%%% -*- Mode: Prolog; -*- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % ProbLog program describing a probabilistic graph using tabling % (running example from ProbLog presentations) % $Id: graph_tabled.pl 4875 2010-10-05 15:28:35Z theo $ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% :- use_module('../problog'). % New trie method ensures Probibilistic Cycle Handling needed for tabling that handles loops :- set_problog_flag(use_db_trie, true). :- set_problog_flag(use_old_trie, false). %%%% % background knowledge %%%% % definition of acyclic path using list of visited nodes % to table a predicate you first need to define it as a dynamic one :- dynamic path/2. path(X,X). path(X,Y) :- X\==Y, edge(X,Z), path(Z,Y). :- problog_table path/2. % after all predicate definitions have appeared you need to state that the predicate will be tabled % using directed edges in both directions edge(X,Y) :- dir_edge(Y,X). edge(X,Y) :- dir_edge(X,Y). %%%% % probabilistic facts %%%% 0.9::dir_edge(1,2). 0.8::dir_edge(2,3). 0.6::dir_edge(3,4). 0.7::dir_edge(1,6). 0.5::dir_edge(2,6). 0.4::dir_edge(6,5). 0.7::dir_edge(5,3). 0.2::dir_edge(5,4). %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % example queries about tabled path(1,4) useable only with problog_exact, problog_montecarlo currently % %%% success probability % ?- problog_exact(path(1,4),Prob,Status). % Prob = 0.53864, % Status = ok ? % yes %%% approximation using monte carlo, to reach 95%-confidence interval width 0.01 % ?- problog_montecarlo(path(1,4),0.01,Prob). % Prob = 0.537525 ? % yes %%% success probability of negation % ?- problog_exact(problog_neg(path(1,4)),Prob,Status). % Prob = 0.46136, % Status = ok ? % yes % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%