/************************************************************************* * * * YAP Prolog * * * * Yap Prolog was developed at NCCUP - Universidade do Porto * * * * Copyright L.Damas, V.S.Costa and Universidade do Porto 1985-1997 * * * ************************************************************************** * * * File: save.c * * Last rev: * * mods: * * comments: saving and restoring a Prolog computation * * * *************************************************************************/ #ifdef SCCS static char SccsId[] = "@(#)save.c 1.3 3/15/90"; #endif #include "absmi.h" #include "alloc.h" #include "yapio.h" #include "sshift.h" #include "Foreign.h" #if HAVE_STRING_H #include #endif #if !HAVE_STRNCAT #define strncat(X,Y,Z) strcat(X,Y) #endif #if !HAVE_STRNCPY #define strncpy(X,Y,Z) strcpy(X,Y) #endif #if HAVE_FCNTL_H #include #endif #ifdef HAVE_UNISTD_H #include #endif #ifdef HAVE_SYS_TYPES_H #include #endif #ifdef HAVE_SYS_STAT_H #include #endif /********* hack for accesing several kinds of terms. Should be cleaned **/ #define AbsTerm(V) ((Term) (V)) extern char StartUpFile[]; static char end_msg[256] ="*** End of YAP saved state *****"; #ifdef DEBUG /* * FOR DEBUGGING define DEBUG_RESTORE0 to check the file stuff, * define DEBUG_RESTORE1 to see if it is able to prepare the chain, * define DEBUG_RESTORE2 to see how things are going, * define DEBUG_RESTORE3 to check if the atom chain is still a working * chain, * define DEBUG_RESTORE4 if you want to set the output for some * particular file, * define DEBUG_RESTORE5 if you want to see how the stacks are being * cleaned up, * define DEBUG_RESTORE6 if you want to follow the execution in * * Also a file is defined where you can write things, by default stderr * * Good Luck */ #endif STATIC_PROTO(void myread, (int, char *, Int)); STATIC_PROTO(void mywrite, (int, char *, Int)); STATIC_PROTO(int open_file, (char *, int)); STATIC_PROTO(void close_file, (void)); STATIC_PROTO(void putout, (CELL)); STATIC_PROTO(void putcellptr, (CELL *)); STATIC_PROTO(CELL get_cell, (void)); STATIC_PROTO(CELL *get_cellptr, ( /* CELL * */ void)); STATIC_PROTO(void put_info, (int, int)); STATIC_PROTO(void save_regs, (int)); STATIC_PROTO(void save_code_info, (void)); STATIC_PROTO(void save_heap, (void)); STATIC_PROTO(void save_stacks, (int)); STATIC_PROTO(void save_crc, (void)); STATIC_PROTO(Int do_save, (int)); STATIC_PROTO(Int p_save, (void)); STATIC_PROTO(Int p_save_program, (void)); STATIC_PROTO(int check_header, (void)); STATIC_PROTO(void get_heap_info, (void)); STATIC_PROTO(void get_regs, (int)); STATIC_PROTO(void get_insts, (OPCODE [])); STATIC_PROTO(void get_hash, (void)); STATIC_PROTO(void CopyCode, (void)); STATIC_PROTO(void CopyStacks, (void)); STATIC_PROTO(int get_coded, (int, OPCODE [])); STATIC_PROTO(void restore_codes, (void)); STATIC_PROTO(void ConvDBList, (Term, char *,CELL)); STATIC_PROTO(Term AdjustDBTerm, (Term)); STATIC_PROTO(void RestoreDB, (DBEntry *)); STATIC_PROTO(void RestoreClause, (Clause *)); STATIC_PROTO(void CleanClauses, (CODEADDR, CODEADDR)); STATIC_PROTO(void rehash, (CELL *, int, int)); STATIC_PROTO(void CleanCode, (PredEntry *)); STATIC_PROTO(void RestoreEntries, (PropEntry *)); STATIC_PROTO(void RestoreInvisibleAtoms, (void)); STATIC_PROTO(void RestoreFreeSpace, (void)); STATIC_PROTO(void restore_heap, (void)); #ifdef DEBUG_RESTORE3 STATIC_PROTO(void ShowAtoms, (void)); STATIC_PROTO(void ShowEntries, (PropEntry *)); #endif STATIC_PROTO(int OpenRestore, (char *)); STATIC_PROTO(void CloseRestore, (void)); STATIC_PROTO(int check_opcodes, (OPCODE [])); STATIC_PROTO(void RestoreHeap, (OPCODE [], int)); STATIC_PROTO(Int p_restore, (void)); STATIC_PROTO(void restore_heap_regs, (void)); STATIC_PROTO(void restore_regs, (int)); STATIC_PROTO(void ConvDBStruct, (Term, char *, CELL)); #ifdef MACYAP STATIC_PROTO(void NewFileInfo, (long, long)); extern int DefVol; #endif #if HAVE_IO_H #include #endif #ifdef LIGHT #include #include void LightBug(char *); static void LightBug(s) char *s; { } #endif /* LIGHT */ #if SHORT_INTS #ifdef M_WILLIAMS #include #endif static void myread(int fd, char *buff, Int len) { while (len > 16000) { int nchars = read(fd, buff, 16000); if (nchars <= 0) Error(FATAL_ERROR,TermNil,"bad saved state, system corrupted"); len -= 16000; buff += 16000; } read(fd, buff, (unsigned) len); } static void mywrite(int fd, char *buff, Int len) { while (len > 16000) { write(fd, buff, 16000); len -= 16000; buff += 16000; } write(fd, buff, (unsigned) len); } #else /* SHORT_INTS */ #if SUN #include #endif inline static void myread(int fd, char *buffer, Int len) { int nread; while (len > 0) { nread = read(fd, buffer, (int)len); if (nread < 1) { Error(FATAL_ERROR,TermNil,"bad saved state, system corrupted"); } buffer += nread; len -= nread; } } inline static void mywrite(int fd, char *buff, Int len) { Int nwritten; while (len > 0) { nwritten = (Int)write(fd, buff, (int)len); if (nwritten == -1) { Error(SYSTEM_ERROR,TermNil,"write error while saving"); } buff += nwritten; len -= nwritten; } } #endif /* SHORT_INTS */ #define FullSaved 1 #define Atomics 0 #define Funcs 1 /* Where the code was before */ typedef CELL *CELLPOINTER; int splfild = 0; #ifdef DEBUG #ifdef DEBUG_RESTORE4 static FILE *errout; #else #define errout YP_stderr #endif #endif /* DEBUG */ static Int OldHeapUsed; static CELL which_save; /* Open a file to read or to write */ static int open_file(char *ss, int flag) { int splfild; #ifdef M_WILLIAMS if (flag & O_CREAT) splfild = creat(ss, flag); else splfild = open(ss, flag); if (splfild < 0) { #else #ifdef O_BINARY #if _MSC_VER if ((splfild = _open(ss, flag | O_BINARY), _S_IREAD | _S_IWRITE) < 0) #else if ((splfild = open(ss, flag | O_BINARY), 0755) < 0) #endif #else /* O_BINARY */ if ((splfild = open(ss, flag, 0755)) < 0) #endif /* O_BINARY */ #endif /* M_WILLIAMS */ { splfild = 0; /* We do not have an open file */ return(-1); } #ifdef undf0 YP_fprintf(errout, "Opened file %s\n", ss); #endif return(splfild); } static void close_file(void) { close(splfild); splfild = 0; } /* stores a cell in a file */ static void putout(CELL l) { mywrite(splfild, (char *) &l, sizeof(CELL)); } /* stores a pointer to a cell in a file */ static void putcellptr(CELL *l) { mywrite(splfild, (char *) &l, sizeof(CELLPOINTER)); } /* gets a cell from a file */ static CELL get_cell(void) { CELL l; myread(splfild, (char *) &l, Unsigned(sizeof(CELL))); return (l); } /* gets a pointer to cell from a file */ static CELL * get_cellptr(void) { CELL *l; myread(splfild, (char *) &l, Unsigned(sizeof(CELLPOINTER))); return (l); } /* * writes the header (at the moment YAPV*), info about what kind of saved * set, the work size, and the space ocuppied */ static void put_info(int info, int mode) { char msg[256]; sprintf(msg, "#!/bin/sh\nexec_dir=${YAPBINDIR:-%s}\nexec $exec_dir/yap $0 \"$@\"\n%cYAPV%s", BIN_DIR, 1, version_number); mywrite(splfild, msg, strlen(msg) + 1); putout(Unsigned(info)); /* say whether we just saved the heap or everything */ putout(mode); /* current state of stacks, to be used by SavedInfo */ #if defined(YAPOR) || defined(TABLING) /* space available in heap area */ putout(Unsigned(GlobalBase)-Unsigned(HeapBase)); /* space available for stacks */ putout(Unsigned(LocalBase)-Unsigned(GlobalBase)+CellSize); #else /* space available in heap area */ putout(Unsigned(GlobalBase)-Unsigned(HeapBase)); /* space available for stacks */ putout(Unsigned(LocalBase)-Unsigned(GlobalBase)); #endif /* YAPOR || TABLING */ /* space available for trail */ putout(Unsigned(TrailTop)-Unsigned(TrailBase)); /* Space used in heap area */ putout(Unsigned(HeapTop)-Unsigned(HeapBase)); /* Space used for local stack */ putout(Unsigned(LCL0)-Unsigned(ASP)); /* Space used for global stack */ putout(Unsigned(H) - Unsigned(GlobalBase)); /* Space used for trail */ putout(Unsigned(TR) - Unsigned(TrailBase)); } static void save_regs(int mode) { /* save all registers */ putout((CELL)compile_arrays); if (mode == DO_EVERYTHING) { putcellptr((CELL *)CP); putcellptr(ENV); putcellptr(ASP); /* putout((CELL)N); */ putcellptr(H0); putcellptr(LCL0); putcellptr(H); putcellptr(HB); putcellptr((CELL *)B); putcellptr((CELL *)TR); putcellptr(YENV); putcellptr(S); putcellptr((CELL *)P); putcellptr((CELL *)MyTR); putout(CreepFlag); putcellptr((CELL *)TopB); putcellptr((CELL *)DelayedB); putout(FlipFlop); putcellptr(CurrentModulePtr); #ifdef COROUTINING putout(DelayedVars); #endif } putcellptr((CELL *)HeapPlus); if (mode == DO_EVERYTHING) { #ifdef COROUTINING putout(WokenGoals); #endif #ifdef DEPTH_LIMIT putout(DEPTH); #endif } /* The operand base */ putcellptr(CellPtr(XREGS)); putout(which_save); /* Now start by saving the code */ /* the heap boundaries */ putcellptr(CellPtr(HeapBase)); putcellptr(CellPtr(HeapTop)); /* and the space it ocuppies */ putout(Unsigned(HeapUsed)); /* Then the start of the free code */ putcellptr(CellPtr(FreeBlocks)); if (mode == DO_EVERYTHING) { /* put the old trail base, just in case it moves again */ putout(ARG1); if (which_save == 2) { putout(ARG2); } putcellptr(CellPtr(TrailBase)); } } static void save_code_info(void) { /* First the instructions */ { op_numbers i; OPCODE my_ops[_std_top+1]; for (i = _Ystop; i <= _std_top; ++i) my_ops[i] = opcode(i); mywrite(splfild, (char *)my_ops, sizeof(OPCODE)*(_std_top+1)); } /* Then the c-functions */ putout(NUMBER_OF_CPREDS); { UInt i; for (i = 0; i < NUMBER_OF_CPREDS; ++i) putcellptr(CellPtr(c_predicates[i])); } /* Then the cmp-functions */ putout(NUMBER_OF_CMPFUNCS); { UInt i; for (i = 0; i < NUMBER_OF_CMPFUNCS; ++i) { putcellptr(CellPtr(cmp_funcs[i].p)); putcellptr(CellPtr(cmp_funcs[i].f)); } } /* and the current character codes */ mywrite(splfild, chtype, NUMBER_OF_CHARS); } static void save_heap(void) { int j; /* Then save the whole heap */ #if defined(YAPOR) || defined(TABLING) /* skip the local and global data structures */ j = Unsigned(&GLOBAL) - Unsigned(HeapBase); putout(j); mywrite(splfild, (char *) HeapBase, j); #ifdef USE_HEAP j = Unsigned(HeapTop) - Unsigned(&HashChain); putout(j); mywrite(splfild, (char *) &HashChain, j); #else j = Unsigned(BaseAllocArea) - Unsigned(&HashChain); putout(j); mywrite(splfild, (char *) &HashChain, j); j = Unsigned(HeapTop) - Unsigned(TopAllocBlockArea); putout(j); mywrite(splfild, (char *) TopAllocBlockArea, j); #endif #else j = Unsigned(HeapTop) - Unsigned(HeapBase); /* store 10 more cells because of the memory manager */ mywrite(splfild, (char *) HeapBase, j); #endif } static void save_stacks(int mode) { int j; switch (mode) { case DO_EVERYTHING: /* Now, go and save the state */ /* Save the local stack */ j = Unsigned(LCL0) - Unsigned(ASP); mywrite(splfild, (char *) ASP, j); /* Save the global stack */ j = Unsigned(H) - Unsigned(GlobalBase); mywrite(splfild, (char *) GlobalBase, j); /* Save the trail */ j = Unsigned(TR) - Unsigned(TrailBase); mywrite(splfild, (char *) TrailBase, j); break; case DO_ONLY_CODE: { tr_fr_ptr tr_ptr = TR; while (tr_ptr != (tr_fr_ptr)TrailBase) { CELL val = TrailTerm(tr_ptr-1); if (!IsVarTerm(val) && IsPairTerm(val)) { CELL *d1 = RepPair(val); if (d1 < (CELL *)HeapTop) putcellptr(d1); } tr_ptr--; } } putcellptr(NULL); break; } } static void save_crc(void) { /* Save a CRC */ mywrite(splfild, end_msg, 256); #ifdef MACYAP NewFileInfo('TEXT', 'MYap'); if (DefVol) SetVol(0l, DefVol); DefVol = 0; #endif } static Int do_save(int mode) { #ifdef MACYAP NewFileInfo('YAPS', 'MYap'); #endif Term t1 = Deref(ARG1); if (!GetName(FileNameBuf, t1)) { Error(TYPE_ERROR_LIST,t1,"save/1"); return(FALSE); } CloseStreams(TRUE); if ((splfild = open_file(FileNameBuf, O_WRONLY | O_CREAT)) < 0) { Error(SYSTEM_ERROR,MkAtomTerm(LookupAtom(FileNameBuf)), "restore/1, open(%s)", strerror(errno)); return(FALSE); } put_info(FullSaved, mode); save_regs(mode); save_code_info(); save_heap(); save_stacks(mode); save_crc(); close_file(); return (TRUE); } /* Saves a complete prolog environment */ static Int p_save(void) { which_save = 1; return(do_save(DO_EVERYTHING)); } /* Saves a complete prolog environment */ static Int p_save2(void) { which_save = 2; return(do_save(DO_EVERYTHING) && unify(ARG2,MkIntTerm(1))); } /* Just save the program, not the stacks */ static Int p_save_program(void) { which_save = 0; return(do_save(DO_ONLY_CODE)); } /* Now, to restore the saved code */ /* First check out if we are dealing with a valid file */ static int check_header(void) { char pp[80]; char msg[256]; CELL hp_size, gb_size, lc_size, tr_size, mode; /* skip the first line */ do { myread(splfild, pp, 1); } while (pp[0] != 1); /* now check the version */ sprintf(msg, "YAPV%s", version_number); myread(splfild, pp, Unsigned(strlen(msg) + 1)); if (strcmp(pp, msg) != 0) { Error(SYSTEM_ERROR,TermNil,"not a saved Prolog state"); return(FAIL_RESTORE); } /* check info on header */ /* ignore info on saved state */ get_cell(); /* check the restore mode */ if ((mode = get_cell()) != DO_EVERYTHING && mode != DO_ONLY_CODE) { Error(SYSTEM_ERROR,TermNil,"corrupted saved state"); return(FAIL_RESTORE); } /* ignore info on stacks size */ get_cell(); get_cell(); get_cell(); /* now, check whether we got enough enough space to load the saved space */ if ((hp_size = get_cell()) > Unsigned(AuxTop) - Unsigned(HeapBase)) { Error(SYSTEM_ERROR,TermNil,"out of heap space, Yap needs %d", hp_size); return(FAIL_RESTORE); } if (mode == DO_EVERYTHING) { if ((lc_size = get_cell())+(gb_size=get_cell()) > Unsigned(LocalBase) - Unsigned(GlobalBase)) { Error(SYSTEM_ERROR,TermNil,"out of stack space, Yap needs %d", lc_size+gb_size); return(FALSE); } if ((tr_size = get_cell()) > Unsigned(TrailTop) - Unsigned(TrailBase)) { Error(SYSTEM_ERROR,TermNil,"out of trail space, Yap needs %d", tr_size); return(FAIL_RESTORE); } } else { /* skip cell size */ get_cell(); get_cell(); get_cell(); } return(mode); } /* Gets the state of the heap, and evaluates the related variables */ static void get_heap_info(void) { OldHeapBase = (ADDR) get_cellptr(); OldHeapTop = (ADDR) get_cellptr(); OldHeapUsed = (Int) get_cell(); FreeBlocks = (BlockHeader *) get_cellptr(); HDiff = Unsigned(HeapBase) - Unsigned(OldHeapBase); } /* Gets the register array */ /* Saves the old bases for the work areas */ /* and evaluates the difference from the old areas to the new ones */ static void get_regs(int flag) { CELL *NewGlobalBase = (CELL *)GlobalBase; CELL *NewLCL0 = LCL0; CELL *OldXREGS; /* Get regs */ compile_arrays = (int)get_cell(); if (flag == DO_EVERYTHING) { CP = (yamop *)get_cellptr(); ENV = get_cellptr(); ASP = get_cellptr(); /* N = get_cell(); */ H0 = get_cellptr(); LCL0 = get_cellptr(); H = get_cellptr(); HB = get_cellptr(); B = (choiceptr)get_cellptr(); TR = (tr_fr_ptr)get_cellptr(); YENV = get_cellptr(); S = get_cellptr(); P = (yamop *)get_cellptr(); MyTR = (tr_fr_ptr)get_cellptr(); CreepFlag = get_cell(); TopB = (choiceptr)get_cellptr(); DelayedB = (choiceptr)get_cellptr(); FlipFlop = get_cell(); CurrentModulePtr = get_cellptr(); #ifdef COROUTINING DelayedVars = get_cell(); #endif } HeapPlus = (ADDR)get_cellptr(); if (flag == DO_EVERYTHING) { #ifdef COROUTINING WokenGoals = get_cell(); #endif #ifdef DEPTH_LIMIT DEPTH = get_cell(); #endif } /* Get the old bases */ OldXREGS = get_cellptr(); which_save = get_cell(); XDiff = (CELL)XREGS - (CELL)OldXREGS; get_heap_info(); if (flag == DO_EVERYTHING) { ARG1 = get_cell(); if (which_save == 2) { ARG2 = get_cell(); } /* get old trail base */ OldTrailBase = (ADDR)get_cellptr(); /* Save the old register where we can easily access them */ OldASP = ASP; OldLCL0 = LCL0; OldGlobalBase = (CELL *)GlobalBase; OldH = H; OldTR = TR; GDiff = Unsigned(NewGlobalBase) - Unsigned(GlobalBase); LDiff = Unsigned(NewLCL0) - Unsigned(LCL0); TrDiff = LDiff; GlobalBase = (ADDR)NewGlobalBase; LCL0 = NewLCL0; } } /* Get the old opcodes and place them in a hash table */ static void get_insts(OPCODE old_ops[]) { myread(splfild, (char *)old_ops, sizeof(OPCODE)*(_std_top+1)); } /* check if the old functions are the same as the new ones, or if they have moved around. Note that we don't need these functions afterwards */ static int check_funcs(void) { UInt old_NUMBER_OF_CPREDS, old_NUMBER_OF_CMPFUNCS; int out = FALSE; if ((old_NUMBER_OF_CPREDS = get_cell()) != NUMBER_OF_CPREDS) { Error(SYSTEM_ERROR,TermNil,"bad saved state, different number of functions (%d vs %d), system corrupted, old_NUMBER_OF_CPREDS, NUMBER_OF_CPREDS"); } { unsigned int i; for (i = 0; i < old_NUMBER_OF_CPREDS; ++i) { CELL *old_pred = get_cellptr(); out = (out || old_pred != CellPtr(c_predicates[i])); } } if ((old_NUMBER_OF_CMPFUNCS = get_cell()) != NUMBER_OF_CMPFUNCS) { Error(SYSTEM_ERROR,TermNil,"bad saved state, different number of comparison functions (%d vs %d), system corrupted", old_NUMBER_OF_CMPFUNCS, NUMBER_OF_CMPFUNCS); } { unsigned int i; for (i = 0; i < old_NUMBER_OF_CMPFUNCS; ++i) { CELL *old_p = get_cellptr(); CELL *old_f = get_cellptr(); /* if (AddrAdjust((ADDR)old_p) != cmp_funcs[i].p) { Error(SYSTEM_ERROR,TermNil,"bad saved state, comparison function is in wrong place (%p vs %p), system corrupted", AddrAdjust((ADDR)old_p), cmp_funcs[i].p); } */ cmp_funcs[i].p = (PredEntry *)AddrAdjust((ADDR)old_p); out = (out || old_f != CellPtr(cmp_funcs[i].f)); } } return(out); } /* Get the old atoms hash table */ static void get_hash(void) { myread(splfild, chtype , NUMBER_OF_CHARS); } /* Copy all of the old code to the new Heap */ static void CopyCode(void) { #if defined(YAPOR) || defined(TABLING) /* skip the local and global data structures */ CELL j = get_cell(); if (j != Unsigned(&GLOBAL) - Unsigned(HeapBase)) { Error(FATAL_ERROR,TermNil,"bad saved state, system corrupted"); } myread(splfild, (char *) HeapBase, j); #ifdef USE_HEAP j = get_cell(); myread(splfild, (char *) &HashChain, j); #else j = get_cell(); if (j != Unsigned(BaseAllocArea) - Unsigned(&HashChain)) { Error(FATAL_ERROR,TermNil,"bad saved state, system corrupted"); } myread(splfild, (char *) &HashChain, j); j = get_cell(); myread(splfild, (char *) TopAllocBlockArea, j); #endif #else myread(splfild, (char *) HeapBase, (Unsigned(OldHeapTop) - Unsigned(OldHeapBase))); #endif } /* Copy the local and global stack and also the trail to their new home */ /* In REGS we still have nonadjusted values !! */ static void CopyStacks(void) { Int j; char *NewASP; j = Unsigned(OldLCL0) - Unsigned(ASP); NewASP = (char *) (Unsigned(ASP) + (Unsigned(LCL0) - Unsigned(OldLCL0))); myread(splfild, (char *) NewASP, j); j = Unsigned(H) - Unsigned(OldGlobalBase); myread(splfild, (char *) GlobalBase, j); j = Unsigned(TR) - Unsigned(OldTrailBase); myread(splfild, TrailBase, j); } /* Copy the local and global stack and also the trail to their new home */ /* In REGS we still have nonadjusted values !! */ static void CopyTrailEntries(void) { CELL entry, *Entries; Entries = (CELL *)TrailBase; do { *Entries++ = entry = get_cell(); } while ((CODEADDR)entry != NULL); } /* get things which are saved in the file */ static int get_coded(int flag, OPCODE old_ops[]) { char my_end_msg[256]; int funcs_moved = FALSE; get_regs(flag); get_insts(old_ops); funcs_moved = check_funcs(); get_hash(); CopyCode(); switch (flag) { case DO_EVERYTHING: CopyStacks(); break; case DO_ONLY_CODE: CopyTrailEntries(); break; } /* Check CRC */ myread(splfild, my_end_msg, 256); if (strcmp(end_msg,my_end_msg) != 0) Error(FATAL_ERROR,TermNil,"bad saved state, system corrupted"); return(funcs_moved); } /* Now, everything on its place so you must adjust the pointers */ /* restore the failcodes */ static void restore_codes(void) { heap_regs->heap_top = AddrAdjust(OldHeapTop); #ifdef YAPOR heap_regs->getworkfirsttimecode.opc = opcode(_getwork_first_time); heap_regs->getworkcode.opc = opcode(_getwork); INIT_YAMOP_LTT(&(heap_regs->getworkcode), 0); heap_regs->getworkcode_seq.opc = opcode(_getwork_seq); INIT_YAMOP_LTT(&(heap_regs->getworkcode_seq), 0); #endif /* YAPOR */ #ifdef TABLING heap_regs->tablecompletioncode.opc = opcode(_table_completion); heap_regs->tableanswerresolutioncode.opc = opcode(_table_answer_resolution); #ifdef YAPOR INIT_YAMOP_LTT(&(heap_regs->tablecompletioncode), 0); INIT_YAMOP_LTT(&(heap_regs->tableanswerresolutioncode), 0); #endif /* YAPOR */ #endif /* TABLING */ heap_regs->failcode = opcode(_op_fail); heap_regs->failcode_1 = opcode(_op_fail); heap_regs->failcode_2 = opcode(_op_fail); heap_regs->failcode_3 = opcode(_op_fail); heap_regs->failcode_4 = opcode(_op_fail); heap_regs->failcode_5 = opcode(_op_fail); heap_regs->failcode_6 = opcode(_op_fail); heap_regs->trustfailcode = opcode(_trust_fail); heap_regs->yescode = opcode(_Ystop); #ifdef YAPOR heap_regs->nocode.opc = opcode(_Nstop); INIT_YAMOP_LTT(&(heap_regs->nocode), 1); #else heap_regs->nocode = opcode(_Nstop); #endif /* YAPOR */ #ifdef YAPOR INIT_YAMOP_LTT(&(heap_regs->rtrycode), 1); #endif /* YAPOR */ ((yamop *)(&heap_regs->rtrycode))->opc = opcode(_retry_and_mark); if (((yamop *)(&heap_regs->rtrycode))->u.ld.d != NIL) ((yamop *)(&heap_regs->rtrycode))->u.ld.d = CodeAddrAdjust(((yamop *)(&heap_regs->rtrycode))->u.ld.d); { int arity; arity = heap_regs->clausecode.arity; if (heap_regs->clausecode.clause != NIL) heap_regs->clausecode.clause = CodeAddrAdjust(heap_regs->clausecode.clause); if (arity) { heap_regs->clausecode.func = FuncAdjust(heap_regs->clausecode.func); } else { /* an atom */ heap_regs->clausecode.func = (Functor)AtomAdjust((Atom)(heap_regs->clausecode.func)); } } /* restore consult stack. It consists of heap pointers, so it is easy to fix. */ heap_regs->consultlow = ConsultObjAdjust(heap_regs->consultlow); heap_regs->consultbase = ConsultObjAdjust(heap_regs->consultbase); heap_regs->consultsp = ConsultObjAdjust(heap_regs->consultsp); { /* we assume all pointers have the same size */ register consult_obj *pt = heap_regs->consultsp; while (pt < heap_regs->consultlow+heap_regs->consultcapacity) { pt->p = PropAdjust(pt->p); pt ++; } } #if USE_THREADED_CODE heap_regs->op_rtable = (opentry *) CodeAddrAdjust((CODEADDR)(heap_regs->op_rtable)); #endif if (heap_regs->atprompt != NIL) { heap_regs->atprompt = AtomAdjust(heap_regs->atprompt); } heap_regs->undef_op = opcode(_undef_p); heap_regs->index_op = opcode(_index_pred); if (heap_regs->char_conversion_table != NULL) { heap_regs->char_conversion_table = (char *) AddrAdjust((ADDR)heap_regs->char_conversion_table); } if (heap_regs->char_conversion_table2 != NULL) { heap_regs->char_conversion_table2 = (char *) AddrAdjust((ADDR)heap_regs->char_conversion_table2); } if (heap_regs->dead_clauses != NULL) { heap_regs->dead_clauses = (Clause *) AddrAdjust((ADDR)(heap_regs->dead_clauses)); } if (heap_regs->db_queues != NULL) { heap_regs->db_queues = (struct idb_queue *) AddrAdjust((ADDR)(heap_regs->db_queues)); } heap_regs->retry_recorded_code = PtoOpAdjust(heap_regs->retry_recorded_code); heap_regs->retry_recorded_k_code = PtoOpAdjust(heap_regs->retry_recorded_k_code); heap_regs->retry_drecorded_code = PtoOpAdjust(heap_regs->retry_drecorded_code); heap_regs->retry_c_recordedp_code = PtoOpAdjust(heap_regs->retry_c_recordedp_code); if (heap_regs->IntKeys != NULL) { heap_regs->IntKeys = (Prop *)AddrAdjust((ADDR)(heap_regs->IntKeys)); { UInt i; for (i = 0; i < heap_regs->int_keys_size; i++) { if (heap_regs->IntKeys[i] != NIL) { Prop p0 = heap_regs->IntKeys[i] = PropAdjust(heap_regs->IntKeys[i]); RestoreEntries(RepProp(p0)); } } } } if (heap_regs->IntBBKeys != NULL) { heap_regs->IntBBKeys = (Prop *)AddrAdjust((ADDR)(heap_regs->IntBBKeys)); { UInt i; for (i = 0; i < heap_regs->int_bb_keys_size; i++) { if (heap_regs->IntBBKeys[i] != NIL) { Prop p0 = heap_regs->IntBBKeys[i] = PropAdjust(heap_regs->IntBBKeys[i]); RestoreEntries(RepProp(p0)); } } } } { /* adjust atoms in atom table */ unsigned int i = 0; for (i = 0; i < heap_regs->no_of_modules; i++) { heap_regs->module_name[i] = AtomTermAdjust(heap_regs->module_name[i]); } } heap_regs->atom_abol = AtomAdjust(heap_regs->atom_abol); heap_regs->atom_append = AtomAdjust(heap_regs->atom_append); heap_regs->atom_array = AtomAdjust(heap_regs->atom_array); heap_regs->atom_assert = AtomAdjust(heap_regs->atom_assert); heap_regs->atom_alarm = AtomAdjust(heap_regs->atom_alarm); heap_regs->atom_b = AtomAdjust(heap_regs->atom_b); heap_regs->atom_break = AtomAdjust(heap_regs->atom_break); heap_regs->atom_call = AtomAdjust(heap_regs->atom_call); heap_regs->atom_catch = AtomAdjust(heap_regs->atom_catch); heap_regs->atom_comma = AtomAdjust(heap_regs->atom_comma); heap_regs->atom_cpu_time = AtomAdjust(heap_regs->atom_cpu_time); heap_regs->atom_csult = AtomAdjust(heap_regs->atom_csult); heap_regs->atom_cut = AtomAdjust(heap_regs->atom_cut); heap_regs->atom_cut_by = AtomAdjust(heap_regs->atom_cut_by); #ifdef EUROTRA #ifdef SFUNC heap_regs->atom_dollar_undef = AtomAdjust(heap_regs->atom_dollar_undef); #endif #endif heap_regs->atom_e = AtomAdjust(heap_regs->atom_e); heap_regs->atom_e_q = AtomAdjust(heap_regs->atom_e_q); heap_regs->atom_eof = AtomAdjust(heap_regs->atom_eof); #ifdef EUROTRA heap_regs->atom_f_b = AtomAdjust(heap_regs->atom_f_b); #endif heap_regs->atom_fail = AtomAdjust(heap_regs->atom_fail); heap_regs->atom_false = AtomAdjust(heap_regs->atom_false); heap_regs->atom_fast = AtomAdjust(heap_regs->atom_fast); heap_regs->atom_g_t = AtomAdjust(heap_regs->atom_g_t); heap_regs->atom_gc = AtomAdjust(heap_regs->atom_gc); heap_regs->atom_gc_margin = AtomAdjust(heap_regs->atom_gc_margin); heap_regs->atom_gc_trace = AtomAdjust(heap_regs->atom_gc_trace); heap_regs->atom_gc_verbose = AtomAdjust(heap_regs->atom_gc_verbose); heap_regs->atom_global = AtomAdjust(heap_regs->atom_global); heap_regs->atom_heap_used = AtomAdjust(heap_regs->atom_heap_used); heap_regs->atom_index = AtomAdjust(heap_regs->atom_index); heap_regs->atom_inf = AtomAdjust(heap_regs->atom_inf); heap_regs->atom_l_t = AtomAdjust(heap_regs->atom_l_t); heap_regs->atom_local = AtomAdjust(heap_regs->atom_local); heap_regs->atom_meta_call = AtomAdjust(heap_regs->atom_meta_call); heap_regs->atom_minus = AtomAdjust(heap_regs->atom_minus); heap_regs->atom_nan = AtomAdjust(heap_regs->atom_nan); heap_regs->atom_otherwise = AtomAdjust(heap_regs->atom_otherwise); heap_regs->atom_pi = AtomAdjust(heap_regs->atom_pi); heap_regs->atom_plus = AtomAdjust(heap_regs->atom_plus); heap_regs->atom_portray = AtomAdjust(heap_regs->atom_portray); heap_regs->atom_profile = AtomAdjust(heap_regs->atom_profile); heap_regs->atom_random = AtomAdjust(heap_regs->atom_random); heap_regs->atom_read = AtomAdjust(heap_regs->atom_read); heap_regs->atom_repeat = AtomAdjust(heap_regs->atom_repeat); heap_regs->atom_restore_regs = AtomAdjust(heap_regs->atom_restore_regs); heap_regs->atom_stack_free = AtomAdjust(heap_regs->atom_stack_free); heap_regs->atom_throw = AtomAdjust(heap_regs->atom_throw); heap_regs->atom_true = AtomAdjust(heap_regs->atom_true); heap_regs->atom_user = AtomAdjust(heap_regs->atom_user); heap_regs->atom_usr_err = AtomAdjust(heap_regs->atom_usr_err); heap_regs->atom_usr_in = AtomAdjust(heap_regs->atom_usr_in); heap_regs->atom_usr_out = AtomAdjust(heap_regs->atom_usr_out); heap_regs->atom_version_number = AtomAdjust(heap_regs->atom_version_number); heap_regs->atom_write = AtomAdjust(heap_regs->atom_write); #ifdef USE_SOCKET heap_regs->functor_af_inet = FuncAdjust(heap_regs->functor_af_inet); heap_regs->functor_af_local = FuncAdjust(heap_regs->functor_af_local); heap_regs->functor_af_unix = FuncAdjust(heap_regs->functor_af_unix); #endif heap_regs->functor_alt_not = FuncAdjust(heap_regs->functor_alt_not); heap_regs->functor_arrow = FuncAdjust(heap_regs->functor_arrow); heap_regs->functor_assert = FuncAdjust(heap_regs->functor_assert); #ifdef COROUTINING heap_regs->functor_att_goal = FuncAdjust(heap_regs->functor_att_goal); #endif heap_regs->functor_braces = FuncAdjust(heap_regs->functor_braces); heap_regs->functor_call = FuncAdjust(heap_regs->functor_call); heap_regs->functor_cut_by = FuncAdjust(heap_regs->functor_cut_by); heap_regs->functor_comma = FuncAdjust(heap_regs->functor_comma); heap_regs->functor_csult = FuncAdjust(heap_regs->functor_csult); heap_regs->functor_eq = FuncAdjust(heap_regs->functor_eq); heap_regs->functor_g_atom = FuncAdjust(heap_regs->functor_g_atom); heap_regs->functor_g_atomic = FuncAdjust(heap_regs->functor_g_atomic); heap_regs->functor_g_compound = FuncAdjust(heap_regs->functor_g_compound); heap_regs->functor_g_float = FuncAdjust(heap_regs->functor_g_float); heap_regs->functor_g_integer = FuncAdjust(heap_regs->functor_g_integer); heap_regs->functor_g_number = FuncAdjust(heap_regs->functor_g_number); heap_regs->functor_g_primitive = FuncAdjust(heap_regs->functor_g_primitive); heap_regs->functor_g_var = FuncAdjust(heap_regs->functor_g_var); heap_regs->functor_list = FuncAdjust(heap_regs->functor_list); heap_regs->functor_module = FuncAdjust(heap_regs->functor_module); #ifdef MULTI_ASSIGNMENT_VARIABLES heap_regs->functor_mutable = FuncAdjust(heap_regs->functor_mutable); #endif heap_regs->functor_not = FuncAdjust(heap_regs->functor_not); heap_regs->functor_or = FuncAdjust(heap_regs->functor_or); heap_regs->functor_portray = FuncAdjust(heap_regs->functor_portray); heap_regs->functor_query = FuncAdjust(heap_regs->functor_query); heap_regs->functor_spied_meta_call = FuncAdjust(heap_regs->functor_spied_meta_call); heap_regs->functor_stream = FuncAdjust(heap_regs->functor_stream); heap_regs->functor_stream_pos = FuncAdjust(heap_regs->functor_stream_pos); heap_regs->functor_stream_eOS = FuncAdjust(heap_regs->functor_stream_eOS); heap_regs->functor_change_module = FuncAdjust(heap_regs->functor_change_module); heap_regs->functor_current_module = FuncAdjust(heap_regs->functor_current_module); heap_regs->functor_mod_switch = FuncAdjust(heap_regs->functor_mod_switch); heap_regs->functor_u_minus = FuncAdjust(heap_regs->functor_u_minus); heap_regs->functor_u_plus = FuncAdjust(heap_regs->functor_u_plus); heap_regs->functor_v_bar = FuncAdjust(heap_regs->functor_v_bar); heap_regs->functor_var = FuncAdjust(heap_regs->functor_var); #ifdef EUROTRA heap_regs->term_dollar_u = AtomTermAdjust(heap_regs->term_dollar_u); #endif heap_regs->term_refound_var = AtomTermAdjust(heap_regs->term_refound_var); heap_regs->file_aliases = (struct AliasDescS *)AddrAdjust((ADDR)heap_regs->file_aliases); heap_regs->yap_lib_dir = (char *)AddrAdjust((ADDR)heap_regs->yap_lib_dir); heap_regs->pred_goal_expansion = (PredEntry *)AddrAdjust((ADDR)heap_regs->pred_goal_expansion); heap_regs->pred_meta_call = (PredEntry *)AddrAdjust((ADDR)heap_regs->pred_meta_call); if (heap_regs->undef_code != NULL) heap_regs->undef_code = PtoHeapCellAdjust(heap_regs->undef_code); if (heap_regs->creep_code != NULL) heap_regs->creep_code = PtoHeapCellAdjust(heap_regs->creep_code); if (heap_regs->spy_code != NULL) heap_regs->spy_code = PtoHeapCellAdjust(heap_regs->spy_code); #ifdef COROUTINING #ifdef MULTI_ASSIGNMENT_VARIABLES if (heap_regs->wake_up_code != NULL) heap_regs->wake_up_code = PtoHeapCellAdjust(heap_regs->wake_up_code); heap_regs->mutable_list = AbsAppl(PtoGloAdjust(RepAppl(heap_regs->mutable_list))); heap_regs->atts_mutable_list = AbsAppl(PtoGloAdjust(RepAppl(heap_regs->atts_mutable_list))); #endif #endif if (heap_regs->last_wtime != NULL) heap_regs->last_wtime = (void *)PtoHeapCellAdjust((CELL *)(heap_regs->last_wtime)); } /* restore some heap registers */ static void restore_heap_regs(void) { HeapPlus = AddrAdjust(HeapPlus); *((YAP_SEG_SIZE *) HeapTop) = InUseFlag; HeapMax = HeapUsed = OldHeapUsed; restore_codes(); } /* adjust abstract machine registers */ static void restore_regs(int flag) { restore_heap_regs(); if (flag == DO_EVERYTHING) { CP = PtoOpAdjust(CP); ENV = PtoLocAdjust(ENV); ASP = PtoLocAdjust(ASP); H = PtoGloAdjust(H); B = (choiceptr)PtoLocAdjust(CellPtr(B)); TR = PtoTRAdjust(TR); P = PtoOpAdjust(P); HB = PtoLocAdjust(HB); YENV = PtoLocAdjust(YENV); S = PtoGloAdjust(S); HeapPlus = AddrAdjust(HeapPlus); if (MyTR) MyTR = PtoTRAdjust(MyTR); if (CurrentModulePtr) CurrentModulePtr = PtoGloAdjust(CurrentModulePtr); #ifdef COROUTINING DelayedVars = AbsAppl(PtoGloAdjust(RepAppl(DelayedVars))); #ifdef MULTI_ASSIGNMENT_VARIABLES WokenGoals = AbsAppl(PtoGloAdjust(RepAppl(WokenGoals))); #endif #endif } } /* Restoring the heap */ /* Converts a structure of the DB, as it was saved in the heap */ /* uses a variable base */ static void ConvDBStruct(Term Struct, char *tbase, CELL size) { CELL *TermP; Functor f; int Arity, i; TermP = (CELL *)(tbase + (CELL)RepAppl(Struct)); f = FuncAdjust((Functor)(*TermP)); *(Functor *)TermP = f; Arity = ArityOfFunctor(f); TermP++; for (i = 0; i < Arity; i++) { register Term t = *TermP; if (IsVarTerm(t)) { /* do nothing */ } else if (IsAtomTerm(t)) { /* these are the only ones that may actually need to be changed */ *TermP = AtomTermAdjust(t); } else if (IsApplTerm(t)) { CELL offset = (CELL)RepAppl(Struct); if (offset > size) { *TermP = AbsAppl(CellPtoHeapAdjust(RepAppl(t))); } ConvDBStruct(t, tbase, size); } else if (IsPairTerm(t)) { ConvDBList(t, tbase, size); } TermP++; } } /* Converts a list of the DB, as it was saved in the heap */ /* uses a variable base */ static void ConvDBList(Term List, char *tbase, CELL size) { CELL *TermP; int i; TermP = (CELL *)(tbase + (CELL) RepPair(List)); for (i = 0; i < 2; i++) { register Term t = *TermP; if (IsVarTerm(t)) { /* do nothing */ } else if (IsAtomTerm(t)) *TermP = AtomTermAdjust(t); else if (IsApplTerm(t)) ConvDBStruct(t, tbase, size); else if (IsPairTerm(t)) ConvDBList(t, tbase, size); TermP++; } } /* adjusts terms stored in the data base, when they have no variables */ static Term AdjustDBTerm(Term trm) { Term *p; if (IsAtomTerm(trm)) return (AtomTermAdjust(trm)); if (IsPairTerm(trm)) { p = PtoHeapCellAdjust(RepPair(trm)); *p = AdjustDBTerm(*p); ++p; *p = AdjustDBTerm(*p); return (AbsPair(p-1)); } if (IsApplTerm(trm)) { int Arity, i; Functor f; Term *p0 = p = PtoHeapCellAdjust(RepAppl(trm)); f = FuncAdjust((Functor)(*p)); *p = (Term)f ; Arity = ArityOfFunctor(f); p++; for (i = 0; i < Arity; ++i) { *p = AdjustDBTerm(*p); p++; } return (AbsAppl(p0)); } return (trm); } static void recompute_mask(DBRef dbr) { CELL *x = (CELL *)HeapTop, *tp; unsigned int Arity, i; Term out; char *tbase = CharP(dbr->Contents-1); if (IsPairTerm(dbr->Entry)) { out = AbsPair(x); Arity = 2; tp = (CELL *)(tbase + (CELL) RepPair(dbr->Entry)); } else { Functor f; tp = (CELL *)(tbase + (CELL) RepAppl(dbr->Entry)); f = (Functor)(*tp++); out = AbsAppl(x); Arity = ArityOfFunctor(f); *x++ = (CELL)f; if (Arity > 3) Arity = 3; } for (i = 0; i < Arity; i++) { register Term tw = *tp++; if (IsVarTerm(tw)) { RESET_VARIABLE(x); } else if (IsApplTerm(tw)) { /* just fetch the functor from where it is in the data-base. This guarantees we have access to references and friends. */ CELL offset = (CELL)RepAppl(tw); if (offset > dbr->NOfCells*sizeof(CELL)) *x = tw; else *x = AbsAppl((CELL *)(tbase + offset)); } else if (IsAtomicTerm(tw)) { *x = tw; } else if (IsPairTerm(tw)) { *x = AbsPair(x); } x++; } dbr->Mask = EvalMasks(out, &(dbr->Key)); } static void RestoreDBEntry(DBRef dbr) { #ifdef DEBUG_RESTORE YP_fprintf(errout, "Restoring at %x", dbr); if (dbr->Flags & DBAtomic) YP_fprintf(errout, " an atomic term\n"); else if (dbr->Flags & DBNoVars) YP_fprintf(errout, " with no vars\n"); else if (dbr->Flags & DBComplex) YP_fprintf(errout, " complex term\n"); else if (dbr->Flags & DBIsRef) YP_fprintf(errout, " a ref\n"); else YP_fprintf(errout, " a var\n"); #endif dbr->Parent = (DBProp)AddrAdjust((ADDR)(dbr->Parent)); if (dbr->Code != NIL) dbr->Code = CodeAddrAdjust(dbr->Code); if (dbr->Flags & DBAtomic) { if (IsAtomTerm(dbr->Entry)) dbr->Entry = AtomTermAdjust(dbr->Entry); } else if (dbr->Flags & DBNoVars) dbr->Entry = (CELL) AdjustDBTerm((Term) dbr->Entry); else if (dbr->Flags & DBComplex) { if (IsApplTerm((Term) dbr->Entry)) ConvDBStruct((Term) dbr->Entry, CharP(dbr->Contents-1), dbr->NOfCells*sizeof(CELL)); else ConvDBList((Term) dbr->Entry, CharP(dbr->Contents-1), dbr->NOfCells*sizeof(CELL)); } if (dbr->Prev != NULL) dbr->Prev = DBRefAdjust(dbr->Prev); if (dbr->Next != NULL) dbr->Next = DBRefAdjust(dbr->Next); if (dbr->Flags & DBWithRefs) { DBRef *cp; DBRef tm; cp = (DBRef *) ((CODEADDR) dbr + SizeOfBlock(CodePtr(dbr))); while ((tm = *--cp) != 0) *cp = DBRefAdjust(tm); } #ifdef DEBUG_RESTORE2 YP_fprintf(errout, "Recomputing masks\n"); #endif if (dbr->Flags & DBNoVars) { dbr->Mask = EvalMasks((Term) dbr->Entry, &(dbr->Key)); } else if (dbr->Flags & DBComplex) { /* This is quite nasty, we want to recalculate the mask but we don't want to rebuild the whole term. We'll just build whatever we need to recompute the mask. */ recompute_mask(dbr); } } /* Restores a DB structure, as it was saved in the heap */ static void RestoreDB(DBEntry *pp) { register DBRef dbr; if (pp->First != NULL) pp->First = DBRefAdjust(pp->First); if (pp->Last != NULL) pp->Last = DBRefAdjust(pp->Last); #ifndef KEEP_ENTRY_AGE if (pp->FirstNEr != NULL) pp->FirstNEr = DBRefAdjust(pp->FirstNEr); #endif if (pp->ArityOfDB) pp->FunctorOfDB = FuncAdjust(pp->FunctorOfDB); else pp->FunctorOfDB = (Functor) AtomAdjust((Atom)(pp->FunctorOfDB)); dbr = pp->First; /* While we have something in the data base, restore it */ while (dbr) { RestoreDBEntry(dbr); dbr = dbr->Next; } } /* Restores a DB structure, as it was saved in the heap */ static void RestoreBB(BlackBoardEntry *pp) { if (pp->Element) { register DBRef dbr; pp->Element = DBRefAdjust(pp->Element); #ifdef DEBUG_RESTORE YP_fprintf(errout, "Restoring at %x", dbr); if (dbr->Flags & DBAtomic) YP_fprintf(errout, " an atomic term\n"); else if (dbr->Flags & DBNoVars) YP_fprintf(errout, " with no vars\n"); else if (dbr->Flags & DBComplex) YP_fprintf(errout, " complex term\n"); else if (dbr->Flags & DBIsRef) YP_fprintf(errout, " a ref\n"); else YP_fprintf(errout, " a var\n"); #endif dbr = pp->Element; RestoreDBEntry(dbr); } pp->KeyOfBB = AtomAdjust(pp->KeyOfBB); } #define HASH_SHIFT 6 /* * This is used to make an hash table correct, after displacing its elements, * HCEnd should point to an area of free space, usually in the heap. The * routine is very dependent on the hash function used, and it destroys the * previous "hit" order */ static void rehash(CELL *oldcode, int NOfE, int KindOfEntries) { register CELL *savep, *basep; CELL *oldp = oldcode; int TableSize = NOfE - 1, NOfEntries; register int i; int hash; CELL WorkTerm, failplace = 0; CELL *Base = oldcode; if (HDiff == 0) return; basep = H; if (H + (NOfE*2) > ASP) { basep = (CELL *)TR; if (basep + (NOfE*2) > (CELL *)TrailTop) { if (!growtrail((ADDR)(basep + (NOfE*2))-TrailTop)) { Error(SYSTEM_ERROR, TermNil, "not enough space to restore hash tables for indexing"); exit_yap(1, ""); } } } for (i = 0; i < NOfE; ++i) { if (*oldp == 0) { failplace = oldp[1]; break; } oldp += 2; } savep = basep; oldp = oldcode; for (i = 0; i < NOfE; ++i) { if (*oldp != 0) { savep[0] = oldp[0]; savep[1] = oldp[1]; oldp[0] = 0; oldp[1] = failplace; savep += 2; } oldp += 2; } NOfEntries = (savep - basep)/2; savep = basep; for (i = 0; i < NOfEntries; ++i) { register Int d; CELL *hentry; WorkTerm = savep[i*2]; hash = (Unsigned(WorkTerm) >> HASH_SHIFT) & TableSize; hentry = Base + hash * 2; d = TableSize & (Unsigned(WorkTerm) | 1); while (*hentry) { #ifdef DEBUG #ifdef CLASHES ++clashes; #endif /* CLASHES */ #endif /* DEBUG */ hash = (hash + d) & TableSize; hentry = Base + hash * 2; } hentry[0] = WorkTerm; hentry[1] = savep[i*2+1]; } } static CODEADDR CCodeAdjust(PredEntry *pe) { /* add this code to a list of ccalls that must be adjusted */ return ((CODEADDR)(c_predicates[pe->StateOfPred])); } static CODEADDR NextCCodeAdjust(PredEntry *pe) { /* add this code to a list of ccalls that must be adjusted */ return ((CODEADDR)(c_predicates[pe->StateOfPred+1])); } static CODEADDR DirectCCodeAdjust(PredEntry *pe) { /* add this code to a list of ccalls that must be adjusted */ unsigned int i; for (i = 0; i < NUMBER_OF_CMPFUNCS; i++) { if (cmp_funcs[i].p == pe) { return((CODEADDR)(cmp_funcs[i].f)); } } Error(FATAL_ERROR,TermNil,"bad saved state, system corrupted"); return(NULL); } /* Restores a prolog clause, in its compiled form */ static void RestoreClause(Clause *Cl) /* * Cl points to the start of the code, IsolFlag tells if we have a single * clause for this predicate or not */ { yamop *pc; OPREG cl_type = Cl->ClFlags; if (cl_type == ApplCl || (cl_type == ListCl && HeadOfClType(cl_type) == ApplCl)) Cl->u.ClValue = (CELL)FuncAdjust((Functor)(Cl->u.ClValue)); else if ((cl_type == AtCl || (cl_type == ListCl && HeadOfClType(cl_type) == AtCl)) && IsAtomTerm(Cl->u.ClValue)) Cl->u.ClValue = AtomTermAdjust(Cl->u.ClValue); /* TO DO: log update semantics */ /* Get the stored operator */ pc = Cl->ClCode; do { op_numbers op = op_from_opcode(pc->opc); pc->opc = opcode(op); #ifdef DEBUG_RESTORE2 YP_fprintf(errout, "%d ", op); #endif switch (op) { case _Ystop: case _Nstop: #ifdef DEBUG_RESTORE2 YP_fprintf(errout, "left OK\n"); #endif return; /* instructions type ld */ case _try_me: case _retry_me: case _trust_me: case _profiled_retry_me: case _profiled_trust_me: case _try_me0: case _retry_me0: case _trust_me0: case _try_me1: case _retry_me1: case _trust_me1: case _try_me2: case _retry_me2: case _trust_me2: case _try_me3: case _retry_me3: case _trust_me3: case _try_me4: case _retry_me4: case _trust_me4: case _spy_or_trymark: case _try_and_mark: case _profiled_retry_and_mark: case _retry_and_mark: case _try_clause: case _retry: case _trust: case _retry_first: case _trust_first: case _retry_tail: case _trust_tail: case _retry_head: case _trust_head: #ifdef YAPOR case _getwork: case _getwork_seq: case _sync: #endif #ifdef TABLING case _table_try_me_single: case _table_try_me: case _table_retry_me: case _table_trust_me: case _table_answer_resolution: case _table_completion: #endif pc->u.ld.p = CodeAddrAdjust(pc->u.ld.p); pc->u.ld.d = CodeAddrAdjust(pc->u.ld.d); pc = NEXTOP(pc,ld); break; /* instructions type l */ case _enter_profiling: case _retry_profiled: case _try_logical_pred: case _trust_logical_pred: case _dealloc_for_logical_pred: case _execute: case _dexecute: case _jump: case _move_back: case _skip: case _try_in: case _jump_if_var: pc->u.l.l = CodeAddrAdjust(pc->u.l.l); pc = NEXTOP(pc,l); break; /* instructions type EC */ case _alloc_for_logical_pred: pc->u.EC.ClBase = CodeAddrAdjust(pc->u.EC.ClBase); pc = NEXTOP(pc,EC); break; /* instructions type e */ case _trust_fail: case _op_fail: case _cut: case _cut_t: case _cut_e: case _procceed: case _allocate: case _deallocate: case _write_void: case _write_list: case _write_l_list: #if !defined(YAPOR) case _or_last: #endif case _pop: case _index_pred: case _undef_p: case _spy_pred: case _p_equal: case _p_dif: case _p_eq: case _p_functor: #ifdef YAPOR case _getwork_first_time: #endif #ifdef TABLING case _trie_do_var: case _trie_trust_var: case _trie_try_var: case _trie_retry_var: case _trie_do_val: case _trie_trust_val: case _trie_try_val: case _trie_retry_val: case _trie_do_atom: case _trie_trust_atom: case _trie_try_atom: case _trie_retry_atom: case _trie_do_list: case _trie_trust_list: case _trie_try_list: case _trie_retry_list: case _trie_do_struct: case _trie_trust_struct: case _trie_try_struct: case _trie_retry_struct: #endif pc = NEXTOP(pc,e); break; /* instructions type x */ case _save_b_x: case _comit_b_x: case _get_list: case _put_list: case _write_x_var: case _write_x_val: case _write_x_loc: case _p_atom_x: case _p_atomic_x: case _p_integer_x: case _p_nonvar_x: case _p_number_x: case _p_var_x: case _p_db_ref_x: case _p_primitive_x: case _p_compound_x: case _p_float_x: case _p_cut_by_x: pc->u.x.x = XAdjust(pc->u.x.x); pc = NEXTOP(pc,x); break; /* instructions type y */ case _save_b_y: case _comit_b_y: case _write_y_var: case _write_y_val: case _write_y_loc: case _p_atom_y: case _p_atomic_y: case _p_integer_y: case _p_nonvar_y: case _p_number_y: case _p_var_y: case _p_db_ref_y: case _p_primitive_y: case _p_compound_y: case _p_float_y: case _p_cut_by_y: pc->u.y.y = YAdjust(pc->u.y.y); pc = NEXTOP(pc,y); break; /* instructions type sla */ case _fcall: case _call: case _either: case _or_else: #ifdef YAPOR case _or_last: #endif pc->u.sla.l = CodeAddrAdjust(pc->u.sla.l); if (pc->u.sla.l2 != NIL) { CELL *p; p = (CELL *)(pc->u.sla.l2 = CodeAddrAdjust(pc->u.sla.l2)); /* restore entry to predicate from bitmap */ p[0] = (CELL)PtoPredAdjust((PredEntry *)(p[0])); } pc->u.sla.p = CodeAddrAdjust(pc->u.sla.p); pc = NEXTOP(pc,sla); break; /* instructions type sla, but for functions */ case _call_cpred: case _call_usercpred: pc->u.sla.p = CodeAddrAdjust(pc->u.sla.p); pc->u.sla.l = CCodeAdjust((PredEntry *)(pc->u.sla.p)); if (pc->u.sla.l2 != NIL) { CELL *p; p = (CELL *)(pc->u.sla.l2 = CodeAddrAdjust(pc->u.sla.l2)); /* restore entry to predicate from bitmap */ p[0] = (CELL)PtoPredAdjust((PredEntry *)(p[0])); } pc = NEXTOP(pc,sla); break; /* instructions type xx */ case _get_x_var: case _get_x_val: case _glist_valx: case _gl_void_varx: case _gl_void_valx: case _put_x_var: case _put_x_val: pc->u.xx.xr = XAdjust(pc->u.xx.xr); pc->u.xx.xl = XAdjust(pc->u.xx.xl); pc = NEXTOP(pc,xx); break; /* instructions type yx */ case _get_y_var: case _get_y_val: case _put_y_var: case _put_y_val: case _put_unsafe: pc->u.yx.x = XAdjust(pc->u.yx.x); pc->u.yx.y = YAdjust(pc->u.yx.y); pc = NEXTOP(pc,yx); break; /* instructions type xc */ case _get_atom: case _put_atom: case _get_float: case _get_longint: case _get_bigint: pc->u.xc.x = XAdjust(pc->u.xc.x); { Term t = pc->u.xc.c; if (IsAtomTerm(t)) pc->u.xc.c = AtomTermAdjust(t); else if (IsApplTerm(t)) pc->u.xc.c = BlobTermAdjust(t); } pc = NEXTOP(pc,xc); break; /* instructions type xf */ case _get_struct: case _put_struct: pc->u.xf.x = XAdjust(pc->u.xf.x); pc->u.xf.f = FuncAdjust(pc->u.xf.f); pc = NEXTOP(pc,xf); break; /* instructions type xy */ case _glist_valy: case _gl_void_vary: case _gl_void_valy: pc->u.xy.x = XAdjust(pc->u.xy.x); pc->u.xy.y = YAdjust(pc->u.xy.y); pc = NEXTOP(pc,xy); break; /* instructions type ox */ case _unify_x_var: case _unify_x_var_write: case _unify_l_x_var: case _unify_l_x_var_write: case _unify_x_val_write: case _unify_x_val: case _unify_l_x_val_write: case _unify_l_x_val: case _unify_x_loc_write: case _unify_x_loc: case _unify_l_x_loc_write: case _unify_l_x_loc: case _save_pair_x_write: case _save_pair_x: case _save_appl_x_write: case _save_appl_x: pc->u.ox.opcw = opcode(op_from_opcode(pc->u.ox.opcw)); pc->u.ox.x = XAdjust(pc->u.ox.x); pc = NEXTOP(pc,ox); break; /* instructions type oxx */ case _unify_x_var2: case _unify_x_var2_write: case _unify_l_x_var2: case _unify_l_x_var2_write: pc->u.oxx.opcw = opcode(op_from_opcode(pc->u.oxx.opcw)); pc->u.oxx.xl = XAdjust(pc->u.oxx.xl); pc->u.oxx.xr = XAdjust(pc->u.oxx.xr); pc = NEXTOP(pc,oxx); break; /* instructions type oy */ case _unify_y_var: case _unify_y_var_write: case _unify_l_y_var: case _unify_l_y_var_write: case _unify_y_val_write: case _unify_y_val: case _unify_l_y_val_write: case _unify_l_y_val: case _unify_y_loc_write: case _unify_y_loc: case _unify_l_y_loc_write: case _unify_l_y_loc: case _save_pair_y_write: case _save_pair_y: case _save_appl_y_write: case _save_appl_y: pc->u.oy.opcw = opcode(op_from_opcode(pc->u.oy.opcw)); pc->u.oy.y = YAdjust(pc->u.oy.y); pc = NEXTOP(pc,oy); break; /* instructions type o */ case _unify_void_write: case _unify_void: case _unify_l_void_write: case _unify_l_void: case _unify_list_write: case _unify_list: case _unify_l_list_write: case _unify_l_list: pc->u.o.opcw = opcode(op_from_opcode(pc->u.o.opcw)); pc = NEXTOP(pc,o); break; /* instructions type os */ case _unify_n_voids_write: case _unify_n_voids: case _unify_l_n_voids_write: case _unify_l_n_voids: pc->u.os.opcw = opcode(op_from_opcode(pc->u.os.opcw)); pc = NEXTOP(pc,os); break; /* instructions type oc */ case _unify_atom_write: case _unify_atom: case _unify_l_atom_write: case _unify_l_atom: case _unify_float: case _unify_l_float: case _unify_longint: case _unify_l_longint: case _unify_bigint: case _unify_l_bigint: pc->u.oc.opcw = opcode(op_from_opcode(pc->u.oc.opcw)); { Term t = pc->u.oc.c; if (IsAtomTerm(t)) pc->u.oc.c = AtomTermAdjust(t); else if (IsApplTerm(t)) pc->u.oc.c = BlobTermAdjust(t); } pc = NEXTOP(pc,oc); break; /* instructions type osc */ case _unify_n_atoms_write: case _unify_n_atoms: pc->u.osc.opcw = opcode(op_from_opcode(pc->u.osc.opcw)); { Term t = pc->u.osc.c; if (IsAtomTerm(t)) pc->u.osc.c = AtomTermAdjust(t); } pc = NEXTOP(pc,osc); break; /* instructions type of */ case _unify_struct_write: case _unify_struct: case _unify_l_struc_write: case _unify_l_struc: pc->u.of.opcw = opcode(op_from_opcode(pc->u.of.opcw)); pc->u.of.f = FuncAdjust(pc->u.of.f); pc = NEXTOP(pc,of); break; /* instructions type s */ case _write_n_voids: case _pop_n: #ifdef TABLING case _table_new_answer: #endif pc = NEXTOP(pc,s); break; /* instructions type c */ case _write_atom: { Term t = pc->u.c.c; if (IsAtomTerm(t)) pc->u.c.c = AtomTermAdjust(t); else if (IsApplTerm(t)) pc->u.c.c = BlobTermAdjust(t); } pc = NEXTOP(pc,c); break; /* instructions type sc */ case _write_n_atoms: { Term t = pc->u.sc.c; if (IsAtomTerm(t)) pc->u.sc.c = AtomTermAdjust(t); } pc = NEXTOP(pc,sc); break; /* instructions type f */ case _write_struct: case _write_l_struc: pc->u.f.f = FuncAdjust(pc->u.f.f); pc = NEXTOP(pc,f); break; /* instructions type sdl */ case _call_c_wfail: pc->u.sdl.p = CodeAddrAdjust(pc->u.sdl.p); pc->u.sdl.l = CodeAddrAdjust(pc->u.sdl.l); pc->u.sdl.d = CCodeAdjust((PredEntry *)(pc->u.sdl.p)); pc = NEXTOP(pc,sdl); break; /* instructions type lds */ case _try_c: case _try_userc: /* don't need to do no nothing here, initstaff will do it for us */ pc->u.lds.p = CodeAddrAdjust(pc->u.lds.p); pc->u.lds.d = CCodeAdjust((PredEntry *)(pc->u.lds.p)); pc = NEXTOP(pc,lds); break; case _retry_c: case _retry_userc: /* don't need to do no nothing here, initstaff will do it for us pc->u.lds.d = CCodeAdjust(pc->u.lds.d); */ pc->u.lds.p = CodeAddrAdjust(pc->u.lds.p); pc->u.lds.d = NextCCodeAdjust((PredEntry *)(pc->u.lds.p)); pc = NEXTOP(pc,lds); break; /* instructions type ldl */ case _trust_in: case _trust_first_in: case _trust_tail_in: case _trust_head_in: pc->u.ldl.p = CodeAddrAdjust(pc->u.ldl.p); pc->u.ldl.d = CodeAddrAdjust(pc->u.ldl.d); pc->u.ldl.bl = CodeAddrAdjust(pc->u.ldl.bl); pc = NEXTOP(pc,ldl); break; /* instructions type llll */ case _switch_on_type: case _switch_list_nl: case _switch_on_head: pc->u.llll.l1 = CodeAddrAdjust(pc->u.llll.l1); pc->u.llll.l2 = CodeAddrAdjust(pc->u.llll.l2); pc->u.llll.l3 = CodeAddrAdjust(pc->u.llll.l3); pc->u.llll.l4 = CodeAddrAdjust(pc->u.llll.l4); pc = NEXTOP(pc,llll); break; /* instructions type lll */ case _switch_on_nonv: case _switch_nv_list: pc->u.lll.l1 = CodeAddrAdjust(pc->u.lll.l1); pc->u.lll.l2 = CodeAddrAdjust(pc->u.lll.l2); pc->u.lll.l3 = CodeAddrAdjust(pc->u.lll.l3); pc = NEXTOP(pc,lll); break; /* instructions type cll */ case _if_not_then: { Term t = pc->u.cll.c; if (IsAtomTerm(t)) pc->u.cll.c = AtomTermAdjust(t); } pc->u.cll.l1 = CodeAddrAdjust(pc->u.cll.l1); pc->u.cll.l2 = CodeAddrAdjust(pc->u.cll.l2); pc = NEXTOP(pc,cll); break; /* instructions type ollll */ case _switch_list_nl_prefetch: pc->u.ollll.pop = opcode(op_from_opcode(pc->u.ollll.pop)); pc->u.ollll.l1 = CodeAddrAdjust(pc->u.ollll.l1); pc->u.ollll.l2 = CodeAddrAdjust(pc->u.ollll.l2); pc->u.ollll.l3 = CodeAddrAdjust(pc->u.ollll.l3); pc->u.ollll.l4 = CodeAddrAdjust(pc->u.ollll.l4); pc = NEXTOP(pc,ollll); break; /* switch_on_func */ case _switch_on_func: { int i, j; CELL *oldcode, *startcode; i = pc->u.s.s; startcode = oldcode = (CELL *)NEXTOP(pc,s); for (j = 0; j < i; ++j) { Functor oldfunc = (Functor)(oldcode[0]); CODEADDR oldjmp = (CODEADDR)(oldcode[1]); if (oldfunc != NULL) { oldcode[0] = (CELL)FuncAdjust(oldfunc); } oldcode[1] = (CELL)CodeAddrAdjust(oldjmp); oldcode += 2; } rehash(startcode, i, Funcs); pc = (yamop *)oldcode; } break; /* switch_on_cons */ case _switch_on_cons: { int i, j; CELL *oldcode; #if !USE_OFFSETS CELL *startcode; #endif i = pc->u.s.s; #if !USE_OFFSETS startcode = #endif oldcode = (CELL *)NEXTOP(pc,s); for (j = 0; j < i; ++j) { #if !USE_OFFSETS Term oldatom = oldcode[0]; #endif CODEADDR oldjmp = (CODEADDR)(oldcode[1]); #if !USE_OFFSETS if (oldatom != 0x0) { oldcode[0] = AtomTermAdjust(oldatom); } #endif oldcode[1] = (CELL)CodeAddrAdjust(oldjmp); oldcode += 2; } #if !USE_OFFSETS rehash(startcode, i, Atomics); #endif pc = (yamop *)oldcode; } break; /* instructions type fll */ case _go_on_func: pc->u.fll.f = FuncAdjust(pc->u.fll.f); pc->u.fll.l1 = CodeAddrAdjust(pc->u.fll.l1); pc->u.fll.l2 = CodeAddrAdjust(pc->u.fll.l2); pc = NEXTOP(pc,fll); break; /* instructions type cll */ case _go_on_cons: if (IsAtomTerm(pc->u.cll.c)) pc->u.cll.c = AtomTermAdjust(pc->u.cll.c); pc->u.cll.l1 = CodeAddrAdjust(pc->u.cll.l1); pc->u.cll.l2 = CodeAddrAdjust(pc->u.cll.l2); pc = NEXTOP(pc,cll); break; /* instructions type sl */ case _if_func: { int i, j; CELL *oldcode; i = pc->u.s.s; pc->u.sl.l = CodeAddrAdjust(pc->u.sl.l); oldcode = (CELL *)NEXTOP(pc,sl); for (j = 0; j < i; ++j) { Functor oldfunc = (Functor)(oldcode[0]); CODEADDR oldjmp = (CODEADDR)(oldcode[1]); if (oldfunc != NULL) { oldcode[0] = (CELL)FuncAdjust(oldfunc); } oldcode[1] = (CELL)CodeAddrAdjust(oldjmp); oldcode += 2; pc = (yamop *)oldcode; } } break; case _if_cons: { int i, j; CELL *oldcode; i = pc->u.sl.s; pc->u.sl.l = CodeAddrAdjust(pc->u.sl.l); oldcode = (CELL *)NEXTOP(pc,sl); for (j = 0; j < i; ++j) { #if !USE_OFFSETS Term oldatom = oldcode[0]; #endif CODEADDR oldjmp = (CODEADDR)(oldcode[1]); #if !USE_OFFSETS if (oldatom != 0x0) { oldcode[0] = AtomTermAdjust(oldatom); } #endif oldcode[1] = (CELL)CodeAddrAdjust(oldjmp); oldcode += 2; } pc = (yamop *)oldcode; } break; /* instructions type slll */ case _switch_last: case _switch_l_list: pc->u.slll.p = CodeAddrAdjust(pc->u.slll.p); pc->u.slll.l1 = CodeAddrAdjust(pc->u.slll.l1); pc->u.slll.l2 = CodeAddrAdjust(pc->u.slll.l2); pc->u.slll.l3 = CodeAddrAdjust(pc->u.slll.l3); pc = NEXTOP(pc,slll); break; /* instructions type xxx */ case _p_plus_vv: case _p_minus_vv: case _p_times_vv: case _p_div_vv: case _p_and_vv: case _p_or_vv: case _p_sll_vv: case _p_slr_vv: case _p_arg_vv: case _p_func2s_vv: case _p_func2f_xx: pc->u.xxx.x = XAdjust(pc->u.xxx.x); pc->u.xxx.x1 = XAdjust(pc->u.xxx.x1); pc->u.xxx.x2 = XAdjust(pc->u.xxx.x2); pc = NEXTOP(pc,xxx); break; /* instructions type xxc */ case _p_plus_vc: case _p_minus_cv: case _p_times_vc: case _p_div_cv: case _p_and_vc: case _p_or_vc: case _p_sll_vc: case _p_slr_vc: case _p_func2s_vc: pc->u.xxc.x = XAdjust(pc->u.xxc.x); if (IsAtomTerm(pc->u.xxc.c)) pc->u.xxc.c = AtomTermAdjust(pc->u.xxc.c); pc->u.xxc.xi = XAdjust(pc->u.xxc.xi); pc = NEXTOP(pc,xxc); break; case _p_div_vc: case _p_sll_cv: case _p_slr_cv: case _p_arg_cv: pc->u.xcx.x = XAdjust(pc->u.xcx.x); pc->u.xcx.xi = XAdjust(pc->u.xcx.xi); pc = NEXTOP(pc,xcx); break; case _p_func2s_cv: pc->u.xcx.x = XAdjust(pc->u.xcx.x); if (IsAtomTerm(pc->u.xcx.c)) pc->u.xcx.c = AtomTermAdjust(pc->u.xcx.c); pc->u.xcx.xi = XAdjust(pc->u.xcx.xi); pc = NEXTOP(pc,xcx); break; /* instructions type xyx */ case _p_func2f_xy: pc->u.xyx.x = XAdjust(pc->u.xyx.x); pc->u.xyx.x1 = XAdjust(pc->u.xyx.x1); pc->u.xyx.y2 = YAdjust(pc->u.xyx.y2); pc = NEXTOP(pc,xyx); break; /* instructions type yxx */ case _p_plus_y_vv: case _p_minus_y_vv: case _p_times_y_vv: case _p_div_y_vv: case _p_and_y_vv: case _p_or_y_vv: case _p_sll_y_vv: case _p_slr_y_vv: case _p_arg_y_vv: case _p_func2s_y_vv: case _p_func2f_yx: pc->u.yxx.y = YAdjust(pc->u.yxx.y); pc->u.yxx.x1 = XAdjust(pc->u.yxx.x1); pc->u.yxx.x2 = XAdjust(pc->u.yxx.x2); pc = NEXTOP(pc,yxx); break; /* instructions type yyx */ case _p_func2f_yy: pc->u.yyx.y1 = YAdjust(pc->u.yyx.y1); pc->u.yyx.y2 = YAdjust(pc->u.yyx.y2); pc->u.yyx.x = XAdjust(pc->u.yyx.x); pc = NEXTOP(pc,yyx); break; /* instructions type yxc */ case _p_plus_y_vc: case _p_minus_y_cv: case _p_times_y_vc: case _p_div_y_vc: case _p_div_y_cv: case _p_and_y_vc: case _p_or_y_vc: case _p_sll_y_vc: case _p_slr_y_vc: case _p_func2s_y_vc: pc->u.yxc.y = YAdjust(pc->u.yxc.y); pc->u.yxc.c = AtomTermAdjust(pc->u.yxc.c); pc->u.yxc.xi = XAdjust(pc->u.yxc.xi); pc = NEXTOP(pc,yxc); break; /* instructions type ycx */ case _p_sll_y_cv: case _p_slr_y_cv: case _p_arg_y_cv: pc->u.ycx.y = YAdjust(pc->u.ycx.y); pc->u.ycx.xi = XAdjust(pc->u.ycx.xi); pc = NEXTOP(pc,ycx); break; /* instructions type lxx */ case _p_func2s_y_cv: pc->u.ycx.y = YAdjust(pc->u.ycx.y); if (IsAtomTerm(pc->u.ycx.c)) pc->u.ycx.c = AtomTermAdjust(pc->u.ycx.c); pc->u.ycx.xi = XAdjust(pc->u.ycx.xi); pc = NEXTOP(pc,ycx); break; /* instructions type lxx */ case _call_bfunc_xx: pc->u.lxx.p = CodeAddrAdjust(pc->u.lxx.p); pc->u.lxx.l = DirectCCodeAdjust((PredEntry *)(pc->u.lxx.p)); pc->u.lxx.x1 = XAdjust(pc->u.lxx.x1); pc->u.lxx.x2 = XAdjust(pc->u.lxx.x2); pc = NEXTOP(pc,lxx); break; /* instructions type lxy */ case _call_bfunc_yx: case _call_bfunc_xy: pc->u.lxy.p = CodeAddrAdjust(pc->u.lxy.p); pc->u.lxy.l = DirectCCodeAdjust((PredEntry *)(pc->u.lxy.p)); pc->u.lxy.x = XAdjust(pc->u.lxy.x); pc->u.lxy.y = YAdjust(pc->u.lxy.y); pc = NEXTOP(pc,lxy); break; case _call_bfunc_yy: pc->u.lyy.p = CodeAddrAdjust(pc->u.lyy.p); pc->u.lyy.l = DirectCCodeAdjust((PredEntry *)(pc->u.lyy.p)); pc->u.lyy.y1 = YAdjust(pc->u.lyy.y1); pc->u.lyy.y2 = YAdjust(pc->u.lyy.y2); pc = NEXTOP(pc,lyy); break; } } while (TRUE); } /* * Restores a group of clauses for the same predicate, starting with First * and ending with Last, First may be equal to Last */ static void CleanClauses(CODEADDR First, CODEADDR Last) { CODEADDR cl = First; do { RestoreClause(ClauseCodeToClause(cl)); if (cl == Last) return; cl = NextClause(cl); } while (TRUE); } static void restore_static_array(StaticArrayEntry *ae) { Int sz = -ae->ArrayEArity; switch (ae->ArrayType) { case array_of_ints: case array_of_doubles: case array_of_chars: case array_of_uchars: return; case array_of_ptrs: { AtomEntry **base = (AtomEntry **)AddrAdjust((ADDR)(ae->ValueOfVE.ptrs)); Int i; ae->ValueOfVE.ptrs = base; if (ae != NULL) { for (i=0; iValueOfVE.atoms)); Int i; ae->ValueOfVE.atoms = base; if (ae != 0L) { for (i=0; iValueOfVE.dbrefs)); Int i; ae->ValueOfVE.dbrefs = base; if (ae != 0L) { for (i=0; iValueOfVE.terms)); Int i; ae->ValueOfVE.terms = base; if (ae != 0L) { for (i=0; iArityOfPE) pp->FunctorOfPred = FuncAdjust(pp->FunctorOfPred); else pp->FunctorOfPred = (Functor) AtomAdjust((Atom)(pp->FunctorOfPred)); if (pp->OwnerFile) pp->OwnerFile = AtomAdjust(pp->OwnerFile); pp->OpcodeOfPred = opcode(op_from_opcode(pp->OpcodeOfPred)); if (pp->PredFlags & (CPredFlag|BasicPredFlag)) { if (pp->CodeOfPred != NULL) { if (pp->CodeOfPred == pp->TrueCodeOfPred) { if (pp->PredFlags & CPredFlag) /* C, assembly + C */ pp->CodeOfPred = pp->TrueCodeOfPred = CCodeAdjust(pp); else /* assembly */ pp->CodeOfPred = (CODEADDR)AddrAdjust((ADDR)(pp->CodeOfPred)); } else { /* comparison */ pp->CodeOfPred = CCodeAdjust(pp); pp->TrueCodeOfPred = DirectCCodeAdjust(pp); } } } else { if (pp->FirstClause) pp->FirstClause = CodeAddrAdjust(pp->FirstClause); if (pp->LastClause) pp->LastClause = CodeAddrAdjust(pp->LastClause); pp->CodeOfPred = CodeAddrAdjust(pp->CodeOfPred); pp->TrueCodeOfPred = CodeAddrAdjust(pp->TrueCodeOfPred); flag = pp->PredFlags; FirstC = pp->FirstClause; LastC = pp->LastClause; /* We just have a fail here */ if (FirstC == NIL && LastC == NIL) { return; } #ifdef DEBUG_RESTORE2 YP_fprintf(errout, "at %lx Correcting clauses from %lx to %lx\n", *(OPCODE *) FirstC, FirstC, LastC); #endif CleanClauses(FirstC, LastC); if (flag & (DynamicPredFlag|IndexedPredFlag)) { #ifdef DEBUG_RESTORE2 YP_fprintf(errout, "Correcting dynamic/indexed code\n"); #endif RestoreClause(ClauseCodeToClause(pp->TrueCodeOfPred)); } } /* we are pointing at ourselves */ } /* * Restores all of the entries, for a particular atom, we only have problems * if we find code or data bases */ static void RestoreEntries(PropEntry *pp) { while (!EndOfPAEntr(pp)) { switch(pp->KindOfPE) { case FunctorProperty: { FunctorEntry *fe = (FunctorEntry *)pp; fe->NameOfFE = AtomAdjust(fe->NameOfFE); } break; case ValProperty: { ValEntry *ve = (ValEntry *)pp; Term tv = ve->ValueOfVE; if (IsAtomTerm(tv)) ve->ValueOfVE = AtomTermAdjust(tv); } break; case ArrayProperty: { ArrayEntry *ae = (ArrayEntry *)pp; if (ae->ArrayEArity < 0) { restore_static_array((StaticArrayEntry *)ae); } else { if (IsVarTerm(ae->ValueOfVE)) RESET_VARIABLE(&(ae->ValueOfVE)); else { CELL *ptr = RepAppl(ae->ValueOfVE); /* in fact it should just be a pointer to the global, but we'll be conservative. Notice that the variable should have been reset in restore_program mode. */ if (IsOldGlobalPtr(ptr)) { ae->ValueOfVE = AbsAppl(PtoGloAdjust(ptr)); } else if (IsOldCodeCellPtr(ptr)) { ae->ValueOfVE = AbsAppl(PtoHeapCellAdjust(ptr)); } else if (IsOldLocalInTRPtr(ptr)) { ae->ValueOfVE = AbsAppl(PtoLocAdjust(ptr)); } else if (IsOldDelayPtr(ptr)) { ae->ValueOfVE = AbsAppl(PtoDelayAdjust(ptr)); } else if (IsOldTrailPtr(ptr)) { ae->ValueOfVE = AbsAppl(CellPtoTRAdjust(ptr)); } } } } break; case PEProp: CleanCode((PredEntry *) pp); break; case DBProperty: case LogUpdDBProperty: case CodeLogUpdDBProperty: case CodeDBProperty: #ifdef DEBUG_RESTORE2 YP_fprintf(errout, "Correcting data base clause at %p\n", pp); #endif if (HDiff) RestoreDB((DBEntry *) pp); break; case BBProperty: if (HDiff) RestoreBB((BlackBoardEntry *)pp); break; case ExpProperty: case OpProperty: case ModProperty: /* do nothing */ break; default: /* OOPS */ Error(SYSTEM_ERROR, TermNil, "Invalid Atom Property at %p", pp); return; } pp = RepProp(pp->NextOfPE); } } /* restore the atom entries which are invisible for the user */ static void RestoreInvisibleAtoms(void) { AtomEntry *at; Atom atm = INVISIBLECHAIN.Entry; INVISIBLECHAIN.Entry = atm = AtomAdjust(atm); at = RepAtom(atm); if (EndOfPAEntr(at)) return; do { #ifdef DEBUG_RESTORE2 /* useful during debug */ YP_fprintf(errout, "Restoring %s\n", at->StrOfAE); #endif RestoreEntries(RepProp(at->PropOfAE)); atm = at->NextOfAE; at->NextOfAE = atm = AtomAdjust(atm); at = RepAtom(atm); } while (!EndOfPAEntr(at)); } /* restore the atom entries which are invisible for the user */ static void RestoreForeignCodeStructure(void) { ForeignObj *f_code; if (ForeignCodeLoaded != NULL) ForeignCodeLoaded = (void *)AddrAdjust((ADDR)ForeignCodeLoaded); f_code = ForeignCodeLoaded; while (f_code != NULL) { StringList objs, libs; if (f_code->objs != NULL) f_code->objs = (StringList)AddrAdjust((ADDR)f_code->objs); objs = f_code->objs; while (objs != NULL) { if (objs->next != NULL) objs->next = (StringList)AddrAdjust((ADDR)objs->next); if (objs->s != NULL) objs->s = (char *)AddrAdjust((ADDR)objs->s); objs = objs->next; } if (f_code->libs != NULL) f_code->libs = (StringList)AddrAdjust((ADDR)f_code->libs); libs = f_code->libs; while (libs != NULL) { if (libs->next != NULL) libs->next = (StringList)AddrAdjust((ADDR)libs->next); if (libs->s != NULL) libs->s = (char *)AddrAdjust((ADDR)libs->s); libs = libs->next; } if (f_code->f != NULL) f_code->f = (char *)AddrAdjust((ADDR)f_code->f); if (f_code->next != NULL) f_code->next = (ForeignObj *)AddrAdjust((ADDR)f_code->f); f_code = f_code->next; } } /* restores the list of free space, with its curious structure */ static void RestoreFreeSpace(void) { register BlockHeader *bpt, *bsz; if (FreeBlocks != NULL) FreeBlocks = BlockAdjust(FreeBlocks); bpt = FreeBlocks; while (bpt != NULL) { if (bpt->b_next != NULL) { bsz = bpt->b_next = BlockAdjust(bpt->b_next); while (bsz != NULL) { if (bsz->b_next_size != NULL) bsz->b_next_size = BlockAdjust(bsz->b_next_size); if (bsz->b_next != NULL) bsz->b_next = BlockAdjust(bsz->b_next); bsz = bsz->b_next; } } if (bpt->b_next_size != NULL) bpt->b_next_size = BlockAdjust(bpt->b_next_size); bpt = bpt->b_next_size; } *((YAP_SEG_SIZE *) HeapTop) = InUseFlag; } /* * This is the really tough part, to restore the whole of the heap */ static void restore_heap(void) { AtomHashEntry *HashPtr = HashChain; register int i; for (i = 0; i < MaxHash; ++i) { Atom atm = HashPtr->Entry; if (atm) { AtomEntry *at; HashPtr->Entry = atm = AtomAdjust(atm); at = RepAtom(atm); do { #ifdef DEBUG_RESTORE2 /* useful during debug */ YP_fprintf(errout, "Restoring %s\n", at->StrOfAE); #endif RestoreEntries(RepProp(at->PropOfAE)); atm = at->NextOfAE = AtomAdjust(at->NextOfAE); at = RepAtom(atm); } while (!EndOfPAEntr(at)); } HashPtr++; } RestoreInvisibleAtoms(); RestoreForeignCodeStructure(); } #ifdef DEBUG_RESTORE3 static void ShowEntries(pp) PropEntry *pp; { while (!EndOfPAEntr(pp)) { YP_fprintf(YP_stderr,"Estou a ver a prop %x em %x\n", pp->KindOfPE, pp); pp = RepProp(pp->NextOfPE); } } static void ShowAtoms() { AtomHashEntry *HashPtr = HashChain; register int i; for (i = 0; i < MaxHash; ++i) { if (HashPtr->Entry != NIL) { AtomEntry *at; at = RepAtom(HashPtr->Entry); do { YP_fprintf(YP_stderr,"Passei ao %s em %x\n", at->StrOfAE, at); ShowEntries(RepProp(at->PropOfAE)); } while (!EndOfPAEntr(at = RepAtom(at->NextOfAE))); } HashPtr++; } } #endif /* DEBUG_RESTORE3 */ #include static int OpenRestore(char *s) { int mode; /* if (strcmp(s, StartUpFile) == 0) YP_fprintf(YP_stderr, "[ YAP version %s ]\n\n", version_number);*/ CloseStreams(TRUE); if ((splfild = open_file(s, O_RDONLY)) < 0) { if (!dir_separator(s[0]) && !volume_header(s)) { /* we have a relative path for the file, try to do somewhat better using YAPLIBDIR or friends. */ if (Yap_LibDir != NULL) { strncpy(FileNameBuf, Yap_LibDir, YAP_FILENAME_MAX); #if HAVE_GETENV } else { char *yap_env = getenv("YAPLIBDIR"); if (yap_env != NULL) { strncpy(FileNameBuf, yap_env, YAP_FILENAME_MAX); #endif } else { strncpy(FileNameBuf, LIB_DIR, YAP_FILENAME_MAX); } #if HAVE_GETENV } #endif #if _MSC_VER || defined(__MINGW32__) strncat(FileNameBuf,"\\", YAP_FILENAME_MAX); #else strncat(FileNameBuf,"/", YAP_FILENAME_MAX); #endif strncat(FileNameBuf,s, YAP_FILENAME_MAX); if ((splfild = open_file(FileNameBuf, O_RDONLY)) < 0) { if (PrologMode != BootMode) { Error(SYSTEM_ERROR,MkAtomTerm(LookupAtom(s)), "save/1, open(%s)", strerror(errno)); } return(FAIL_RESTORE); } } else { return(FAIL_RESTORE); } } PrologMode = BootMode; if ((mode = check_header()) == FAIL_RESTORE) return(FAIL_RESTORE); if (!yap_flags[HALT_AFTER_CONSULT_FLAG]) { YP_fprintf(YP_stderr, "[ Restoring file %s ]\n", s); } #ifdef DEBUG_RESTORE4 /* * This should be another file, like the log file */ errout = YP_stderr; #endif return(mode); } static void CloseRestore(void) { #ifdef DEBUG_RESTORE3 ShowAtoms(); #endif close_file(); PrologMode = UserMode; } static int check_opcodes(OPCODE old_ops[]) { #if USE_THREADED_CODE int have_shifted = FALSE; op_numbers op = _Ystop; for (op = _Ystop; op < _std_top; op++) { if (opcode(op) != old_ops[op]) { have_shifted = TRUE; break; } } return(have_shifted); #else return(FALSE); #endif } static void RestoreHeap(OPCODE old_ops[], int functions_moved) { int heap_moved = (OldHeapBase != HeapBase), opcodes_moved; opcodes_moved = check_opcodes(old_ops); /* opcodes_moved has side-effects and should be tried first */ if (heap_moved || opcodes_moved || functions_moved) { restore_heap(); } /* This must be done after restore_heap */ if (heap_moved) { RestoreFreeSpace(); } InitAbsmi(); if (!(ReInitConstExps() && ReInitUnaryExps() && ReInitBinaryExps())) Error(SYSTEM_ERROR, TermNil, "arithmetic operator not in saved state"); #ifdef DEBUG_RESTORE1 YP_fprintf(errout, "phase 1 done\n"); #endif } /* * This function is called to know about the parameters of the last saved * state */ int SavedInfo(char *FileName, int *ATrail, int *AStack, int *AHeap, char *YapLibDir) { char pp[80]; char msg[256]; char NameBuf[YAP_FILENAME_MAX]; int result, mode; if ((splfild = open_file(FileName, O_RDONLY)) < 0) { if (!dir_separator(FileName[0]) && !volume_header(FileName)) { /* we have a relative path for the file, try to do somewhat better */ if (YapLibDir != NULL) { strncpy(FileNameBuf, YapLibDir, YAP_FILENAME_MAX); #if HAVE_GETENV } else { char* my_env=getenv("YAPLIBDIR"); if (my_env != NULL) { strncpy(NameBuf, my_env, YAP_FILENAME_MAX); #endif } else { strncpy(NameBuf, LIB_DIR, YAP_FILENAME_MAX); } #if HAVE_GETENV } #endif #if _MSC_VER || defined(__MINGW32__) strncat(NameBuf,"\\", YAP_FILENAME_MAX); #else strncat(NameBuf,"/", YAP_FILENAME_MAX); #endif strncat(NameBuf,FileName, YAP_FILENAME_MAX); if ((splfild = open_file(NameBuf, O_RDONLY)) < 0) { return(FALSE); } } else { return(FALSE); } } /* skip the first line */ do { myread(splfild, pp, 1); } while (pp[0] != 1); sprintf(msg, "YAPV%s", version_number); myread(splfild, pp, Unsigned(strlen(msg) + 1)); if (strcmp(pp, msg) != 0) { if (PrologMode != BootMode) Error(SYSTEM_ERROR, TermNil, "file %s is not a saved Prolog state", FileName); return(0); } result = get_cell(); mode = get_cell(); if (mode != DO_ONLY_CODE && mode != DO_EVERYTHING) { Error(SYSTEM_ERROR, TermNil, "file %s is not a saved Prolog state", FileName); return(0); } if (*AHeap) get_cell(); else *AHeap = get_cell() / 1024; if (mode == DO_ONLY_CODE || *AStack) get_cell(); else *AStack = get_cell() / 1024; if (mode == DO_ONLY_CODE || *ATrail) get_cell(); else *ATrail = get_cell() / 1024; close_file(); return (result); } static void UnmarkTrEntries(void) { CELL entry, *Entries; /* initialise a choice point */ B = (choiceptr)LCL0; B--; B->cp_ap = (yamop *)NOCODE; Entries = (CELL *)TrailBase; while ((CODEADDR)(entry = *Entries++) != NULL) { register CELL flags; flags = Flags(entry); ResetFlag(InUseMask, flags); Flags(entry) = flags; if (FlagOn(ErasedMask, flags)) { if (FlagOn(DBClMask, flags)) { ErDBE((DBRef) (entry - (CELL) &(((DBRef) NIL)->Flags))); } else { ErCl(ClauseFlagsToClause(entry)); } } } B = NULL; } int in_limbo = FALSE; /* * This function is called when wanting only to restore the heap and * associated registers */ int Restore(char *s) { int restore_mode; int funcs_moved; OPCODE old_ops[_std_top+1]; if ((restore_mode = OpenRestore(s)) == FAIL_RESTORE) return(FALSE); ShutdownLoadForeign(); in_limbo = TRUE; funcs_moved = get_coded(restore_mode, old_ops); restore_regs(restore_mode); in_limbo = FALSE; /*#endif*/ RestoreHeap(old_ops, funcs_moved); switch(restore_mode) { case DO_EVERYTHING: if (OldHeapBase != HeapBase || OldLCL0 != LCL0 || OldGlobalBase != (CELL *)GlobalBase || OldTrailBase != TrailBase) { AdjustStacksAndTrail(); if (which_save == 2) { AdjustRegs(2); } else { AdjustRegs(1); } break; #ifdef DEBUG_RESTORE2 YP_fprintf(errout, "phase 2 done\n"); #endif } break; case DO_ONLY_CODE: UnmarkTrEntries(); break; } ReOpenLoadForeign(); InitPlIO(); /* reset time */ ReInitWallTime(); CloseRestore(); if (which_save == 2) { unify(ARG2, MkIntTerm(0)); } return(restore_mode); } static Int p_restore(void) { int mode; Term t1 = Deref(ARG1); if (!GetName(FileNameBuf, t1)) { Error(TYPE_ERROR_LIST,t1,"restore/1"); return(FALSE); } if ((mode = Restore(FileNameBuf)) == DO_ONLY_CODE) { #if PUSH_REGS restore_absmi_regs(&standard_regs); #endif /* back to the top level we go */ siglongjmp(RestartEnv,3); } return(mode != FAIL_RESTORE); } void InitSavePreds(void) { InitCPred("$save", 1, p_save, SafePredFlag|SyncPredFlag); InitCPred("$save", 2, p_save2, SafePredFlag|SyncPredFlag); InitCPred("$save_program", 1, p_save_program, SafePredFlag|SyncPredFlag); InitCPred("$restore", 1, p_restore, SyncPredFlag); }