLOB, bytes); if (t == TermNil) return 0L; return t; } X_API YAP_Bool YAP_IsExternalDataInStackTerm(Term t) { return IsExternalBlobTerm(t, EXTERNAL_BLOB); } X_API void *YAP_ExternalDataInStackFromTerm(Term t) { return ExternalBlobFromTerm(t); } X_API YAP_opaque_tag_t YAP_NewOpaqueType(struct YAP_opaque_handler_struct *f) { int i; if (!GLOBAL_OpaqueHandlers) { GLOBAL_OpaqueHandlers = malloc(sizeof(opaque_handler_t) * (USER_BLOB_END - USER_BLOB_START)); if (!GLOBAL_OpaqueHandlers) { /* no room */ return -1; } } else if (GLOBAL_OpaqueHandlersCount == USER_BLOB_END - USER_BLOB_START) { /* all types used */ return -1; } i = GLOBAL_OpaqueHandlersCount++; memcpy(GLOBAL_OpaqueHandlers + i, f, sizeof(opaque_handler_t)); return i + USER_BLOB_START; } Term YAP_NewOpaqueObject(YAP_opaque_tag_t tag, size_t bytes) { Term t = Yap_AllocExternalDataInStack((CELL)tag, bytes); if (t == TermNil) return 0L; return t; } X_API YAP_Bool YAP_IsOpaqueObjectTerm(Term t, YAP_opaque_tag_t tag) { return IsExternalBlobTerm(t, (CELL)tag); } X_API void *YAP_OpaqueObjectFromTerm(Term t) { return ExternalBlobFromTerm(t); } X_API CELL *YAP_HeapStoreOpaqueTerm(Term t) { return Yap_HeapStoreOpaqueTerm(t); } X_API Int YAP_RunGoalOnce(Term t) { CACHE_REGS Term out; yamop *old_CP = CP; Int oldPrologMode = LOCAL_PrologMode; yhandle_t CSlot; BACKUP_MACHINE_REGS(); Yap_InitYaamRegs(0); CSlot = Yap_StartSlots(); LOCAL_PrologMode = UserMode; // Yap_heap_regs->yap_do_low_level_trace=true; out = Yap_RunTopGoal(t, true); LOCAL_PrologMode = oldPrologMode; Yap_CloseSlots(CSlot); if (!(oldPrologMode & UserCCallMode)) { /* called from top-level */ LOCAL_AllowRestart = FALSE; RECOVER_MACHINE_REGS(); return out; } // should we catch the exception or pass it through? // We'll pass it through Yap_RaiseException(); if (out) { choiceptr cut_pt, ob; ob = NULL; cut_pt = B; while (cut_pt->cp_ap != NOCODE) { /* make sure we prune C-choicepoints */ if (POP_CHOICE_POINT(cut_pt->cp_b)) { POP_EXECUTE(); } ob = cut_pt; cut_pt = cut_pt->cp_b; } #ifdef YAPOR CUT_prune_to(cut_pt); #endif if (ob) { B = ob; Yap_TrimTrail(); } B = cut_pt; } ASP = B->cp_env; ENV = (CELL *)ASP[E_E]; B = (choiceptr)ASP[E_CB]; #ifdef DEPTH_LIMITxs DEPTH = ASP[E_DEPTH]; #endif P = (yamop *)ASP[E_CP]; CP = old_CP; LOCAL_AllowRestart = FALSE; RECOVER_MACHINE_REGS(); return out; } X_API bool YAP_RestartGoal(void) { CACHE_REGS bool out; BACKUP_MACHINE_REGS(); if (LOCAL_AllowRestart) { P = (yamop *)FAILCODE; LOCAL_PrologMode = UserMode; out = Yap_exec_absmi(TRUE, YAP_EXEC_ABSMI); LOCAL_PrologMode = UserCCallMode; if (out == FALSE) { /* cleanup */ Yap_trust_last(); LOCAL_AllowRestart = FALSE; } } else { out = FALSE; } RECOVER_MACHINE_REGS(); return (out); } X_API bool YAP_ShutdownGoal(int backtrack) { CACHE_REGS BACKUP_MACHINE_REGS(); if (LOCAL_AllowRestart) { choiceptr cut_pt; cut_pt = B; while (cut_pt->cp_ap != NOCODE) { /* make sure we prune C-choicepoints */ if (POP_CHOICE_POINT(cut_pt->cp_b)) { POP_EXECUTE(); } cut_pt = cut_pt->cp_b; } #ifdef YAPOR CUT_prune_to(cut_pt); #endif /* just force backtrack */ B = cut_pt; if (backtrack) { P = FAILCODE; Yap_exec_absmi(TRUE, YAP_EXEC_ABSMI); /* recover stack space */ HR = cut_pt->cp_h; TR = cut_pt->cp_tr; } /* we can always recover the stack */ ASP = cut_pt->cp_env; ENV = (CELL *)ASP[E_E]; B = (choiceptr)ASP[E_CB]; Yap_TrimTrail(); #ifdef DEPTH_LIMIT DEPTH = ASP[E_DEPTH]; #endif LOCAL_AllowRestart = FALSE; } RECOVER_MACHINE_REGS(); return TRUE; } X_API bool YAP_ContinueGoal(void) { CACHE_REGS bool out; BACKUP_MACHINE_REGS(); LOCAL_PrologMode = UserMode; out = Yap_exec_absmi(TRUE, YAP_EXEC_ABSMI); LOCAL_PrologMode = UserCCallMode; RECOVER_MACHINE_REGS(); return (out); } X_API void YAP_PruneGoal(YAP_dogoalinfo *gi) { CACHE_REGS BACKUP_B(); choiceptr myB = (choiceptr)(LCL0 - gi->b); while (B != myB) { /* make sure we prune C-choicepoints */ if (POP_CHOICE_POINT(B->cp_b)) { POP_EXECUTE(); } if (!B->cp_b) break; B = B->cp_b; } Yap_TrimTrail(); RECOVER_B(); } X_API bool YAP_GoalHasException(Term *t) { CACHE_REGS BACKUP_MACHINE_REGS(); if (t) *t = Yap_PeekException(); return Yap_PeekException(); } X_API void YAP_ClearExceptions(void) { CACHE_REGS Yap_ResetException(worker_id); } X_API int YAP_InitConsult(int mode, const char *filename, int *osnop) { CACHE_REGS FILE *f; int sno; char full[FILENAME_MAX] BACKUP_MACHINE_REGS(); if (mode == YAP_BOOT_MODE) { mode = YAP_CONSULT_MODE; } bool consulted = (mode == YAP_CONSULT_MODE); Yap_init_consult(consulted, filename); const char *fl = Yap_AbsoluteFile(filename, full, true); if (!fl) return -1; f = fopen(fl, "r"); if (!f) return -1; else if (fl != filename && fl != full && fl != LOCAL_FileNameBuf && fl != LOCAL_FileNameBuf2) free((void *)fl); sno = Yap_OpenStream(f, NULL, TermNil, Input_Stream_f); *osnop = Yap_CheckAlias(AtomLoopStream); if (!Yap_AddAlias(AtomLoopStream, sno)) { Yap_CloseStream(sno); sno = -1; } GLOBAL_Stream[sno].name = Yap_LookupAtom(filename); GLOBAL_Stream[sno].user_name = MkAtomTerm(Yap_LookupAtom(filename)); GLOBAL_Stream[sno].encoding = ENC_ISO_LATIN1; RECOVER_MACHINE_REGS(); UNLOCK(GLOBAL_Stream[sno].streamlock); return sno; } X_API FILE *YAP_TermToStream(Term t) { BACKUP_MACHINE_REGS(); FILE *s; if (IsVarTerm(t) || !IsAtomTerm(t)) return NULL; if ((s = Yap_GetStreamHandle(t)->file)) { RECOVER_MACHINE_REGS(); return s; } RECOVER_MACHINE_REGS(); return NULL; } X_API void YAP_EndConsult(int sno, int *osnop) { BACKUP_MACHINE_REGS(); Yap_CloseStream(sno); if (osnop >= 0) Yap_AddAlias(AtomLoopStream, *osnop); Yap_end_consult(); RECOVER_MACHINE_REGS(); } X_API Term YAP_Read(FILE *f) { Term o; int sno = Yap_OpenStream(f, NULL, TermNil, Input_Stream_f); BACKUP_MACHINE_REGS(); o = Yap_read_term(sno, TermNil, 1); Yap_ReleaseStream(sno); RECOVER_MACHINE_REGS(); return o; } X_API Term YAP_ReadFromStream(int sno) { Term o; BACKUP_MACHINE_REGS(); o = Yap_read_term(sno, TermNil, 1); RECOVER_MACHINE_REGS(); return o; } X_API Term YAP_ReadClauseFromStream(int sno) { Term o; BACKUP_MACHINE_REGS(); o = Yap_read_term(sno, TermNil, -1); RECOVER_MACHINE_REGS(); return o; } X_API void YAP_Write(Term t, FILE *f, int flags) { BACKUP_MACHINE_REGS(); int sno = Yap_OpenStream(f, NULL, TermNil, Output_Stream_f); Yap_plwrite(t, GLOBAL_Stream + sno, 0, flags, GLOBAL_MaxPriority); Yap_ReleaseStream(sno); RECOVER_MACHINE_REGS(); } X_API Term YAP_CopyTerm(Term t) { Term tn; BACKUP_MACHINE_REGS(); tn = Yap_CopyTerm(t); RECOVER_MACHINE_REGS(); return tn; } X_API int YAP_WriteBuffer(Term t, char *buf, size_t sze, int flags) { CACHE_REGS size_t length; char *b; BACKUP_MACHINE_REGS(); if ((b = Yap_TermToString(t, buf, sze, &length, &LOCAL_encoding, flags)) != buf) { if (b) free(b); RECOVER_MACHINE_REGS(); return FALSE; } RECOVER_MACHINE_REGS(); return TRUE; } X_API char *YAP_WriteDynamicBuffer(YAP_Term t, char *buf, size_t sze, size_t *lengthp, encoding_t *encp, int flags) { char *b; BACKUP_MACHINE_REGS(); b = Yap_TermToString(t, buf, sze, lengthp, encp, flags); RECOVER_MACHINE_REGS(); return b; } X_API char *YAP_CompileClause(Term t) { CACHE_REGS yamop *codeaddr; Term mod = CurrentModule; Term tn = TermNil; BACKUP_MACHINE_REGS(); /* allow expansion during stack initialization */ LOCAL_ErrorMessage = NULL; ARG1 = t; YAPEnterCriticalSection(); codeaddr = Yap_cclause(t, 0, mod, t); if (codeaddr != NULL) { t = Deref(ARG1); /* just in case there was an heap overflow */ if (!Yap_addclause(t, codeaddr, TermAssertz, mod, &tn)) { YAPLeaveCriticalSection(); return LOCAL_ErrorMessage; } } YAPLeaveCriticalSection(); if (Yap_get_signal(YAP_CDOVF_SIGNAL)) { if (!Yap_locked_growheap(FALSE, 0, NULL)) { Yap_Error(RESOURCE_ERROR_HEAP, TermNil, "YAP failed to grow heap: %s", LOCAL_ErrorMessage); } } RECOVER_MACHINE_REGS(); return (LOCAL_ErrorMessage); } static int yap_lineno = 0; /* do initial boot by consulting the file boot.yap */ static void do_bootfile(char *bootfilename USES_REGS) { Term t; int bootfile, osno; Functor functor_query = Yap_MkFunctor(Yap_LookupAtom("?-"), 1); Functor functor_command1 = Yap_MkFunctor(Yap_LookupAtom(":-"), 1); /* consult boot.pl */ /* the consult mode does not matter here, really */ /* To be honest, YAP_InitConsult does not really do much, it's here for the future. It also makes what we want to do clearer. */ bootfile = YAP_InitConsult(YAP_BOOT_MODE, bootfilename, &osno); if (bootfile < 0) { fprintf(stderr, "[ FATAL ERROR: could not open bootfile %s ]\n", bootfilename); exit(1); } do { CACHE_REGS YAP_Reset(YAP_FULL_RESET); Yap_StartSlots(); t = YAP_ReadClauseFromStream(bootfile); // Yap_DebugPlWriteln(t); if (t == 0) { fprintf(stderr, "[ SYNTAX ERROR: while parsing bootfile %s at line %d ]\n", bootfilename, yap_lineno); } else if (YAP_IsVarTerm(t) || t == TermNil) { fprintf(stderr, "[ line %d: term cannot be compiled ]", yap_lineno); } else if (YAP_IsPairTerm(t)) { fprintf(stderr, "[ SYSTEM ERROR: consult not allowed in boot file ]\n"); fprintf(stderr, "error found at line %d and pos %d", yap_lineno, fseek(GLOBAL_Stream[bootfile].file, 0L, SEEK_CUR)); } else if (IsApplTerm(t) && (FunctorOfTerm(t) == functor_query || FunctorOfTerm(t) == functor_command1)) { YAP_RunGoalOnce(ArgOfTerm(1, t)); } else { Term ts[2]; char *ErrorMessage; Functor fun = Yap_MkFunctor(Yap_LookupAtom("$prepare_clause"), 2); PredEntry *pe = RepPredProp(PredPropByFunc(fun, PROLOG_MODULE)); if (pe->OpcodeOfPred != UNDEF_OPCODE && pe->OpcodeOfPred != FAIL_OPCODE) { ts[0] = t; RESET_VARIABLE(ts + 1); if (YAP_RunGoal(Yap_MkApplTerm(fun, 2, ts))) t = ts[1]; } ErrorMessage = YAP_CompileClause(t); if (ErrorMessage) { fprintf(stderr, "%s", ErrorMessage); } } } while (t != TermEof); YAP_EndConsult(bootfile, &osno); #if DEBUG if (Yap_output_msg) fprintf(stderr, "Boot loaded\n"); #endif } static void construct_init_file(char *boot_file, char *BootFile) { /* trust YAPSHAREDIR over YAP_PL_SRCDIR, and notice that the code is / * dependent. */ #if HAVE_GETENV if (getenv("YAPSHAREDIR")) { strncpy(boot_file, getenv("YAPSHAREDIR"), 256); strncat(boot_file, "/pl/", 255); } else { #endif strncpy(boot_file, YAP_PL_SRCDIR, 256); strncat(boot_file, "/", 255); #if HAVE_GETENV } #endif strncat(boot_file, BootFile, 255); } /* this routine is supposed to be called from an external program that wants to control Yap */ #define BOOT_FROM_SAVED_STATE TRUE static char BootFile[] = "boot.yap"; static char InitFile[] = "init.yap"; Int YAP_Init(YAP_init_args *yap_init) { int restore_result; bool do_bootstrap = (yap_init->YapPrologBootFile != NULL); CELL Trail = 0, Stack = 0, Heap = 0, Atts = 0; char boot_file[YAP_FILENAME_MAX + 1]; static int initialized = FALSE; /* ignore repeated calls to YAP_Init */ if (initialized) return YAP_BOOT_DONE_BEFOREHAND; initialized = TRUE; Yap_InitPageSize(); /* init memory page size, required by later functions */ #if defined(YAPOR_COPY) || defined(YAPOR_COW) || defined(YAPOR_SBA) Yap_init_yapor_global_local_memory(); #endif /* YAPOR_COPY || YAPOR_COW || YAPOR_SBA */ GLOBAL_PrologShouldHandleInterrupts = yap_init->PrologShouldHandleInterrupts; Yap_InitSysbits(0); /* init signal handling and time, required by later functions */ GLOBAL_argv = yap_init->Argv; GLOBAL_argc = yap_init->Argc; #if BOOT_FROM_SAVED_STATE if (!yap_init->SavedState) { yap_init->SavedState = Yap_locateFile(YAP_STARTUP, boot_file, sizeof(boot_file) - 1); } #else if (yap_init->SavedState) { fprintf(stderr, "[ WARNING: YAP will ignore saved state %s ]\n", yap_init->SavedState); yap_init->SavedState = NULL; } #endif if (yap_init->TrailSize == 0) { if (yap_init->MaxTrailSize) { Trail = yap_init->MaxTrailSize; } else if (Trail == 0) Trail = DefTrailSpace; } else { Trail = yap_init->TrailSize; } Atts = yap_init->AttsSize; if (yap_init->StackSize == 0) { if (yap_init->MaxStackSize || yap_init->MaxGlobalSize) { if (yap_init->MaxStackSize) { if (yap_init->MaxGlobalSize) { Stack = yap_init->MaxStackSize + yap_init->MaxGlobalSize; } else { Stack = yap_init->MaxStackSize + DefStackSpace / 2; } } else { Stack = yap_init->MaxGlobalSize + DefStackSpace / 2; } } else if (Stack == 0) Stack = DefStackSpace; } else { Stack = yap_init->StackSize; } if (yap_init->HeapSize == 0) { if (Heap == 0) Heap = DefHeapSpace; } else { Heap = yap_init->HeapSize; } Yap_InitWorkspace(Heap, Stack, Trail, Atts, yap_init->MaxTableSpaceSize, yap_init->NumberWorkers, yap_init->SchedulerLoop, yap_init->DelayedReleaseLoad); // CACHE_REGS if (yap_init->QuietMode) { setVerbosity(TermSilent); } { if (yap_init->YapPrologRCFile != NULL) { /* This must be done before restore, otherwise restore will print out messages .... */ setBooleanGlobalPrologFlag(HALT_AFTER_CONSULT_FLAG, yap_init->HaltAfterConsult); } /* tell the scystem who should cope with interrupts */ Yap_ExecutionMode = yap_init->ExecutionMode; if (do_bootstrap) { restore_result = YAP_BOOT_FROM_PROLOG; } else if (BOOT_FROM_SAVED_STATE) { restore_result = Yap_Restore(yap_init->SavedState, yap_init->YapLibDir); if (restore_result == FAIL_RESTORE) { yap_init->ErrorNo = LOCAL_Error_TYPE; yap_init->ErrorCause = LOCAL_ErrorMessage; /* shouldn't RECOVER_MACHINE_REGS(); be here ??? */ return YAP_BOOT_ERROR; } } else { restore_result = YAP_BOOT_FROM_PROLOG; } if (BOOT_FROM_SAVED_STATE && !do_bootstrap) { if (!Yap_SavedInfo(yap_init->SavedState, yap_init->YapLibDir, &Trail, &Stack, &Heap)) { yap_init->ErrorNo = LOCAL_Error_TYPE; yap_init->ErrorCause = LOCAL_ErrorMessage; return YAP_BOOT_ERROR; } } GLOBAL_FAST_BOOT_FLAG = yap_init->FastBoot; #if defined(YAPOR) || defined(TABLING) Yap_init_root_frames(); #endif /* YAPOR || TABLING */ #ifdef YAPOR Yap_init_yapor_workers(); #if YAPOR_THREADS if (Yap_thread_self() != 0) { #else if (worker_id != 0) { #endif #if defined(YAPOR_COPY) || defined(YAPOR_SBA) /* In the SBA we cannot just happily inherit registers from the other workers */ Yap_InitYaamRegs(worker_id); #endif /* YAPOR_COPY || YAPOR_SBA */ #ifndef YAPOR_THREADS Yap_InitPreAllocCodeSpace(0); #endif /* YAPOR_THREADS */ /* slaves, waiting for work */ CurrentModule = USER_MODULE; P = GETWORK_FIRST_TIME; Yap_exec_absmi(FALSE, YAP_EXEC_ABSMI); Yap_Error(SYSTEM_ERROR_INTERNAL, TermNil, "abstract machine unexpected exit (YAP_Init)"); } #endif /* YAPOR */ RECOVER_MACHINE_REGS(); } /* make sure we do this after restore */ if (yap_init->MaxStackSize) { GLOBAL_AllowLocalExpansion = FALSE; } else { GLOBAL_AllowLocalExpansion = TRUE; } if (yap_init->MaxGlobalSize) { GLOBAL_AllowGlobalExpansion = FALSE; } else { GLOBAL_AllowGlobalExpansion = TRUE; } if (yap_init->MaxTrailSize) { GLOBAL_AllowTrailExpansion = FALSE; } else { GLOBAL_AllowTrailExpansion = TRUE; } if (yap_init->YapPrologRCFile) { Yap_PutValue(AtomConsultOnBoot, MkAtomTerm(Yap_LookupAtom(yap_init->YapPrologRCFile))); /* This must be done again after restore, as yap_flags has been overwritten .... */ setBooleanGlobalPrologFlag(HALT_AFTER_CONSULT_FLAG, yap_init->HaltAfterConsult); } if (yap_init->YapPrologTopLevelGoal) { Yap_PutValue(AtomTopLevelGoal, MkAtomTerm(Yap_LookupAtom(yap_init->YapPrologTopLevelGoal))); } if (yap_init->YapPrologGoal) { Yap_PutValue(AtomInitGoal, MkAtomTerm(Yap_LookupAtom(yap_init->YapPrologGoal))); } if (yap_init->YapPrologAddPath) { Yap_PutValue(AtomExtendFileSearchPath, MkAtomTerm(Yap_LookupAtom(yap_init->YapPrologAddPath))); } if (yap_init->QuietMode) { setVerbosity(TermSilent); } if (BOOT_FROM_SAVED_STATE && !do_bootstrap) { if (restore_result == FAIL_RESTORE) { yap_init->ErrorNo = LOCAL_Error_TYPE; yap_init->ErrorCause = LOCAL_ErrorMessage; return YAP_BOOT_ERROR; } if (Atts && Atts * 1024 > 2048 * sizeof(CELL)) Yap_AttsSize = Atts * 1024; else { Yap_AttsSize = 2048 * sizeof(CELL); } LOCAL_PrologMode &= ~BootMode; if (restore_result == DO_ONLY_CODE) { /* first, initialize the saved state */ Term t_goal = MkAtomTerm(AtomInitProlog); YAP_RunGoalOnce(t_goal); return YAP_BOOT_FROM_SAVED_CODE; } else { CurrentModule = LOCAL_SourceModule = USER_MODULE; return YAP_BOOT_FROM_SAVED_STACKS; } } else { /* read the bootfile */ if (!do_bootstrap) { construct_init_file(boot_file, BootFile); yap_init->YapPrologBootFile = boot_file; } do_bootfile(yap_init->YapPrologBootFile ? yap_init->YapPrologBootFile : BootFile PASS_REGS); /* initialize the top-level */ if (!do_bootstrap) { char init_file[256]; Atom atfile; Functor fgoal; YAP_Term goal, as[2]; construct_init_file(init_file, InitFile); /* consult init file */ atfile = Yap_LookupAtom(init_file); as[0] = MkAtomTerm(atfile); fgoal = Yap_MkFunctor(Yap_FullLookupAtom("$silent_bootstrap"), 1); goal = Yap_MkApplTerm(fgoal, 1, as); /* launch consult */ YAP_RunGoalOnce(goal); /* set default module to user */ as[0] = MkAtomTerm(AtomUser); fgoal = Yap_MkFunctor(Yap_LookupAtom("module"), 1); goal = Yap_MkApplTerm(fgoal, 1, as); YAP_RunGoalOnce(goal); } Yap_PutValue(Yap_FullLookupAtom("$live"), MkAtomTerm(Yap_FullLookupAtom("$true"))); } return YAP_BOOT_FROM_PROLOG; } Int Yap_InitDefaults(YAP_init_args *init_args, char saved_state[]) { init_args->SavedState = saved_state; init_args->AttsSize = 0; init_args->HeapSize = 0; init_args->StackSize = 0; init_args->TrailSize = 0; init_args->MaxAttsSize = 0; init_args->MaxHeapSize = 0; init_args->MaxStackSize = 0; init_args->MaxGlobalSize = 0; init_args->MaxTrailSize = 0; init_args->YapLibDir = NULL; #if __ANDROID__ init_args->YapPrologBootFile = "pl/boot.yap"; init_args->YapPrologInitGoal = "bootstrap"; #else init_args->YapPrologBootFile = NULL; init_args->YapPrologInitGoal = NULL; #endif init_args->YapPrologRCFile = NULL; init_args->YapPrologGoal = NULL; init_args->YapPrologTopLevelGoal = NULL; init_args->YapPrologAddPath = NULL; init_args->HaltAfterConsult = FALSE; init_args->FastBoot = FALSE; init_args->NumberWorkers = 1; init_args->SchedulerLoop = 10; init_args->DelayedReleaseLoad = 3; init_args->PrologShouldHandleInterrupts = FALSE; init_args->ExecutionMode = INTERPRETED; init_args->Argc = 1; { size_t l1 = 2 * sizeof(char *); if (!(init_args->Argv = (char **)malloc(l1))) return YAP_BOOT_ERROR; init_args->Argv[0] = Yap_FindExecutable(); init_args->Argv[1] = NULL; } init_args->ErrorNo = 0; init_args->ErrorCause = NULL; init_args->QuietMode = FALSE; return 0; } X_API Int YAP_FastInit(char saved_state[]) { YAP_init_args init_args; Int out; if ((out = Yap_InitDefaults(&init_args, saved_state)) != YAP_BOOT_ERROR) out = YAP_Init(&init_args); if (out == YAP_BOOT_ERROR) { Yap_Error(init_args.ErrorNo, TermNil, init_args.ErrorCause); } return out; } X_API void YAP_PutValue(Atom at, Term t) { Yap_PutValue(at, t); } X_API Term YAP_GetValue(Atom at) { return (Yap_GetValue(at)); } X_API int YAP_CompareTerms(Term t1, Term t2) { return Yap_compare_terms(t1, t2); } X_API int YAP_Reset(yap_reset_t mode) { int res = TRUE; BACKUP_MACHINE_REGS(); res = Yap_Reset(mode); RECOVER_MACHINE_REGS(); return res; } X_API void YAP_Exit(int retval) { Yap_exit(retval); } X_API int YAP_InitSocks(const char *host, long port) { return 0; } X_API void YAP_SetOutputMessage(void) { #if DEBUG Yap_output_msg = TRUE; #endif } X_API int YAP_StreamToFileNo(Term t) { return (Yap_StreamToFileNo(t)); } X_API void YAP_CloseAllOpenStreams(void) { BACKUP_H(); Yap_CloseStreams(FALSE); RECOVER_H(); } X_API void YAP_FlushAllStreams(void) { BACKUP_H(); // VSC?? Yap_FlushStreams(); RECOVER_H(); } X_API void YAP_Throw(Term t) { BACKUP_MACHINE_REGS(); Yap_JumpToEnv(t); RECOVER_MACHINE_REGS(); } X_API void YAP_AsyncThrow(Term t) { CACHE_REGS BACKUP_MACHINE_REGS(); LOCAL_PrologMode |= AsyncIntMode; Yap_JumpToEnv(t); LOCAL_PrologMode &= ~AsyncIntMode; RECOVER_MACHINE_REGS(); } X_API void YAP_Halt(int i) { Yap_exit(i); } X_API CELL *YAP_TopOfLocalStack(void) { CACHE_REGS return (ASP); } X_API void *YAP_Predicate(Atom a, UInt arity, Term m) { if (arity == 0) { return ((void *)RepPredProp(PredPropByAtom(a, m))); } else { Functor f = Yap_MkFunctor(a, arity); return ((void *)RepPredProp(PredPropByFunc(f, m))); } } X_API void YAP_PredicateInfo(void *p, Atom *a, UInt *arity, Term *m) { PredEntry *pd = (PredEntry *)p; if (pd->ArityOfPE) { *arity = pd->ArityOfPE; *a = NameOfFunctor(pd->FunctorOfPred); } else { *arity = 0; *a = (Atom)(pd->FunctorOfPred); } if (pd->ModuleOfPred) *m = pd->ModuleOfPred; else *m = TermProlog; } X_API void YAP_UserCPredicate(const char *name, CPredicate def, arity_t arity) { Yap_InitCPred(name, arity, def, UserCPredFlag); } X_API void YAP_UserBackCPredicate_(const char *name, CPredicate init, CPredicate cont, arity_t arity, arity_t extra) { Yap_InitCPredBackCut(name, arity, extra, init, cont, NULL, UserCPredFlag); } X_API void YAP_UserBackCutCPredicate(const char *name, CPredicate init, CPredicate cont, CPredicate cut, arity_t arity, arity_t extra) { Yap_InitCPredBackCut(name, arity, extra, init, cont, cut, UserCPredFlag); } X_API void YAP_UserBackCPredicate(const char *name, CPredicate init, CPredicate cont, arity_t arity, arity_t extra) { Yap_InitCPredBackCut(name, arity, extra, init, cont, NULL, UserCPredFlag); } X_API void YAP_UserCPredicateWithArgs(const char *a, CPredicate f, arity_t arity, Term mod) { CACHE_REGS PredEntry *pe; Term cm = CurrentModule; CurrentModule = mod; YAP_UserCPredicate(a, f, arity); if (arity == 0) { pe = RepPredProp(PredPropByAtom(Yap_LookupAtom(a), mod)); } else { Functor f = Yap_MkFunctor(Yap_LookupAtom(a), arity); pe = RepPredProp(PredPropByFunc(f, mod)); } pe->PredFlags |= CArgsPredFlag; CurrentModule = cm; } X_API Term YAP_CurrentModule(void) { CACHE_REGS return (CurrentModule); } X_API Term YAP_SetCurrentModule(Term new) { CACHE_REGS Term omod = CurrentModule; LOCAL_SourceModule = CurrentModule = new; return omod; } X_API Term YAP_CreateModule(Atom at) { Term t; WRITE_LOCK(RepAtom(at)->ARWLock); t = Yap_Module(MkAtomTerm(at)); WRITE_UNLOCK(RepAtom(at)->ARWLock); return t; } X_API Term YAP_StripModule(Term t, Term *modp) { return Yap_StripModule(t, modp); } X_API int YAP_ThreadSelf(void) { #if THREADS return Yap_thread_self(); #else return -2; #endif } X_API int YAP_ThreadCreateEngine(struct YAP_thread_attr_struct *attr) { #if THREADS return Yap_thread_create_engine(attr); #else return -1; #endif } X_API int YAP_ThreadAttachEngine(int wid) { #if THREADS return Yap_thread_attach_engine(wid); #else return FALSE; #endif } X_API int YAP_ThreadDetachEngine(int wid) { #if THREADS return Yap_thread_detach_engine(wid); #else return FALSE; #endif } X_API int YAP_ThreadDestroyEngine(int wid) { #if THREADS return Yap_thread_destroy_engine(wid); #else return FALSE; #endif } X_API Term YAP_TermNil(void) { return TermNil; } X_API int YAP_IsTermNil(Term t) { return t == TermNil; } X_API int YAP_AtomGetHold(Atom at) { return Yap_AtomIncreaseHold(at); } X_API int YAP_AtomReleaseHold(Atom at) { return Yap_AtomDecreaseHold(at); } X_API Agc_hook YAP_AGCRegisterHook(Agc_hook hook) { Agc_hook old = GLOBAL_AGCHook; GLOBAL_AGCHook = hook; return old; } X_API int YAP_HaltRegisterHook(HaltHookFunc hook, void *closure) { return Yap_HaltRegisterHook(hook, closure); } X_API char *YAP_cwd(void) { CACHE_REGS char *buf = NULL; int len; if (!Yap_getcwd(LOCAL_FileNameBuf, YAP_FILENAME_MAX)) return FALSE; len = strlen(LOCAL_FileNameBuf); buf = Yap_AllocCodeSpace(len + 1); if (!buf) return NULL; strncpy(buf, LOCAL_FileNameBuf, len); return buf; } X_API Term YAP_FloatsToList(double *dblp, size_t sz) { CACHE_REGS Term t; CELL *oldH; BACKUP_H(); if (!sz) return TermNil; while (ASP - 1024 < HR + sz * (2 + 2 + SIZEOF_DOUBLE / SIZEOF_INT_P)) { if ((CELL *)dblp > H0 && (CELL *)dblp < HR) { /* we are in trouble */ LOCAL_OpenArray = (CELL *)dblp; } if (!Yap_dogc(0, NULL PASS_REGS)) { RECOVER_H(); return 0L; } dblp = (double *)LOCAL_OpenArray; LOCAL_OpenArray = NULL; } t = AbsPair(HR); while (sz) { oldH = HR; HR += 2; oldH[0] = MkFloatTerm(*dblp++); oldH[1] = AbsPair(HR); sz--; } oldH[1] = TermNil; RECOVER_H(); return t; } X_API Int YAP_ListToFloats(Term t, double *dblp, size_t sz) { size_t i = 0; t = Deref(t); do { Term hd; if (IsVarTerm(t)) return -1; if (t == TermNil) return i; if (!IsPairTerm(t)) return -1; hd = HeadOfTerm(t); if (IsFloatTerm(hd)) { dblp[i++] = FloatOfTerm(hd); } else { extern double Yap_gmp_to_float(Term hd); if (IsIntTerm(hd)) dblp[i++] = IntOfTerm(hd); else if (IsLongIntTerm(hd)) dblp[i++] = LongIntOfTerm(hd); #if USE_GMP else if (IsBigIntTerm(hd)) dblp[i++] = Yap_gmp_to_float(hd); #endif else return -1; } if (i == sz) return sz; t = TailOfTerm(t); } while (TRUE); } X_API Term YAP_IntsToList(Int *dblp, size_t sz) { CACHE_REGS Term t; CELL *oldH; BACKUP_H(); if (!sz) return TermNil; while (ASP - 1024 < HR + sz * 3) { if ((CELL *)dblp > H0 && (CELL *)dblp < HR) { /* we are in trouble */ LOCAL_OpenArray = (CELL *)dblp; } if (!Yap_dogc(0, NULL PASS_REGS)) { RECOVER_H(); return 0L; } dblp = (Int *)LOCAL_OpenArray; LOCAL_OpenArray = NULL; } t = AbsPair(HR); while (sz) { oldH = HR; HR += 2; oldH[0] = MkIntegerTerm(*dblp++); oldH[1] = AbsPair(HR); sz--; } oldH[1] = TermNil; RECOVER_H(); return t; } X_API Int YAP_ListToInts(Term t, Int *dblp, size_t sz) { size_t i = 0; t = Deref(t); do { Term hd; if (IsVarTerm(t)) return -1; if (t == TermNil) return i; if (!IsPairTerm(t)) return -1; hd = HeadOfTerm(t); if (!IsIntTerm(hd)) return -1; dblp[i++] = IntOfTerm(hd); if (i == sz) return sz; t = TailOfTerm(t); } while (TRUE); } X_API Term YAP_OpenList(int n) { CACHE_REGS Term t; BACKUP_H(); while (HR + 2 * n > ASP - 1024) { if (!Yap_dogc(0, NULL PASS_REGS)) { RECOVER_H(); return FALSE; } } t = AbsPair(HR); HR += 2 * n; RECOVER_H(); return t; } X_API Term YAP_ExtendList(Term t0, Term inp) { Term t; CELL *ptr = RepPair(t0); BACKUP_H(); ptr[0] = inp; ptr[1] = AbsPair(ptr + 2); t = AbsPair(ptr + 2); RECOVER_H(); return t; } X_API int YAP_CloseList(Term t0, Term tail) { CELL *ptr = RepPair(t0); RESET_VARIABLE(ptr - 1); if (!Yap_unify((Term)(ptr - 1), tail)) return FALSE; return TRUE; } X_API int YAP_IsAttVar(Term t) { CACHE_REGS t = Deref(t); if (!IsVarTerm(t)) return FALSE; return IsAttVar(VarOfTerm(t)); } X_API Term YAP_AttsOfVar(Term t) { CACHE_REGS attvar_record *attv; t = Deref(t); if (!IsVarTerm(t)) return TermNil; if (!IsAttVar(VarOfTerm(t))) return TermNil; attv = RepAttVar(VarOfTerm(t)); return attv->Atts; } X_API int YAP_FileNoFromStream(Term t) { t = Deref(t); if (IsVarTerm(t)) return -1; return Yap_StreamToFileNo(t); } X_API void *YAP_FileDescriptorFromStream(Term t) { t = Deref(t); if (IsVarTerm(t)) return NULL; return Yap_FileDescriptorFromStream(t); } X_API void *YAP_Record(Term t) { DBTerm *dbterm; DBRecordList *dbt; dbterm = Yap_StoreTermInDB(Deref(t), 0); if (dbterm == NULL) return NULL; dbt = (struct record_list *)Yap_AllocCodeSpace(sizeof(struct record_list)); while (dbt == NULL) { if (!Yap_growheap(FALSE, sizeof(struct record_list), NULL)) { /* be a good neighbor */ Yap_FreeCodeSpace((void *)dbterm); Yap_Error(RESOURCE_ERROR_HEAP, TermNil, "using YAP_Record"); return NULL; } } if (Yap_Records) { Yap_Records->prev_rec = dbt; } dbt->next_rec = Yap_Records; dbt->prev_rec = NULL; dbt->dbrecord = dbterm; Yap_Records = dbt; return dbt; } X_API Term YAP_Recorded(void *handle) { CACHE_REGS Term t; DBTerm *dbterm = ((DBRecordList *)handle)->dbrecord; BACKUP_MACHINE_REGS(); do { LOCAL_Error_TYPE = YAP_NO_ERROR; t = Yap_FetchTermFromDB(dbterm); if (LOCAL_Error_TYPE == YAP_NO_ERROR) { RECOVER_MACHINE_REGS(); return t; } else if (LOCAL_Error_TYPE == RESOURCE_ERROR_ATTRIBUTED_VARIABLES) { LOCAL_Error_TYPE = YAP_NO_ERROR; if (!Yap_growglobal(NULL)) { Yap_Error(RESOURCE_ERROR_ATTRIBUTED_VARIABLES, TermNil, LOCAL_ErrorMessage); RECOVER_MACHINE_REGS(); return FALSE; } } else { LOCAL_Error_TYPE = YAP_NO_ERROR; if (!Yap_growstack(dbterm->NOfCells * CellSize)) { Yap_Error(RESOURCE_ERROR_STACK, TermNil, LOCAL_ErrorMessage); RECOVER_MACHINE_REGS(); return FALSE; } } } while (t == (CELL)0); RECOVER_MACHINE_REGS(); return t; } X_API int YAP_Erase(void *handle) { DBRecordList *dbr = (DBRecordList *)handle; if (dbr->next_rec) dbr->next_rec->prev_rec = dbr->prev_rec; if (dbr->prev_rec) dbr->prev_rec->next_rec = dbr->next_rec; else if (Yap_Records == dbr) { Yap_Records = dbr->next_rec; } Yap_ReleaseTermFromDB(dbr->dbrecord); Yap_FreeCodeSpace(handle); return 1; } X_API yhandle_t YAP_ArgsToSlots(int n) { CACHE_REGS return Yap_NewSlots(n); } X_API void YAP_SlotsToArgs(int n, yhandle_t slot) { CACHE_REGS CELL *ptr0 = Yap_AddressFromSlot(slot), *ptr1 = &ARG1; while (n--) { *ptr1++ = *ptr0++; } } X_API void YAP_signal(int sig) { Yap_signal(sig); } X_API int YAP_SetYAPFlag(Term flag, Term val) { return setYapFlag(flag, val); } /* yhandle_t YAP_VarSlotToNumber(yhandle_t) */ yhandle_t YAP_VarSlotToNumber(yhandle_t s) { CACHE_REGS Term *t = (CELL *)Deref(Yap_GetFromSlot(s)); if (t < HR) return t - H0; return t - LCL0; } /* Term YAP_ModuleUser() */ Term YAP_ModuleUser(void) { return MkAtomTerm(AtomUser); } /* int YAP_PredicateHasClauses() */ yhandle_t YAP_NumberOfClausesForPredicate(PredEntry *pe) { return pe->cs.p_code.NOfClauses; } int YAP_MaxOpPriority(Atom at, Term module) { AtomEntry *ae = RepAtom(at); OpEntry *info; WRITE_LOCK(ae->ARWLock); info = Yap_GetOpPropForAModuleHavingALock(ae, module); if (!info) { WRITE_UNLOCK(ae->ARWLock); return 0; } int ret = info->Prefix; if (info->Infix > ret) ret = info->Infix; if (info->Posfix > ret) ret = info->Posfix; WRITE_UNLOCK(ae->ARWLock); return ret; } int YAP_OpInfo(Atom at, Term module, int opkind, int *yap_type, int *prio) { AtomEntry *ae = RepAtom(at); OpEntry *info; int n; WRITE_LOCK(ae->ARWLock); info = Yap_GetOpPropForAModuleHavingALock(ae, module); if (!info) { /* try system operators */ info = Yap_GetOpPropForAModuleHavingALock(ae, PROLOG_MODULE); if (!info) { WRITE_UNLOCK(ae->ARWLock); return 0; } } if (opkind == PREFIX_OP) { SMALLUNSGN p = info->Prefix; if (!p) { WRITE_UNLOCK(ae->ARWLock); return FALSE; } if (p & DcrrpFlag) { n = 6; *prio = (p ^ DcrrpFlag); } else { n = 7; *prio = p; } } else if (opkind == INFIX_OP) { SMALLUNSGN p = info->Infix; if (!p) { WRITE_UNLOCK(ae->ARWLock); return FALSE; } if ((p & DcrrpFlag) && (p & DcrlpFlag)) { n = 1; *prio = (p ^ (DcrrpFlag | DcrlpFlag)); } else if (p & DcrrpFlag) { n = 3; *prio = (p ^ DcrrpFlag); } else if (p & DcrlpFlag) { n = 2; *prio = (p ^ DcrlpFlag); } else { n = 4; *prio = p; } } else { SMALLUNSGN p = info->Posfix; if (p & DcrlpFlag) { n = 4; *prio = (p ^ DcrlpFlag); } else { n = 5; *prio = p; } } *yap_type = n; WRITE_UNLOCK(ae->ARWLock); return 1; } int YAP_Argv(char ***argvp) { if (argvp) { *argvp = GLOBAL_argv; } return GLOBAL_argc; } YAP_tag_t YAP_TagOfTerm(Term t) { if (IsVarTerm(t)) { CELL *pt = VarOfTerm(t); if (IsUnboundVar(pt)) { CACHE_REGS if (IsAttVar(pt)) return YAP_TAG_ATT; return YAP_TAG_UNBOUND; } return YAP_TAG_REF; } if (IsPairTerm(t)) return YAP_TAG_PAIR; if (IsAtomOrIntTerm(t)) { if (IsAtomTerm(t)) return YAP_TAG_ATOM; return YAP_TAG_INT; } else { Functor f = FunctorOfTerm(t); if (IsExtensionFunctor(f)) { if (f == FunctorDBRef) { return YAP_TAG_DBREF; } if (f == FunctorLongInt) { return YAP_TAG_LONG_INT; } if (f == FunctorBigInt) { big_blob_type bt = RepAppl(t)[1]; switch (bt) { case BIG_INT: return YAP_TAG_BIG_INT; case BIG_RATIONAL: return YAP_TAG_RATIONAL; default: return YAP_TAG_OPAQUE; } } } return YAP_TAG_APPL; } } int YAP_BPROLOG_exception; Term YAP_BPROLOG_curr_toam_status; /** * Output the number of bytes needed to represent a string in UTF-8 * Note that the terminating zero is not included. No error checking * is performed (the programmer should have that done). * * @param t a list of codes, chars, string or atom. * * @return a positive number with the size, or 0. */ size_t YAP_UTF8_TextLength(Term t) { utf8proc_uint8_t dst[8]; size_t sz = 0; if (IsPairTerm(t)) { while (t != TermNil) { int c; Term hd = HeadOfTerm(t); if (IsAtomTerm(hd)) { Atom at = AtomOfTerm(hd); if (IsWideAtom(at)) c = RepAtom(at)->WStrOfAE[0]; else c = RepAtom(at)->StrOfAE[0]; } else if (IsIntegerTerm(hd)) { c = IntegerOfTerm(hd); } else { c = '\0'; } sz += utf8proc_encode_char(c, dst); t = TailOfTerm(t); } } else if (IsAtomTerm(t)) { Atom at = AtomOfTerm(t); if (IsWideAtom(at)) { const wchar_t *s = RepAtom(at)->WStrOfAE; int c; while ((c = *s++)) { sz += utf8proc_encode_char(c, dst); } } else { const unsigned char *s = (const unsigned char *)RepAtom(at)->StrOfAE; int c; while ((c = *s++)) { sz += utf8proc_encode_char(c, dst); } } } else if (IsStringTerm(t)) { sz = strlen(StringOfTerm(t)); } return sz; } Int YAP_ListLength(Term t) { Term *aux; Int n = Yap_SkipList(&t, &aux); if (IsVarTerm(*aux)) return -1; if (*aux == TermNil) return n; return -1; } Int YAP_NumberVars(Term t, Int nbv) { return Yap_NumberVars(t, nbv, FALSE); } Term YAP_UnNumberVars(Term t) { /* don't allow sharing of ground terms */ return Yap_UnNumberTerm(t, FALSE); } int YAP_IsNumberedVariable(Term t) { return IsApplTerm(t) && FunctorOfTerm(t) == FunctorDollarVar && IsIntegerTerm(ArgOfTerm(1, t)); } X_API size_t YAP_ExportTerm(Term inp, char *buf, size_t len) { if (!len) return 0; return Yap_ExportTerm(inp, buf, len, current_arity()); } X_API size_t YAP_SizeOfExportedTerm(char *buf) { if (!buf) return 0; return Yap_SizeOfExportedTerm(buf); } X_API Term YAP_ImportTerm(char *buf) { return Yap_ImportTerm(buf); } X_API int YAP_RequiresExtraStack(size_t sz) { CACHE_REGS if (sz < 16 * 1024) sz = 16 * 1024; if (HR <= ASP - sz) { return FALSE; } BACKUP_H(); while (HR > ASP - sz) { CACHE_REGS RECOVER_H(); if (!Yap_dogc(0, NULL PASS_REGS)) { return -1; } BACKUP_H(); } RECOVER_H(); return TRUE; } atom_t *TR_Atoms; functor_t *TR_Functors; size_t AtomTranslations, MaxAtomTranslations; size_t FunctorTranslations, MaxFunctorTranslations; X_API Int YAP_AtomToInt(Atom At) { TranslationEntry *te = Yap_GetTranslationProp(At, 0); if (te != NIL) return te->Translation; TR_Atoms[AtomTranslations] = At; Yap_PutAtomTranslation(At, 0, AtomTranslations); AtomTranslations++; if (AtomTranslations == MaxAtomTranslations) { atom_t *ot = TR_Atoms; atom_t *nt = (atom_t *)malloc(sizeof(atom_t) * 2 * MaxAtomTranslations); if (nt == NULL) { Yap_Error(SYSTEM_ERROR_INTERNAL, MkAtomTerm(At), "No more room for translations"); return -1; } memcpy(nt, ot, sizeof(atom_t) * MaxAtomTranslations); TR_Atoms = nt; free(ot); MaxAtomTranslations *= 2; } return AtomTranslations - 1; } X_API Atom YAP_IntToAtom(Int i) { return TR_Atoms[i]; } X_API Int YAP_FunctorToInt(Functor f) { Atom At = NameOfFunctor(f); arity_t arity = ArityOfFunctor(f); TranslationEntry *te = Yap_GetTranslationProp(At, arity); if (te != NIL) return te->Translation; TR_Functors[FunctorTranslations] = f; Yap_PutAtomTranslation(At, arity, FunctorTranslations); FunctorTranslations++; if (FunctorTranslations == MaxFunctorTranslations) { functor_t *nt = (functor_t *)malloc(sizeof(functor_t) * 2 * MaxFunctorTranslations), *ot = TR_Functors; if (nt == NULL) { Yap_Error(SYSTEM_ERROR_INTERNAL, MkAtomTerm(At), "No more room for translations"); return -1; } memcpy(nt, ot, sizeof(functor_t) * MaxFunctorTranslations); TR_Functors = nt; free(ot); MaxFunctorTranslations *= 2; } return FunctorTranslations - 1; } X_API Functor YAP_IntToFunctor(Int i) { return TR_Functors[i]; } #endif // C_INTERFACE_C /** @} */