/************************************************************************* * * * YAP Prolog * * * * Yap Prolog was developed at NCCUP - Universidade do Porto * * * * Copyright L.Damas, V.S.Costa and Universidade do Porto 1985-1997 * * * ************************************************************************** * * * File: arith.yap * * Last rev: * * mods: * * comments: arithmetical optimization * * * *************************************************************************/ % the default mode is on expand_exprs(Old,New) :- (get_value('$c_arith',true) -> Old = on ; Old = off ), '$set_arith_expan'(New). '$set_arith_expan'(on) :- set_value('$c_arith',true). '$set_arith_expan'(off) :- set_value('$c_arith',[]). compile_expressions :- set_value('$c_arith',true). do_not_compile_expressions :- set_value('$c_arith',[]). '$c_built_in'(IN, M, OUT) :- get_value('$c_arith',true), !, '$do_c_built_in'(IN, M, OUT). '$c_built_in'(IN, _, IN). '$do_c_built_in'(G, M, OUT) :- var(G), !, '$do_c_built_in'(call(M:G),M,OUT). '$do_c_built_in'(Mod:G, _, GN) :- !, '$do_c_built_in'(G, Mod, GN0), (GN0 = (_,_) -> GN = GN0 ; GN = Mod:GN0). '$do_c_built_in'(\+ G, _, OUT) :- nonvar(G), G = (A = B), !, OUT = (A \= B). '$do_c_built_in'(call(G), _, OUT) :- nonvar(G), G = (Mod:G1), !, '$do_c_built_metacall'(G1, Mod, OUT). '$do_c_built_in'(call(G), M, OUT) :- var(G), !, '$do_c_built_metacall'(G, M, OUT). '$do_c_built_in'(depth_bound_call(G,D), M, OUT) :- !, '$do_c_built_in'(G, M, NG), % make sure we don't have something like (A,B) -> $depth_next(D), A, B. ( '$composed_built_in'(NG) -> OUT = depth_bound_call(NG,D) ; OUT = ('$set_depth_limit_for_next_call'(D),NG) ). '$do_c_built_in'(once(G), M, ('$save_current_choice_point'(CP),NG,'$$cut_by'(CP))) :- !, '$do_c_built_in'(G,M,NG). '$do_c_built_in'(X is Y, _, P) :- nonvar(Y), % Don't rewrite variables !, ( number(Y), P = ( X = Y); % This case reduces to an unification '$expand_expr'(Y, P0, X0), '$drop_is'(X0, X, P1), '$do_and'(P0, P1, P) ). '$do_c_built_in'(Comp0, _, R) :- % now, do it for comparisons '$compop'(Comp0, Op, E, F), !, '$compop'(Comp, Op, U, V), '$expand_expr'(E, P, U), '$expand_expr'(F, Q, V), '$do_and'(P, Q, R0), '$do_and'(R0, Comp, R). '$do_c_built_in'(P, _, P). '$do_c_built_metacall'(G1, Mod, call(Mod:G1)) :- var(G1), var(Mod), !. '$do_c_built_metacall'(G1, Mod, '$execute_in_mod'(G1,Mod)) :- var(G1), atom(Mod), !. '$do_c_built_metacall'(Mod:G1, _, call(Mod:G1)) :- !, '$do_c_built_metacall'(G1, Mod, OUT). '$do_c_built_metacall'(G1, Mod, '$execute_in_mod'(G1,Mod)) :- atom(Mod), !. '$do_c_built_metacall'(G1, Mod, call(Mod:G1)). '$do_and'(true, P, P) :- !. '$do_and'(P, true, P) :- !. '$do_and'(P, Q, (P,Q)). % V is the result of the simplification, % X the result of the initial expression % and the last argument is how we are writing this result '$drop_is'(V, V, true) :- var(V), !. % usual case '$drop_is'(V, X, X is V). % atoms % Table of arithmetic comparisons '$compop'(X < Y, < , X, Y). '$compop'(X > Y, > , X, Y). '$compop'(X=< Y,=< , X, Y). '$compop'(X >=Y, >=, X, Y). '$compop'(X=:=Y,=:=, X, Y). '$compop'(X=\=Y,=\=, X, Y). '$composed_built_in'(V) :- var(V), !, fail. '$composed_built_in'(('$save_current_choice_point'(_),NG,'$$cut_by'(_))) :- !, '$composed_built_in'(NG). '$composed_built_in'((_,_)). '$composed_built_in'((_;_)). '$composed_built_in'((_|_)). '$composed_built_in'((_->_)). '$composed_built_in'(_:G) :- '$composed_built_in'(G). '$composed_built_in'(\+G) :- '$composed_built_in'(G). '$composed_built_in'(not(G)) :- '$composed_built_in'(G). % expanding an expression: % first argument is the expression not expanded, % second argument the expanded expression % third argument unifies with the result from the expression '$expand_expr'(V, true, V) :- var(V), !. '$expand_expr'([T], E, V) :- !, '$expand_expr'(T, E, V). '$expand_expr'(A, true, A) :- atomic(A), !. '$expand_expr'(T, E, V) :- '$unaryop'(T, O, A), !, '$expand_expr'(A, Q, X), '$expand_expr'(O, X, V, Q, E). '$expand_expr'(T, E, V) :- '$binaryop'(T, O, A, B), !, '$expand_expr'(A, Q, X), '$expand_expr'(B, R, Y), '$expand_expr'(O, X, Y, V, Q, S), '$do_and'(R, S, E). % expanding an expression of the form: % O is Op(X), % after having expanded into Q % and giving as result P (the last argument) '$expand_expr'(Op, X, O, Q, Q) :- number(X), !, is( O, Op, X). '$expand_expr'(Op, X, O, Q, P) :- '$unary_op_as_integer'(Op,IOp), '$do_and'(Q, is( O, IOp, X), P). % expanding an expression of the form: % O is Op(X,Y), % after having expanded into Q % and giving as result P (the last argument) % included is some optimization for: % incrementing and decrementing, % the elementar arithmetic operations [+,-,*,//] '$expand_expr'(Op, X, Y, O, Q, Q) :- number(X), number(Y), !, is( O, Op, X, Y). '$expand_expr'(+, X, Y, O, Q, P) :- !, '$preprocess_args_for_commutative'(X, Y, X1, Y1, E), '$do_and'(E, '$plus'(X1,Y1,O), F), '$do_and'(Q, F, P). '$expand_expr'(-, X, Y, O, Q, P) :- var(X), integer(Y), \+ '$bignum'(Y), !, Z is -Y, '$do_and'(Q, '$plus'(X,Z,O), P). '$expand_expr'(-, X, Y, O, Q, P) :- !, '$preprocess_args_for_non_commutative'(X, Y, X1, Y1, E), '$do_and'(E, '$minus'(X1,Y1,O), F), '$do_and'(Q, F, P). '$expand_expr'(*, X, Y, O, Q, P) :- !, '$preprocess_args_for_commutative'(X, Y, X1, Y1, E), '$do_and'(E, '$times'(X1,Y1,O), F), '$do_and'(Q, F, P). '$expand_expr'(//, X, Y, O, Q, P) :- !, '$preprocess_args_for_non_commutative'(X, Y, X1, Y1, E), '$do_and'(E, '$div'(X1,Y1,O), F), '$do_and'(Q, F, P). '$expand_expr'(/\, X, Y, O, Q, P) :- !, '$preprocess_args_for_commutative'(X, Y, X1, Y1, E), '$do_and'(E, '$and'(X1,Y1,O), F), '$do_and'(Q, F, P). '$expand_expr'(\/, X, Y, O, Q, P) :- !, '$preprocess_args_for_commutative'(X, Y, X1, Y1, E), '$do_and'(E, '$or'(X1,Y1,O), F), '$do_and'(Q, F, P). '$expand_expr'(<<, X, Y, O, Q, P) :- !, '$preprocess_args_for_non_commutative'(X, Y, X1, Y1, E), '$do_and'(E, '$sll'(X1,Y1,O), F), '$do_and'(Q, F, P). '$expand_expr'(>>, X, Y, O, Q, P) :- !, '$preprocess_args_for_non_commutative'(X, Y, X1, Y1, E), '$do_and'(E, '$slr'(X1,Y1,O), F), '$do_and'(Q, F, P). '$expand_expr'(Op, X, Y, O, Q, P) :- '$binary_op_as_integer'(Op,IOp), '$do_and'(Q, is(O,IOp,X,Y), P). '$preprocess_args_for_commutative'(X, Y, X, Y, true) :- var(X), var(Y), !. '$preprocess_args_for_commutative'(X, Y, X, Y, true) :- var(X), integer(Y), \+ '$bignum'(Y), !. '$preprocess_args_for_commutative'(X, Y, X, Z, Z = Y) :- var(X), !. '$preprocess_args_for_commutative'(X, Y, Y, X, true) :- integer(X), \+ '$bignum'(X), var(Y), !. '$preprocess_args_for_commutative'(X, Y, Z, X, Z = Y) :- integer(X), \+ '$bignum'(X), !. '$preprocess_args_for_commutative'(X, Y, Z, W, E) :- '$do_and'(Z = X, Y = W, E). '$preprocess_args_for_non_commutative'(X, Y, X, Y, true) :- var(X), var(Y), !. '$preprocess_args_for_non_commutative'(X, Y, X, Y, true) :- var(X), integer(Y), \+ '$bignum'(Y), !. '$preprocess_args_for_non_commutative'(X, Y, X, Z, Z = Y) :- var(X), !. '$preprocess_args_for_non_commutative'(X, Y, X, Y, true) :- integer(X), \+ '$bignum'(X), var(Y), !. '$preprocess_args_for_non_commutative'(X, Y, X, Z, Z = Y) :- integer(X), \+ '$bignum'(Y), !. '$preprocess_args_for_non_commutative'(X, Y, Z, W, E) :- '$do_and'(Z = X, Y = W, E). % These are the unary arithmetic operators '$unaryop'(+X ,+ ,X). '$unaryop'(-X ,- ,X). '$unaryop'(\(X) ,\ ,X). '$unaryop'(exp(X) ,exp ,X). '$unaryop'(log(X) ,log ,X). '$unaryop'(log10(X) ,log10 ,X). '$unaryop'(sqrt(X) ,sqrt ,X). '$unaryop'(sin(X) ,sin ,X). '$unaryop'(cos(X) ,cos ,X). '$unaryop'(tan(X) ,tan ,X). '$unaryop'(asin(X) ,asin ,X). '$unaryop'(acos(X) ,acos ,X). '$unaryop'(atan(X) ,atan ,X). '$unaryop'(atan2(X) ,atan2 ,X). '$unaryop'(sinh(X) ,sinh ,X). '$unaryop'(cosh(X) ,cosh ,X). '$unaryop'(tanh(X) ,tanh ,X). '$unaryop'(asinh(X) ,asinh ,X). '$unaryop'(acosh(X) ,acosh ,X). '$unaryop'(atanh(X) ,atanh ,X). '$unaryop'(floor(X) ,floor ,X). '$unaryop'(abs(X) ,abs ,X). '$unaryop'(float(X) ,float ,X). '$unaryop'(+(X) ,+ ,X). '$unaryop'(integer(X) ,integer,X). '$unaryop'(truncate(X) ,truncate,X). '$unaryop'(round(X) ,round ,X). '$unaryop'(ceiling(X) ,ceiling,X). '$unaryop'(msb(X) ,msb ,X). '$unaryop'(sign(X) ,sign ,X). % These are the binary arithmetic operators '$binaryop'(X+Y ,+ ,X,Y). '$binaryop'(X-Y ,- ,X,Y). '$binaryop'(X*Y ,* ,X,Y). '$binaryop'(X/Y ,/ ,X,Y). '$binaryop'(X mod Y ,mod ,X,Y). '$binaryop'(X//Y ,// ,X,Y). '$binaryop'(X/\Y ,/\ ,X,Y). '$binaryop'(X\/Y ,\/ ,X,Y). '$binaryop'(X#Y ,'#' ,X,Y). '$binaryop'(X<>Y ,>> ,X,Y). '$binaryop'(X^Y ,^ ,X,Y). '$binaryop'(X**Y ,^ ,X,Y). '$binaryop'(exp(X,Y) ,^ ,X,Y). '$binaryop'(max(X,Y) ,max ,X,Y). '$binaryop'(min(X,Y) ,min ,X,Y). '$binaryop'(gcd(X,Y) ,gcd ,X,Y). '$binaryop'(gcdmult(X,Y),gcdmult,X,Y). % The table number for each operation is given here % Depends on eval.c '$unary_op_as_integer'(+,0). '$unary_op_as_integer'(-,1). '$unary_op_as_integer'(\,2). '$unary_op_as_integer'(exp,3). '$unary_op_as_integer'(log,4). '$unary_op_as_integer'(log10,5). '$unary_op_as_integer'(sqrt,6). '$unary_op_as_integer'(sin,7). '$unary_op_as_integer'(cos,8). '$unary_op_as_integer'(tan,9). '$unary_op_as_integer'(sinh,10). '$unary_op_as_integer'(cosh,11). '$unary_op_as_integer'(tanh,12). '$unary_op_as_integer'(asin,13). '$unary_op_as_integer'(acos,14). '$unary_op_as_integer'(atan,15). '$unary_op_as_integer'(asinh,16). '$unary_op_as_integer'(acosh,17). '$unary_op_as_integer'(atanh,18). '$unary_op_as_integer'(floor,19). '$unary_op_as_integer'(ceiling,20). '$unary_op_as_integer'(round,21). '$unary_op_as_integer'(truncate,22). '$unary_op_as_integer'(integer,23). '$unary_op_as_integer'(float,24). '$unary_op_as_integer'(abs,25). '$unary_op_as_integer'(msb,26). '$unary_op_as_integer'(float_fractional_part,27). '$unary_op_as_integer'(float_integer_part,28). '$unary_op_as_integer'(sign,29). '$unary_op_as_integer'(lgamma,30). '$binary_op_as_integer'(+,0). '$binary_op_as_integer'(-,1). '$binary_op_as_integer'(*,2). '$binary_op_as_integer'(/,3). '$binary_op_as_integer'(mod,4). '$binary_op_as_integer'(rem,5). '$binary_op_as_integer'(//,6). '$binary_op_as_integer'(<<,7). '$binary_op_as_integer'(>>,8). '$binary_op_as_integer'(/\,9). '$binary_op_as_integer'(\/,10). '$binary_op_as_integer'('#',11). '$binary_op_as_integer'(atan2,12). '$binary_op_as_integer'(^,13). '$binary_op_as_integer'('**',14). '$binary_op_as_integer'(exp,15). '$binary_op_as_integer'(gcd,16). '$binary_op_as_integer'(min,17). '$binary_op_as_integer'(max,18). %'$binary_op_as_integer'(gcdmult,28). /* Arithmetics */ % M and N nonnegative integers, N is the successor of M succ(M,N) :- integer(M), !, '$plus'(M,1,N). succ(M,N) :- integer(N), !, N > 0, '$plus'(N,-1,M). succ(0,1).