// -*- c++ -*-
//=============================================================================
// Copyright (C) 2011 by Denys Duchier
//
// This program is free software: you can redistribute it and/or modify it
// under the terms of the GNU Lesser General Public License as published by the
// Free Software Foundation, either version 3 of the License, or (at your
// option) any later version.
//
// This program is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
// more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with this program. If not, see .
//=============================================================================
#ifndef GECODE_COMMON
#define GECODE_COMMON
#if defined(_MSC_VER) || defined(__MINGW32__)
#define __i386__ 1
#if __x86_64__
#define _WIN64 1
#define _AMD64_ 1
#endif
#include
#endif
#include "gecode/driver.hh"
#include "gecode/int.hh"
#include "gecode/set.hh"
#include "gecode/search.hh"
#include
namespace generic_gecode
{
using namespace std;
using namespace Gecode;
// description of the optimization criterion
struct Optimizing
{
enum What { OPT_NONE, OPT_INT, OPT_RATIO };
enum How { OPT_MIN, OPT_MAX };
int num;
int den;
What what;
How how;
Optimizing(): num(-1), den(-1), what(OPT_NONE), how(OPT_MAX) {}
Optimizing(Optimizing& o)
: num(o.num), den(o.den), what(o.what), how(o.how) {}
void check_ok() const
{ if (what!=OPT_NONE)
throw Exception("gecode-python","too many optimization criteria"); }
void maximize(int i)
{ check_ok(); what = OPT_INT; how = OPT_MAX; num = i; };
void maximize(int i,int j)
{ check_ok(); what = OPT_RATIO; how = OPT_MAX; num = i; den = j; };
void minimize(int i)
{ check_ok(); what = OPT_INT; how = OPT_MIN; num = i; };
void minimize(int i,int j)
{ check_ok(); what = OPT_RATIO; how = OPT_MIN; num = i; den = j; };
};
class GenericSpace;
struct GenericEngine
{
virtual GenericSpace* next(void)=0;
virtual ~GenericEngine() {};
};
struct GenericDFS: GenericEngine
{
DFS engine;
GenericDFS(GenericSpace* s,Search::Options& opt) : engine(s,opt) {}
virtual GenericSpace* next(void) { return engine.next(); }
};
struct GenericRestartDFS: GenericEngine
{
RBS engine;
GenericRestartDFS(GenericSpace* s,Search::Options& opt) : engine(s,opt) {}
virtual GenericSpace* next(void) { return engine.next(); }
};
struct GenericBAB: GenericEngine
{
BAB engine;
GenericBAB(GenericSpace* s,Search::Options& opt) : engine(s,opt) {}
virtual GenericSpace* next(void) { return engine.next(); }
};
struct GenericRestartBAB: GenericEngine
{
RBS engine;
GenericRestartBAB(GenericSpace* s,Search::Options& opt) : engine(s,opt) {}
virtual GenericSpace* next(void) { return engine.next(); }
};
#ifdef OLD
struct GenericRestart: GenericEngine
{
Restart engine;
GenericRestart(GenericSpace* s,Search::Options& opt): engine(s,opt) {}
virtual GenericSpace* next(void) { return engine.next(); }
};
#endif
struct LoadingDock
{
vector ivars;
vector bvars;
vector fvars;
vector svars;
vector ikeep;
vector bkeep;
vector fkeep;
vector skeep;
bool keeping_some() const
{
return (ikeep.size() != 0)
|| (bkeep.size() != 0)
|| (fkeep.size() != 0)
|| (skeep.size() != 0);
}
IntVar get_ivar(int i) const { return ivars[i]; }
BoolVar get_bvar(int i) const { return bvars[i]; }
FloatVar get_fvar(int i) const { return fvars[i]; }
SetVar get_svar(int i) const { return svars[i]; }
int enter_ivar(const IntVar& v)
{ ivars.push_back(v); return static_cast(ivars.size()-1); }
int enter_bvar(const BoolVar& v)
{ bvars.push_back(v); return static_cast(bvars.size()-1); }
int enter_fvar(const FloatVar& v)
{ fvars.push_back(v); return static_cast(fvars.size()-1); }
int enter_svar(const SetVar& v)
{ svars.push_back(v); return static_cast(svars.size()-1); }
int keep_ivar(int i) { ikeep.push_back(i); return static_cast(ikeep.size()-1); }
int keep_bvar(int i) { bkeep.push_back(i); return static_cast(bkeep.size()-1); }
int keep_fvar(int i) { fkeep.push_back(i); return static_cast(fkeep.size()-1); }
int keep_svar(int i) { skeep.push_back(i); return static_cast(skeep.size()-1); }
void freeze(Space& home,
IntVarArray& iarr, BoolVarArray& barr, SetVarArray& sarr, FloatVarArray& farr,
int& num, int& den)
{
if (keeping_some())
{
// make sure that optimization vars (if any) are kept
if (num != -1)
{
const int _num(num);
const int _den(den);
int n = static_cast(ikeep.size());
bool num_found(false);
bool den_found(false);
for (;n--;)
{
const int idx(ikeep[n]);
if (idx==_num)
{ num_found=true; if (den_found) break; }
if (idx==_den)
{ den_found=true; if (num_found) break; }
}
if (!num_found)
{ ikeep.push_back(_num);
num=static_cast(ikeep.size()-1); }
if (_den != -1 && !den_found)
{ ikeep.push_back(_den);
den=static_cast(ikeep.size()-1); }
}
{ int n = static_cast(ikeep.size());
iarr = IntVarArray(home, n);
for (;n--;) iarr[n]=ivars[ikeep[n]]; }
{ int n = static_cast(bkeep.size());
barr = BoolVarArray(home, n);
for (;n--;) barr[n]=bvars[bkeep[n]]; }
{ int n = static_cast(skeep.size());
sarr = SetVarArray(home, n);
for (;n--;) sarr[n]=svars[skeep[n]]; }
{ int n = static_cast(fkeep.size());
farr = FloatVarArray(home, n);
for (;n--;) farr[n]=fvars[skeep[n]]; }
}
else
{
{ int n = static_cast(ivars.size());
iarr = IntVarArray(home, n);
for (;n--;) iarr[n]=ivars[n]; }
{ int n = static_cast(bvars.size());
barr = BoolVarArray(home, n);
for (;n--;) barr[n]=bvars[n]; }
{ int n = static_cast(svars.size());
sarr = SetVarArray(home, n);
for (;n--;) sarr[n]=svars[n]; }
{ int n = static_cast(fvars.size());
farr = FloatVarArray(home, n);
for (;n--;) farr[n]=fvars[n]; }
}
}
};
class GenericSpace: public Space
{
Optimizing optim;
IntVarArray ivars;
BoolVarArray bvars;
FloatVarArray fvars;
SetVarArray svars;
LoadingDock* dock;
bool keeping_some; // iff only SOME of the vars are kept
public:
Space* space() { return this; }
Space* copy(bool share)
{ freeze(); return new GenericSpace(share, *this); }
Space* copy(void) {return copy(false);}
GenericSpace(bool share, GenericSpace& s)
: Space( s), optim(s.optim), dock(NULL), keeping_some(s.keeping_some)
{
ivars.update(*this, s.ivars);
bvars.update(*this, s.bvars);
svars.update(*this, s.svars);
fvars.update(*this, s.fvars);
}
GenericSpace() : dock(new LoadingDock()), keeping_some(false) {}
~GenericSpace() { delete dock; }
// throw some C++ exception on behalf of glue code
void kaboom(const char* s)
{ throw Exception("gecode-python", s); }
int ikaboom(const char* s)
{ kaboom(s); return 0; }
// freeze the space before handing it off to a search engine
void freeze()
{
if (dock)
{
keeping_some = dock->keeping_some();
dock->freeze(*this, ivars, bvars, svars, fvars, optim.num, optim.den);
delete dock;
dock = NULL;
}
}
IntVar get_ivar(int i) const { return (dock)?dock->get_ivar(i):ivars[i]; }
BoolVar get_bvar(int i) const { return (dock)?dock->get_bvar(i):bvars[i]; }
SetVar get_svar(int i) const { return (dock)?dock->get_svar(i):svars[i]; }
FloatVar get_fvar(int i) const { return (dock)?dock->get_fvar(i):fvars[i]; }
int keep_ivar(int i)
{
if (dock) return dock->keep_ivar(i);
else return ikaboom("too late to keep");
}
int keep_bvar(int i)
{
if (dock) return dock->keep_bvar(i);
else return ikaboom("too late to keep");
}
int keep_svar(int i)
{
if (dock) return dock->keep_svar(i);
else return ikaboom("too late to keep");
}
int keep_fvar(int i)
{
if (dock) return dock->keep_fvar(i);
else return ikaboom("too late to keep");
}
bool frozen() const { return dock==NULL; }
bool has_keepers() const { return keeping_some; }
// when frozen and has_keepers: which is just has_keepers actually
bool use_keep_index() const { return has_keepers(); }
GenericEngine* new_engine(bool restart, Search::Options& opt)
{
freeze();
return (optim.what == Optimizing::OPT_NONE)
? ( restart
? static_cast(new GenericRestartDFS(this,opt))
: static_cast(new GenericDFS(this,opt)) )
: (restart
? static_cast(new GenericRestartBAB(this,opt))
:
static_cast(new GenericBAB(this,opt)) );
}
int _new_ivar(IntVar& v)
{
if (dock) return dock->enter_ivar(v);
else return ikaboom("too late to create vars");
}
int new_ivar(int lo, int hi)
{
IntVar v(*this, lo, hi);
return _new_ivar(v);
}
int new_ivar(IntSet& s)
{
IntVar v(*this, s);
return _new_ivar(v);
}
int _new_fvar(FloatVar& v)
{
if (dock) return dock->enter_fvar(v);
else return ikaboom("too late to create vars");
}
int new_fvar(double lo, double hi)
{
FloatVar v(*this, lo, hi);
return _new_fvar(v);
}
int _new_bvar(BoolVar& v)
{
if (dock) return dock->enter_bvar(v);
else return ikaboom("too late to create vars");
}
int new_bvar()
{
BoolVar v(*this, 0, 1);
return _new_bvar(v);
}
int _new_svar(SetVar& v)
{
if (dock) return dock->enter_svar(v);
else return ikaboom("too late to create vars");
}
int new_svar(int glbMin, int glbMax, int lubMin, int lubMax,
unsigned int cardMin=0,
unsigned int cardMax=Set::Limits::card)
{
SetVar v(*this, glbMin, glbMax, lubMin, lubMax, cardMin, cardMax);
return _new_svar(v);
}
int new_ssvar(int glbMin, int glbMax, IntSet lubMin, IntSet lubMax,
unsigned int cardMin=0,
unsigned int cardMax=Set::Limits::card)
{
SetVar v(*this, glbMin, glbMax, lubMin, lubMax, cardMin, cardMax);
return _new_svar(v);
}
int new_ssvar(IntSet glb, int lubMin, int lubMax,
unsigned int cardMin=0,
unsigned int cardMax=Set::Limits::card)
{
SetVar v(*this, glb, lubMin, lubMax, cardMin, cardMax);
return _new_svar(v);
}
int new_svar(int glbMin, int glbMax, IntSet lub,
unsigned int cardMin=0,
unsigned int cardMax=Set::Limits::card)
{
SetVar v(*this, glbMin, glbMax, lub, cardMin, cardMax);
return _new_svar(v);
}
int new_sssvar(IntSet glb, IntSet lub,
unsigned int cardMin=0,
unsigned int cardMax=Set::Limits::card)
{
SetVar v(*this, glb, lub, cardMin, cardMax);
return _new_svar(v);
}
void minimize(int i) { optim.minimize(i); }
void minimize(int i, int j) { optim.minimize(i,j); }
void maximize(int i) { optim.maximize(i); }
void maximize(int i, int j) { optim.maximize(i,j); }
void constrain(const Space& s)
{
const GenericSpace& sol = static_cast(s);
switch (optim.what)
{
case Optimizing::OPT_NONE:
break;
case Optimizing::OPT_INT:
rel(*this, ivars[optim.num],
((optim.how==Optimizing::OPT_MIN) ? IRT_LE : IRT_GR),
sol.ivars[optim.num].val());
break;
case Optimizing::OPT_RATIO:
{
IntArgs c(2, sol.ivars[optim.den].val(),
- sol.ivars[optim.num].val());
IntVarArgs v(2);
v[0] = ivars[optim.num];
v[1] = ivars[optim.den];
linear(*this, c, v,
((optim.how==Optimizing::OPT_MIN) ? IRT_LE : IRT_GR), 0);
break;
}
}
}
};
}
#ifdef DISJUNCTOR
#include "disjunctor.icc"
#endif
#endif