/************************************************************************* * * * YAP Prolog * * * * Yap Prolog was developed at NCCUP - Universidade do Porto * * * * Copyright L.Damas, V.S.Costa and Universidade do Porto 1985-1997 * * * ************************************************************************** * * * File: arithi2.c * * Last rev: * * mods: * * comments: arithmetical expression evaluation * * * *************************************************************************/ /* This file implements fast binary math operations for YAP * */ inline static int add_overflow(Int x, Int i, Int j) { return ((i & j & ~x) | (~i & ~j & x)) < 0; } inline static Term add_int(Int i, Int j) { Int x = i+j; #if USE_GMP /* Integer overflow, we need to use big integers */ Int overflow = (i & j & ~x) | (~i & ~j & x); if (overflow < 0) { return(Yap_gmp_add_ints(i, j)); } #endif #ifdef BEAM RINT(x); return( MkIntegerTerm (x)); #else RINT(x); #endif } inline static int sub_overflow(Int x, Int i, Int j) { return ((i & ~j & ~x) | (~i & j & x)) < 0; } inline static Term sub_int(Int i, Int j) { Int x = i-j; #if USE_GMP Int overflow = ((i & ~j & ~x) | (~i & j & x)) < 0; /* Integer overflow, we need to use big integers */ if (overflow) { return(Yap_gmp_sub_ints(i, j)); } #endif #ifdef BEAM RINT(x); return( MkIntegerTerm (x)); #else RINT(x); #endif } #ifdef __GNUC__ #ifdef __i386__ #define DO_MULTI() { Int tmp1; \ __asm__ ("imull %3\n\t movl $0,%1\n\t jno 0f\n\t movl $1,%1\n\t 0:" \ : "=a" (z), \ "=d" (tmp1) \ : "a" (i1), \ "rm" (i2) \ : "cc" ); \ if (tmp1) goto overflow; \ } #define OPTIMIZE_MULTIPLI 1 #endif #endif inline static int mul_overflow(Int z, Int i1, Int i2) { if (i1 == Int_MIN && i2 == -1) return TRUE; return (i2 && z/i2 != i1); } #ifndef OPTIMIZE_MULTIPLI #define DO_MULTI() z = i1*i2; \ if (i2 && z/i2 != i1) goto overflow #endif inline static Term times_int(Int i1, Int i2) { #ifdef USE_GMP Int z; DO_MULTI(); RINT(z); overflow: { return(Yap_gmp_mul_ints(i1, i2)); } #else RINT(i1*i2); #endif } #if USE_GMP static inline int sl_overflow(Int i,Int j) { Int x = (8*sizeof(CELL)-2)-j; CELL t = (1<>/2"); } RINT(IntegerOfTerm(t1) >> -i2); } return do_sll(IntegerOfTerm(t1),IntegerOfTerm(t2)); case double_e: return Yap_ArithError(TYPE_ERROR_INTEGER, t2, "<>/2"); case double_e: return Yap_ArithError(TYPE_ERROR_INTEGER, t2, "<>/2"); } return do_sll(IntegerOfTerm(t1), -i2); } RINT(IntegerOfTerm(t1) >> IntegerOfTerm(t2)); case double_e: return Yap_ArithError(TYPE_ERROR_INTEGER, t2, ">>/2"); case big_int_e: #ifdef USE_GMP return Yap_ArithError(RESOURCE_ERROR_HUGE_INT, t2, ">>/2"); #endif default: RERROR(); } break; case double_e: return Yap_ArithError(TYPE_ERROR_INTEGER, t1, ">>/2"); case big_int_e: #ifdef USE_GMP switch (ETypeOfTerm(t2)) { case long_int_e: return Yap_gmp_sll_big_int(Yap_BigIntOfTerm(t1), -IntegerOfTerm(t2)); case big_int_e: return Yap_ArithError(RESOURCE_ERROR_HUGE_INT, t2, ">>/2"); case double_e: return Yap_ArithError(TYPE_ERROR_INTEGER, t2, ">>/2"); default: RERROR(); } #endif default: RERROR(); } RERROR(); }