% This file has been included as an YAP library by Vitor Santos Costa, 1999 % File : ORDSET.PL % Author : R.A.O'Keefe % Updated: 22 May 1983 % Purpose: Ordered set manipulation utilities % In this module, sets are represented by ordered lists with no % duplicates. Thus {c,r,a,f,t} would be [a,c,f,r,t]. The ordering % is defined by the @< family of term comparison predicates, which % is the ordering used by sort/2 and setof/3. % The benefit of the ordered representation is that the elementary % set operations can be done in time proportional to the Sum of the % argument sizes rather than their Product. Some of the unordered % set routines, such as member/2, length/2, select/3 can be used % unchanged. The main difficulty with the ordered representation is % remembering to use it! :- module(ordsets, [ list_to_ord_set/2, % List -> Set merge/3, % OrdList x OrdList -> OrdList ord_add_element/3, % Set x Elem -> Set ord_del_element/3, % Set x Elem -> Set ord_disjoint/2, % Set x Set -> ord_insert/3, % Set x Elem -> Set ord_member/2, % Set -> Elem ord_intersect/2, % Set x Set -> ord_intersect/3, % Set x Set -> Set ord_intersection/3, % Set x Set -> Set ord_intersection/4, % Set x Set -> Set x Set ord_seteq/2, % Set x Set -> ord_setproduct/3, % Set x Set -> Set ord_subset/2, % Set x Set -> ord_subtract/3, % Set x Set -> Set ord_symdiff/3, % Set x Set -> Set ord_union/2, % Set^2 -> Set ord_union/3, % Set x Set -> Set ord_union/4 % Set x Set -> Set x Set ]). /* :- mode list_to_ord_set(+, ?), merge(+, +, -), ord_disjoint(+, +), ord_disjoint(+, +, +, +, +), ord_insert(+, +, ?), ord_insert(+, +, +, +, ?), ord_intersect(+, +), ord_intersect(+, +, +, +, +), ord_intersect(+, +, ?), ord_intersect(+, +, +, +, +, ?), ord_seteq(+, +), ord_subset(+, +), ord_subset(+, +, +, +, +), ord_subtract(+, +, ?), ord_subtract(+, +, +, +, +, ?), ord_symdiff(+, +, ?), ord_symdiff(+, +, +, +, +, ?), ord_union(+, +, ?), ord_union(+, +, +, +, +, ?). */ % list_to_ord_set(+List, ?Set) % is true when Set is the ordered representation of the set represented % by the unordered representation List. The only reason for giving it % a name at all is that you may not have realised that sort/2 could be % used this way. list_to_ord_set(List, Set) :- sort(List, Set). % merge(+List1, +List2, -Merged) % is true when Merged is the stable merge of the two given lists. % If the two lists are not ordered, the merge doesn't mean a great % deal. Merging is perfectly well defined when the inputs contain % duplicates, and all copies of an element are preserved in the % output, e.g. merge("122357", "34568", "12233455678"). Study this % routine carefully, as it is the basis for all the rest. merge([Head1|Tail1], [Head2|Tail2], [Head2|Merged]) :- Head1 @> Head2, !, merge([Head1|Tail1], Tail2, Merged). merge([Head1|Tail1], List2, [Head1|Merged]) :- List2 \== [], !, merge(Tail1, List2, Merged). merge([], List2, List2) :- !. merge(List1, [], List1). % ord_disjoint(+Set1, +Set2) % is true when the two ordered sets have no element in common. If the % arguments are not ordered, I have no idea what happens. ord_disjoint([], _) :- !. ord_disjoint(_, []) :- !. ord_disjoint([Head1|Tail1], [Head2|Tail2]) :- compare(Order, Head1, Head2), ord_disjoint(Order, Head1, Tail1, Head2, Tail2). ord_disjoint(<, _, Tail1, Head2, Tail2) :- ord_disjoint(Tail1, [Head2|Tail2]). ord_disjoint(>, Head1, Tail1, _, Tail2) :- ord_disjoint([Head1|Tail1], Tail2). % ord_insert(+Set1, +Element, ?Set2) % ord_add_element(+Set1, +Element, ?Set2) % is the equivalent of add_element for ordered sets. It should give % exactly the same result as merge(Set1, [Element], Set2), but a bit % faster, and certainly more clearly. ord_add_element([], Element, [Element]). ord_add_element([Head|Tail], Element, Set) :- compare(Order, Head, Element), ord_insert(Order, Head, Tail, Element, Set). ord_insert([], Element, [Element]). ord_insert([Head|Tail], Element, Set) :- compare(Order, Head, Element), ord_insert(Order, Head, Tail, Element, Set). ord_insert(<, Head, Tail, Element, [Head|Set]) :- ord_insert(Tail, Element, Set). ord_insert(=, Head, Tail, _, [Head|Tail]). ord_insert(>, Head, Tail, Element, [Element,Head|Tail]). % ord_intersect(+Set1, +Set2) % is true when the two ordered sets have at least one element in common. % Note that the test is == rather than = . ord_intersect([Head1|Tail1], [Head2|Tail2]) :- compare(Order, Head1, Head2), ord_intersect(Order, Head1, Tail1, Head2, Tail2). ord_intersect(=, _, _, _, _). ord_intersect(<, _, Tail1, Head2, Tail2) :- ord_intersect(Tail1, [Head2|Tail2]). ord_intersect(>, Head1, Tail1, _, Tail2) :- ord_intersect([Head1|Tail1], Tail2). ord_intersect(L1, L2, L) :- ord_intersection(L1, L2, L). % ord_intersection(+Set1, +Set2, ?Intersection) % is true when Intersection is the ordered representation of Set1 % and Set2, provided that Set1 and Set2 are ordered sets. ord_intersection(_, [], []) :- !. ord_intersection([], _, []) :- !. ord_intersection([Head1|Tail1], [Head2|Tail2], Intersection) :- compare(Order, Head1, Head2), ord_intersection(Order, Head1, Tail1, Head2, Tail2, Intersection). ord_intersection(=, Head, Tail1, _, Tail2, [Head|Intersection]) :- ord_intersection(Tail1, Tail2, Intersection). ord_intersection(<, _, Tail1, Head2, Tail2, Intersection) :- ord_intersection(Tail1, [Head2|Tail2], Intersection). ord_intersection(>, Head1, Tail1, _, Tail2, Intersection) :- ord_intersection([Head1|Tail1], Tail2, Intersection). % ord_intersection(+Set1, +Set2, ?Intersection, ?Difference) % is true when Intersection is the ordered representation of Set1 % and Set2, provided that Set1 and Set2 are ordered sets. ord_intersection(L, [], [], []) :- !. ord_intersection([], L, [], L) :- !. ord_intersection([Head1|Tail1], [Head2|Tail2], Intersection, Difference) :- compare(Order, Head1, Head2), ord_intersection(Order, Head1, Tail1, Head2, Tail2, Intersection, Difference). ord_intersection(=, Head, Tail1, _, Tail2, [Head|Intersection], Difference) :- ord_intersection(Tail1, Tail2, Intersection, Difference). ord_intersection(<, Head1, Tail1, Head2, Tail2, Intersection, Difference) :- ord_intersection(Tail1, [Head2|Tail2], Intersection, Difference). ord_intersection(>, Head1, Tail1, Head2, Tail2, Intersection, [Head2|Difference]) :- ord_intersection([Head1|Tail1], Tail2, Intersection, Difference). % ord_seteq(+Set1, +Set2) % is true when the two arguments represent the same set. Since they % are assumed to be ordered representations, they must be identical. ord_seteq(Set1, Set2) :- Set1 == Set2. % ord_subset(+Set1, +Set2) % is true when every element of the ordered set Set1 appears in the % ordered set Set2. ord_subset([], _) :- !. ord_subset([Head1|Tail1], [Head2|Tail2]) :- compare(Order, Head1, Head2), ord_subset(Order, Head1, Tail1, Head2, Tail2). ord_subset(=, _, Tail1, _, Tail2) :- ord_subset(Tail1, Tail2). ord_subset(>, Head1, Tail1, _, Tail2) :- ord_subset([Head1|Tail1], Tail2). % ord_subtract(+Set1, +Set2, ?Difference) % is true when Difference contains all and only the elements of Set1 % which are not also in Set2. ord_subtract(Set1, [], Set1) :- !. ord_subtract([], _, []) :- !. ord_subtract([Head1|Tail1], [Head2|Tail2], Difference) :- compare(Order, Head1, Head2), ord_subtract(Order, Head1, Tail1, Head2, Tail2, Difference). ord_subtract(=, _, Tail1, _, Tail2, Difference) :- ord_subtract(Tail1, Tail2, Difference). ord_subtract(<, Head1, Tail1, Head2, Tail2, [Head1|Difference]) :- ord_subtract(Tail1, [Head2|Tail2], Difference). ord_subtract(>, Head1, Tail1, _, Tail2, Difference) :- ord_subtract([Head1|Tail1], Tail2, Difference). % ord_del_element(+Set1, Element, ?Rest) % is true when Rest contains the elements of Set1 % except for Set1 ord_del_element([], _, []). ord_del_element([Head1|Tail1], Head2, Rest) :- compare(Order, Head1, Head2), ord_del_element(Order, Head1, Tail1, Head2, Rest). ord_del_element(=, _, Tail1, _, Tail1). ord_del_element(<, Head1, Tail1, Head2, [Head1|Difference]) :- ord_del_element(Tail1, Head2, Difference). ord_del_element(>, Head1, Tail1, _, [Head1|Tail1]). % ord_symdiff(+Set1, +Set2, ?Difference) % is true when Difference is the symmetric difference of Set1 and Set2. ord_symdiff(Set1, [], Set1) :- !. ord_symdiff([], Set2, Set2) :- !. ord_symdiff([Head1|Tail1], [Head2|Tail2], Difference) :- compare(Order, Head1, Head2), ord_symdiff(Order, Head1, Tail1, Head2, Tail2, Difference). ord_symdiff(=, _, Tail1, _, Tail2, Difference) :- ord_symdiff(Tail1, Tail2, Difference). ord_symdiff(<, Head1, Tail1, Head2, Tail2, [Head1|Difference]) :- ord_symdiff(Tail1, [Head2|Tail2], Difference). ord_symdiff(>, Head1, Tail1, Head2, Tail2, [Head2|Difference]) :- ord_symdiff([Head1|Tail1], Tail2, Difference). % ord_union(+Set1, +Set2, ?Union) % is true when Union is the union of Set1 and Set2. Note that when % something occurs in both sets, we want to retain only one copy. ord_union(Set1, [], Set1) :- !. ord_union([], Set2, Set2) :- !. ord_union([Head1|Tail1], [Head2|Tail2], Union) :- compare(Order, Head1, Head2), ord_union(Order, Head1, Tail1, Head2, Tail2, Union). ord_union(=, Head, Tail1, _, Tail2, [Head|Union]) :- ord_union(Tail1, Tail2, Union). ord_union(<, Head1, Tail1, Head2, Tail2, [Head1|Union]) :- ord_union(Tail1, [Head2|Tail2], Union). ord_union(>, Head1, Tail1, Head2, Tail2, [Head2|Union]) :- ord_union([Head1|Tail1], Tail2, Union). % ord_union(+Set1, +Set2, ?Union, ?Difference) % is true when Union is the union of Set1 and Set2 and Difference is the % difference between Set2 and Set1. ord_union(Set1, [], Set1, []) :- !. ord_union([], Set2, Set2, Set2) :- !. ord_union([Head1|Tail1], [Head2|Tail2], Union, Diff) :- compare(Order, Head1, Head2), ord_union(Order, Head1, Tail1, Head2, Tail2, Union, Diff). ord_union(=, Head, Tail1, _, Tail2, [Head|Union], Diff) :- ord_union(Tail1, Tail2, Union, Diff). ord_union(<, Head1, Tail1, Head2, Tail2, [Head1|Union], Diff) :- ord_union(Tail1, [Head2|Tail2], Union, Diff). ord_union(>, Head1, Tail1, Head2, Tail2, [Head2|Union], [Head2|Diff]) :- ord_union([Head1|Tail1], Tail2, Union, Diff). % ord_setproduct(+Set1, +Set2, ?Product) % is in fact identical to setproduct(Set1, Set2, Product). % If Set1 and Set2 are ordered sets, Product will be an ordered % set of x1-x2 pairs. Note that we cannot solve for Set1 and % Set2, because there are infinitely many solutions when % Product is empty, and may be a large number in other cases. ord_setproduct([], _, []). ord_setproduct([H|T], L, Product) :- ord_setproduct(L, H, Product, Rest), ord_setproduct(T, L, Rest). ord_setproduct([], _, L, L). ord_setproduct([H|T], X, [X-H|TX], TL) :- ord_setproduct(T, X, TX, TL). ord_member(El,[H|T]):- compare(Op,El,H), ord_member(Op,El,T). ord_member(=,_,_). ord_member(>,El,[H|T]) :- compare(Op,El,H), ord_member(Op,El,T). ord_union([], []). ord_union([Set|Sets], Union) :- length([Set|Sets], NumberOfSets), ord_union_all(NumberOfSets, [Set|Sets], Union, []). ord_union_all(N,Sets0,Union,Sets) :- ( N=:=1 -> Sets0=[Union|Sets] ; N=:=2 -> Sets0=[Set1,Set2|Sets], ord_union(Set1,Set2,Union) ; A is N>>1, Z is N-A, ord_union_all(A, Sets0, X, Sets1), ord_union_all(Z, Sets1, Y, Sets), ord_union(X, Y, Union) ).