#include #include "YapInterface.h" #include #include /* This file is part of YAP-LBFGS. Copyright (C) 2009 Bernd Gutmann YAP-LBFGS is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. YAP-LBFGS is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with YAP-LBFGS. If not, see . */ // These constants describe the internal state #define OPTIMIZER_STATUS_NONE 0 #define OPTIMIZER_STATUS_INITIALIZED 1 #define OPTIMIZER_STATUS_RUNNING 2 #define OPTIMIZER_STATUS_CB_EVAL 3 #define OPTIMIZER_STATUS_CB_PROGRESS 4 void init_lbfgs_predicates( void ) ; int optimizer_status=OPTIMIZER_STATUS_NONE; // the internal state int n; // the size of the parameter vector lbfgsfloatval_t *x; // pointer to the parameter vector x[0],...,x[n-1] lbfgsfloatval_t *g; // pointer to the gradient vector g[0],...,g[n-1] lbfgs_parameter_t param; // the parameters used for lbfgs YAP_Functor fcall3, fprogress8; static lbfgsfloatval_t evaluate( void *instance, const lbfgsfloatval_t *x, lbfgsfloatval_t *g_tmp, const int n, const lbfgsfloatval_t step ) { YAP_Term call; YAP_Term a1; YAP_Bool result; YAP_Int s1; YAP_Term t[3]; t[0] = YAP_MkVarTerm(); t[1] = YAP_MkIntTerm(n); t[2] = YAP_MkFloatTerm(step); call = YAP_MkApplTerm(fcall3, 3, t); g=g_tmp; s1 = YAP_InitSlot(call); optimizer_status=OPTIMIZER_STATUS_CB_EVAL; result=YAP_CallProlog(call); optimizer_status=OPTIMIZER_STATUS_RUNNING; if (result==FALSE) { printf("ERROR: Calling the evaluate call back function in YAP.\n"); // Goal did not succeed return FALSE; } call = YAP_GetFromSlot( s1 ); a1 = YAP_ArgOfTerm(1,call); if (YAP_IsFloatTerm(a1)) { YAP_ShutdownGoal( TRUE ); return (lbfgsfloatval_t) YAP_FloatOfTerm(a1); } else if (YAP_IsIntTerm(a1)) { YAP_ShutdownGoal( TRUE ); return (lbfgsfloatval_t) YAP_IntOfTerm(a1); } YAP_ShutdownGoal( TRUE ); fprintf(stderr, "ERROR: The evaluate call back function did not return a number as first argument.\n"); return 0; } static int progress( void *instance, const lbfgsfloatval_t *local_x, const lbfgsfloatval_t *local_g, const lbfgsfloatval_t fx, const lbfgsfloatval_t xnorm, const lbfgsfloatval_t gnorm, const lbfgsfloatval_t step, int n, int k, int ls ) { YAP_Term call; YAP_Bool result; YAP_Int s1; YAP_Term t[8]; t[0] = YAP_MkFloatTerm(fx); t[1] = YAP_MkFloatTerm(xnorm); t[2] = YAP_MkFloatTerm(gnorm); t[3] = YAP_MkFloatTerm(step); t[4] = YAP_MkIntTerm(n); t[5] = YAP_MkIntTerm(k); t[6] = YAP_MkIntTerm(ls); t[7] = YAP_MkVarTerm(); call = YAP_MkApplTerm( fprogress8, 8, t); s1 = YAP_InitSlot(call); optimizer_status=OPTIMIZER_STATUS_CB_PROGRESS; result=YAP_CallProlog(call); optimizer_status=OPTIMIZER_STATUS_RUNNING; call = YAP_GetFromSlot( s1 ); if (result==FALSE) { printf("ERROR: Calling the progress call back function in YAP.\n"); // Goal did not succeed return FALSE; } if (YAP_IsIntTerm(YAP_ArgOfTerm(8,call))) { return YAP_IntOfTerm(YAP_ArgOfTerm(8,call)); } YAP_ShutdownGoal( TRUE ); fprintf(stderr, "ERROR: The progress call back function did not return an integer as last argument\n"); return 1; } /** @pred optimizer_set_x(+I,+X) Set the current value for `x[I]`. Only possible when the optimizer is initialized but not running. */ static int set_x_value(void) { YAP_Term t1=YAP_ARG1; YAP_Term t2=YAP_ARG2; int i=0; if (optimizer_status!=OPTIMIZER_STATUS_INITIALIZED) { printf("ERROR: set_x_value/2 can be called only when the optimizer is initialized and not running.\n"); return FALSE; } if (YAP_IsIntTerm(t1)) { i=YAP_IntOfTerm(t1); } else { return FALSE; } if (i<0 || i>=n) { printf("ERROR: invalid index for set_x_value/2.\n"); return FALSE; } if (YAP_IsFloatTerm(t2)) { x[i]=(lbfgsfloatval_t) YAP_FloatOfTerm(t2); } else if (YAP_IsIntTerm(t2)) { x[i]=(lbfgsfloatval_t) YAP_IntOfTerm(t2); } else { return FALSE; } return TRUE; } /** @pred optimizer_get_x(+I,-X) Get the current value for `x[I]`. Only possible when the optimizer is initialized or running. */ static int get_x_value(void) { YAP_Term t1=YAP_ARG1; YAP_Term t2=YAP_ARG2; int i=0; if (optimizer_status==OPTIMIZER_STATUS_NONE) { printf("ERROR: set_x_value/2 can be called only when the optimizer is initialized.\n"); return FALSE; } if (YAP_IsIntTerm(t1)) { i=YAP_IntOfTerm(t1); } else { return FALSE; } if (i<0 || i>=n) { printf("ERROR: invalid index for set_x_value/2.\n"); return FALSE; } return YAP_Unify(t2,YAP_MkFloatTerm(x[i])); } /** @pred optimizer_set_g(+I,+G) Set the current value for `g[I]` (the partial derivative of _F_ with respect to `x[I]`). Can only be called from the evaluate call back predicate. */ static int set_g_value(void) { YAP_Term t1=YAP_ARG1; YAP_Term t2=YAP_ARG2; int i=0; if (optimizer_status != OPTIMIZER_STATUS_CB_EVAL) { printf("ERROR: optimizer_set_g/2 can only be called by the evaluation call back function.\n"); return FALSE; } if (YAP_IsIntTerm(t1)) { i=YAP_IntOfTerm(t1); } else { return FALSE; } if (i<0 || i>=n) { return FALSE; } if (YAP_IsFloatTerm(t2)) { g[i]=(lbfgsfloatval_t) YAP_FloatOfTerm(t2); } else if (YAP_IsIntTerm(t2)) { g[i]=(lbfgsfloatval_t) YAP_IntOfTerm(t2); } else { return FALSE; } return TRUE; } /** @pred optimizer_get_g(+I,-G) Get the current value for `g[I]` (the partial derivative of _F_ with respect to `x[I]`). Only possible when the optimizer is initialized or running. */ static int get_g_value(void) { YAP_Term t1=YAP_ARG1; YAP_Term t2=YAP_ARG2; int i=0; if (optimizer_status != OPTIMIZER_STATUS_RUNNING && optimizer_status != OPTIMIZER_STATUS_CB_EVAL && optimizer_status != OPTIMIZER_STATUS_CB_PROGRESS) { printf("ERROR: optimizer_get_g/2 can only be called while the optimizer is running.\n"); return FALSE; } if (YAP_IsIntTerm(t1)) { i=YAP_IntOfTerm(t1); } else { return FALSE; } if (i<0 || i>=n) { return FALSE; } return YAP_Unify(t2,YAP_MkFloatTerm(g[i])); } /** @pred optimizer_initialize(+N,+Module,+Evaluate,+Progress) Create space to optimize a function with _N_ variables (_N_ has to be integer). + _Module_ is the name of the module where the call back predicates can be found, + _Evaluate_ is the call back predicate (arity 3) to evaluate the function math _F_, + _Progress_ is the call back predicate invoked (arity 8) after every iteration Example ~~~~ optimizer_initialize(1,user,evaluate,progress) ~~~~ The evaluate call back predicate has to be of the type `evaluate(-F,+N,+Step)`. It has to calculate the current function value _F_. _N_ is the size of the parameter vector (the value which was used to initialize LBFGS) and _Step_ is the current state of the line search. The call back predicate can access the current values of `x[i]` by calling `optimizer_get_x(+I,-Xi)`. Finally, the call back predicate has to calculate the gradient of _F_ and set its value by calling `optimizer_set_g(+I,+Gi)` for every `1<=I<=N`. The progress call back predicate has to be of the type `progress(+F,+X_Norm,+G_Norm,+Step,+N,+Iteration,+LS,-Continue)`. It is called after every iteration. The call back predicate can access the current values of _X_ and of the gradient by calling `optimizer_get_x(+I,-Xi)` and `optimizer_get_g`(+I,-Gi)` respectively. However, it must not call the setter predicates for Get the current Value for Name */ static int optimizer_get_parameter( void ) { YAP_Term t1 = YAP_ARG1; YAP_Term t2 = YAP_ARG2; if (! YAP_IsAtomTerm(t1)) { return FALSE; } const char* name=YAP_AtomName(YAP_AtomOfTerm(t1)); if ((strcmp(name, "m") == 0)) { return YAP_Unify(t2,YAP_MkIntTerm(param.m)); } else if ((strcmp(name, "epsilon") == 0)) { return YAP_Unify(t2,YAP_MkFloatTerm(param.epsilon)); } else if ((strcmp(name, "past") == 0)) { return YAP_Unify(t2,YAP_MkIntTerm(param.past)); } else if ((strcmp(name, "delta") == 0)) { return YAP_Unify(t2,YAP_MkFloatTerm(param.delta)); } else if ((strcmp(name, "max_iterations") == 0)) { return YAP_Unify(t2,YAP_MkIntTerm(param.max_iterations)); } else if ((strcmp(name, "linesearch") == 0)) { return YAP_Unify(t2,YAP_MkIntTerm(param.linesearch)); } else if ((strcmp(name, "max_linesearch") == 0)) { return YAP_Unify(t2,YAP_MkIntTerm(param.max_linesearch)); } else if ((strcmp(name, "min_step") == 0)) { return YAP_Unify(t2,YAP_MkFloatTerm(param.min_step)); } else if ((strcmp(name, "max_step") == 0)) { return YAP_Unify(t2,YAP_MkFloatTerm(param.max_step)); } else if ((strcmp(name, "ftol") == 0)) { return YAP_Unify(t2,YAP_MkFloatTerm(param.ftol)); } else if ((strcmp(name, "gtol") == 0)) { return YAP_Unify(t2,YAP_MkFloatTerm(param.gtol)); } else if ((strcmp(name, "xtol") == 0)) { return YAP_Unify(t2,YAP_MkFloatTerm(param.xtol)); } else if ((strcmp(name, "orthantwise_c") == 0)) { return YAP_Unify(t2,YAP_MkFloatTerm(param.orthantwise_c)); } else if ((strcmp(name, "orthantwise_start") == 0)) { return YAP_Unify(t2,YAP_MkIntTerm(param.orthantwise_start)); } else if ((strcmp(name, "orthantwise_end") == 0)) { return YAP_Unify(t2,YAP_MkIntTerm(param.orthantwise_end)); } printf("ERROR: The parameter %s is unknown.\n",name); return FALSE; } void init_lbfgs_predicates( void ) { fcall3 = YAP_MkFunctor(YAP_LookupAtom("$lbfgs_callback_evaluate"), 3); fprogress8 = YAP_MkFunctor(YAP_LookupAtom("$lbfgs_callback_progress"), 8); //Initialize the parameters for the L-BFGS optimization. lbfgs_parameter_init(¶m); YAP_UserCPredicate("optimizer_reserve_memory",optimizer_initialize,1); YAP_UserCPredicate("optimizer_run",optimizer_run,2); YAP_UserCPredicate("optimizer_free_memory",optimizer_finalize,0); YAP_UserCPredicate("optimizer_set_x",set_x_value,2); YAP_UserCPredicate("optimizer_get_x",get_x_value,2); YAP_UserCPredicate("optimizer_set_g",set_g_value,2); YAP_UserCPredicate("optimizer_get_g",get_g_value,2); YAP_UserCPredicate("optimizer_set_parameter",optimizer_set_parameter,2); YAP_UserCPredicate("optimizer_get_parameter",optimizer_get_parameter,2); }