/************************************************************************* * * * YAP Prolog * * * * Yap Prolog was developed at NCCUP - Universidade do Porto * * * * Copyright L.Damas, V.S.Costa and Universidade do Porto 1985-1997 * * * ************************************************************************** * * * File: unify.c * * Last rev: * * mods: * * comments: Unification and other auxiliary routines for absmi * * * *************************************************************************/ /** @defgroup Rational_Trees Rational Trees @ingroup extensions @{ Prolog unification is not a complete implementation. For efficiency considerations, Prolog systems do not perform occur checks while unifying terms. As an example, `X = a(X)` will not fail but instead will create an infinite term of the form `a(a(a(a(a(...)))))`, or rational tree. Rational trees are now supported by default in YAP. In previous versions, this was not the default and these terms could easily lead to infinite computation. For example, `X = a(X), X = X` would enter an infinite loop. The `RATIONAL_TREES` flag improves support for these terms. Internal primitives are now aware that these terms can exist, and will not enter infinite loops. Hence, the previous unification will succeed. Another example, `X = a(X), ground(X)` will succeed instead of looping. Other affected built-ins include the term comparison primitives, numbervars/3, copy_term/2, and the internal data base routines. The support does not extend to Input/Output routines or to assert/1 YAP does not allow directly reading rational trees, and you need to use `write_depth/2` to avoid entering an infinite cycle when trying to write an infinite term. */ #define IN_UNIFY_C 1 #define HAS_CACHE_REGS 1 #include "absmi.h" int Yap_rational_tree_loop(CELL *, CELL *, CELL **, CELL **); static int OCUnify_complex(CELL *, CELL *, CELL *); static int OCUnify(register CELL, register CELL); static Int p_ocunify( USES_REGS1 ); /* support for rational trees and unification with occur checking */ #define to_visit_base ((struct v_record *)AuxSp) int Yap_rational_tree_loop(CELL *pt0, CELL *pt0_end, CELL **to_visit, CELL **to_visit_max) { CELL ** base = to_visit; rtree_loop: while (pt0 < pt0_end) { register CELL *ptd0; register CELL d0; ptd0 = ++pt0; pt0 = ptd0; d0 = *ptd0; deref_head(d0, rtree_loop_unk); rtree_loop_nvar: { if (d0 == TermFoundVar) goto cufail; if (IsPairTerm(d0)) { to_visit -= 3; if (to_visit < to_visit_max) { to_visit = Yap_shift_visit(to_visit, &to_visit_max, &base); } to_visit[0] = pt0; to_visit[1] = pt0_end; to_visit[2] = (CELL *)*pt0; *pt0 = TermFoundVar; pt0_end = (pt0 = RepPair(d0) - 1) + 2; continue; } if (IsApplTerm(d0)) { register Functor f; register CELL *ap2; /* store the terms to visit */ ap2 = RepAppl(d0); f = (Functor) (*ap2); /* compare functors */ if (IsExtensionFunctor(f)) { continue; } to_visit -= 3; if (to_visit < to_visit_max) { to_visit = Yap_shift_visit(to_visit, &to_visit_max, &base); } to_visit[0] = pt0; to_visit[1] = pt0_end; to_visit[2] = (CELL *)*pt0; *pt0 = TermFoundVar; d0 = ArityOfFunctor(f); pt0 = ap2; pt0_end = ap2 + d0; continue; } continue; } derefa_body(d0, ptd0, rtree_loop_unk, rtree_loop_nvar); } /* Do we still have compound terms to visit */ if (to_visit < base) { pt0 = to_visit[0]; pt0_end = to_visit[1]; *pt0 = (CELL)to_visit[2]; to_visit += 3; goto rtree_loop; } return FALSE; cufail: /* we found an infinite term */ while (to_visit < (CELL **)base) { CELL *pt0; pt0 = to_visit[0]; *pt0 = (CELL)to_visit[2]; to_visit += 3; } return TRUE; } static inline int rational_tree(Term d0) { CACHE_REGS CELL **to_visit_max = (CELL **)AuxBase, **to_visit = (CELL **)AuxSp; if (IsPairTerm(d0)) { CELL *pt0 = RepPair(d0); return Yap_rational_tree_loop(pt0-1, pt0+1, to_visit, to_visit_max); } else if (IsApplTerm(d0)) { CELL *pt0 = RepAppl(d0); Functor f = (Functor)(*pt0); if (IsExtensionFunctor(f)) return FALSE; return Yap_rational_tree_loop(pt0, pt0+ArityOfFunctor(f), to_visit, to_visit_max); } else return FALSE; } static int OCUnify_complex(CELL *pt0, CELL *pt0_end, CELL *pt1) { CACHE_REGS #ifdef THREADS #undef Yap_REGS register REGSTORE *regp = Yap_regp; #define Yap_REGS (*regp) #elif defined(SHADOW_REGS) #if defined(B) || defined(TR) register REGSTORE *regp = &Yap_REGS; #define Yap_REGS (*regp) #endif /* defined(B) || defined(TR) || defined(HB) */ #endif #ifdef SHADOW_HB register CELL *HBREG = HB; #endif /* SHADOW_HB */ struct unif_record *unif = (struct unif_record *)AuxBase; struct v_record *to_visit = (struct v_record *)AuxSp; #define unif_base ((struct unif_record *)AuxBase) loop: while (pt0 < pt0_end) { register CELL *ptd0 = pt0+1; register CELL d0; ++pt1; pt0 = ptd0; d0 = *ptd0; deref_head(d0, unify_comp_unk); unify_comp_nvar: { register CELL *ptd1 = pt1; register CELL d1 = *ptd1; deref_head(d1, unify_comp_nvar_unk); unify_comp_nvar_nvar: if (d0 == d1) { if (Yap_rational_tree_loop(pt0-1, pt0, (CELL **)to_visit, (CELL **)unif)) goto cufail; continue; } if (IsPairTerm(d0)) { if (!IsPairTerm(d1)) { goto cufail; } /* now link the two structures so that no one else will */ /* come here */ /* store the terms to visit */ if (RATIONAL_TREES || pt0 < pt0_end) { to_visit --; #ifdef RATIONAL_TREES unif++; #endif if ((void *)to_visit < (void *)unif) { CELL **urec = (CELL **)unif; to_visit = (struct v_record *)Yap_shift_visit((CELL **)to_visit, &urec, NULL); unif = (struct unif_record *)urec; } to_visit->start0 = pt0; to_visit->end0 = pt0_end; to_visit->start1 = pt1; #ifdef RATIONAL_TREES unif[-1].old = *pt0; unif[-1].ptr = pt0; *pt0 = d1; #endif } pt0_end = (pt0 = RepPair(d0) - 1) + 2; pt1 = RepPair(d1) - 1; continue; } if (IsApplTerm(d0)) { register Functor f; register CELL *ap2, *ap3; if (!IsApplTerm(d1)) { goto cufail; } /* store the terms to visit */ ap2 = RepAppl(d0); ap3 = RepAppl(d1); f = (Functor) (*ap2); /* compare functors */ if (f != (Functor) *ap3) goto cufail; if (IsExtensionFunctor(f)) { if (unify_extension(f, d0, ap2, d1)) continue; goto cufail; } /* now link the two structures so that no one else will */ /* come here */ /* store the terms to visit */ if (RATIONAL_TREES || pt0 < pt0_end) { to_visit --; #ifdef RATIONAL_TREES unif++; #endif if ((void *)to_visit < (void *)unif) { CELL **urec = (CELL **)unif; to_visit = (struct v_record *)Yap_shift_visit((CELL **)to_visit, &urec, NULL); unif = (struct unif_record *)urec; } to_visit->start0 = pt0; to_visit->end0 = pt0_end; to_visit->start1 = pt1; #ifdef RATIONAL_TREES unif[-1].old = *pt0; unif[-1].ptr = pt0; *pt0 = d1; #endif } d0 = ArityOfFunctor(f); pt0 = ap2; pt0_end = ap2 + d0; pt1 = ap3; continue; } goto cufail; derefa_body(d1, ptd1, unify_comp_nvar_unk, unify_comp_nvar_nvar); /* d1 and pt2 have the unbound value, whereas d0 is bound */ Bind_Global(ptd1, d0); if (Yap_rational_tree_loop(ptd1-1, ptd1, (CELL **)to_visit, (CELL **)unif)) goto cufail; continue; } derefa_body(d0, ptd0, unify_comp_unk, unify_comp_nvar); /* first arg var */ { register CELL d1; register CELL *ptd1; ptd1 = pt1; d1 = ptd1[0]; /* pt2 is unbound */ deref_head(d1, unify_comp_var_unk); unify_comp_var_nvar: /* pt2 is unbound and d1 is bound */ Bind_Global(ptd0, d1); if (Yap_rational_tree_loop(ptd0-1, ptd0, (CELL **)to_visit, (CELL **)unif)) goto cufail; continue; derefa_body(d1, ptd1, unify_comp_var_unk, unify_comp_var_nvar); /* ptd0 and ptd1 are unbound */ UnifyGlobalCells(ptd0, ptd1); } } /* Do we still have compound terms to visit */ if (to_visit < to_visit_base) { pt0 = to_visit->start0; pt0_end = to_visit->end0; pt1 = to_visit->start1; to_visit++; goto loop; } #ifdef RATIONAL_TREES /* restore bindigs */ while (unif-- != unif_base) { CELL *pt0; pt0 = unif->ptr; *pt0 = unif->old; } #endif return TRUE; cufail: #ifdef RATIONAL_TREES /* restore bindigs */ while (unif-- != unif_base) { CELL *pt0; pt0 = unif->ptr; *pt0 = unif->old; } #endif return FALSE; #ifdef THREADS #undef Yap_REGS #define Yap_REGS (*Yap_regp) #elif defined(SHADOW_REGS) #if defined(B) || defined(TR) #undef Yap_REGS #endif /* defined(B) || defined(TR) */ #endif #undef unif_base #undef to_visit_base } static int OCUnify(register CELL d0, register CELL d1) { CACHE_REGS register CELL *pt0, *pt1; #if SHADOW_HB register CELL *HBREG = HB; #endif deref_head(d0, oc_unify_unk); oc_unify_nvar: /* d0 is bound */ deref_head(d1, oc_unify_nvar_unk); oc_unify_nvar_nvar: if (d0 == d1) { return (!rational_tree(d0)); } /* both arguments are bound */ if (IsPairTerm(d0)) { if (!IsPairTerm(d1)) { return (FALSE); } pt0 = RepPair(d0); pt1 = RepPair(d1); return (OCUnify_complex(pt0 - 1, pt0 + 1, pt1 - 1)); } else if (IsApplTerm(d0)) { if (!IsApplTerm(d1)) return (FALSE); pt0 = RepAppl(d0); d0 = *pt0; pt1 = RepAppl(d1); d1 = *pt1; if (d0 != d1) { return (FALSE); } else { if (IsExtensionFunctor((Functor)d0)) { switch(d0) { case (CELL)FunctorDBRef: return(pt0 == pt1); case (CELL)FunctorLongInt: return(pt0[1] == pt1[1]); case (CELL)FunctorDouble: return(FloatOfTerm(AbsAppl(pt0)) == FloatOfTerm(AbsAppl(pt1))); case (CELL)FunctorString: return(strcmp( (const char *)(pt0+2), (const char *)(pt1+2)) == 0); #ifdef USE_GMP case (CELL)FunctorBigInt: return(Yap_gmp_tcmp_big_big(AbsAppl(pt0),AbsAppl(pt0)) == 0); #endif /* USE_GMP */ default: return(FALSE); } } return (OCUnify_complex(pt0, pt0 + ArityOfFunctor((Functor) d0), pt1)); } } else { return(FALSE); } deref_body(d1, pt1, oc_unify_nvar_unk, oc_unify_nvar_nvar); /* d0 is bound and d1 is unbound */ YapBind(pt1, d0); /* local variables cannot be in a term */ if (pt1 > HR && pt1 < LCL0) return TRUE; if (rational_tree(d0)) return(FALSE); return (TRUE); deref_body(d0, pt0, oc_unify_unk, oc_unify_nvar); /* pt0 is unbound */ deref_head(d1, oc_unify_var_unk); oc_unify_var_nvar: /* pt0 is unbound and d1 is bound */ YapBind(pt0, d1); /* local variables cannot be in a term */ if (pt0 > HR && pt0 < LCL0) return TRUE; if (rational_tree(d1)) return(FALSE); return (TRUE); deref_body(d1, pt1, oc_unify_var_unk, oc_unify_var_nvar); /* d0 and pt1 are unbound */ UnifyCells(pt0, pt1); return (TRUE); return (TRUE); } static Int p_ocunify( USES_REGS1 ) { return(OCUnify(ARG1,ARG2)); } static Int p_cyclic( USES_REGS1 ) { Term t = Deref(ARG1); if (IsVarTerm(t)) return(FALSE); return rational_tree(t); } int Yap_IsAcyclicTerm(Term t) { return !rational_tree(t); } static Int p_acyclic( USES_REGS1 ) { Term t = Deref(ARG1); if (IsVarTerm(t)) return(TRUE); return !rational_tree(t); } int Yap_IUnify(register CELL d0, register CELL d1) { CACHE_REGS #if THREADS #undef Yap_REGS register REGSTORE *regp = Yap_regp; #define Yap_REGS (*regp) #elif SHADOW_REGS #if defined(B) || defined(TR) register REGSTORE *regp = &Yap_REGS; #define Yap_REGS (*regp) #endif /* defined(B) || defined(TR) */ #endif #if SHADOW_HB register CELL *HBREG = HB; #endif register CELL *pt0, *pt1; deref_head(d0, unify_unk); unify_nvar: /* d0 is bound */ deref_head(d1, unify_nvar_unk); unify_nvar_nvar: /* both arguments are bound */ if (d0 == d1) return TRUE; if (IsPairTerm(d0)) { if (!IsPairTerm(d1)) { return (FALSE); } pt0 = RepPair(d0); pt1 = RepPair(d1); return (IUnify_complex(pt0 - 1, pt0 + 1, pt1 - 1)); } else if (IsApplTerm(d0)) { pt0 = RepAppl(d0); d0 = *pt0; if (!IsApplTerm(d1)) return (FALSE); pt1 = RepAppl(d1); d1 = *pt1; if (d0 != d1) { return (FALSE); } else { if (IsExtensionFunctor((Functor)d0)) { switch(d0) { case (CELL)FunctorDBRef: return(pt0 == pt1); case (CELL)FunctorLongInt: return(pt0[1] == pt1[1]); case (CELL)FunctorString: return(strcmp( (const char *)(pt0+2), (const char *)(pt1+2)) == 0); case (CELL)FunctorDouble: return(FloatOfTerm(AbsAppl(pt0)) == FloatOfTerm(AbsAppl(pt1))); #ifdef USE_GMP case (CELL)FunctorBigInt: return(Yap_gmp_tcmp_big_big(AbsAppl(pt0),AbsAppl(pt0)) == 0); #endif /* USE_GMP */ default: return(FALSE); } } return (IUnify_complex(pt0, pt0 + ArityOfFunctor((Functor) d0), pt1)); } } else { return (FALSE); } deref_body(d1, pt1, unify_nvar_unk, unify_nvar_nvar); /* d0 is bound and d1 is unbound */ YapBind(pt1, d0); return (TRUE); deref_body(d0, pt0, unify_unk, unify_nvar); /* pt0 is unbound */ deref_head(d1, unify_var_unk); unify_var_nvar: /* pt0 is unbound and d1 is bound */ YapBind(pt0, d1); return TRUE; #if TRAILING_REQUIRES_BRANCH unify_var_nvar_trail: DO_TRAIL(pt0); return TRUE; #endif deref_body(d1, pt1, unify_var_unk, unify_var_nvar); /* d0 and pt1 are unbound */ UnifyCells(pt0, pt1); return (TRUE); #if THREADS #undef Yap_REGS #define Yap_REGS (*Yap_regp) #elif SHADOW_REGS #if defined(B) || defined(TR) #undef Yap_REGS #endif /* defined(B) || defined(TR) */ #endif } /********************************************************************** * * * Conversion from Label to Op * * * **********************************************************************/ #if USE_THREADED_CODE /* mask a hash table that allows for fast reverse translation from instruction address to corresponding opcode */ static void InitReverseLookupOpcode(void) { op_entry *opeptr; op_numbers i; /* 2 K should be OK */ int hash_size_mask = OP_HASH_SIZE-1; UInt sz = OP_HASH_SIZE*sizeof(struct opcode_tab_entry); while (OP_RTABLE == NULL) { if ((OP_RTABLE = (op_entry *)Yap_AllocCodeSpace(sz)) == NULL) { if (!Yap_growheap(FALSE, sz, NULL)) { Yap_Error(SYSTEM_ERROR_INTERNAL, TermNil, "Couldn't obtain space for the reverse translation opcode table"); } } } memset(OP_RTABLE, 0, sz); opeptr = OP_RTABLE; /* clear up table */ { int j; for (j=0; j _Ystop; i--) { OPCODE opc = Yap_opcode(i); int j = rtable_hash_op(opc,hash_size_mask); while (opeptr[j].opc) { if (++j > hash_size_mask) j = 0; } /* clear entry, no conflict */ opeptr[j].opnum = i; opeptr[j].opc = opc; } } #endif #define UnifyAndTrailGlobalCells(a, b) \ if((a) > (b)) { \ *(a) = (CELL)(b); \ DO_TRAIL((a), (CELL)(b)); \ } else if((a) < (b)){ \ *(b) = (CELL)(a); \ DO_TRAIL((b), (CELL)(a)); \ } static int unifiable_complex(CELL *pt0, CELL *pt0_end, CELL *pt1) { CACHE_REGS #ifdef THREADS #undef Yap_REGS register REGSTORE *regp = Yap_regp; #define Yap_REGS (*regp) #elif defined(SHADOW_REGS) #if defined(B) || defined(TR) register REGSTORE *regp = &Yap_REGS; #define Yap_REGS (*regp) #endif /* defined(B) || defined(TR) || defined(HB) */ #endif #ifdef SHADOW_HB register CELL *HBREG = HB; #endif /* SHADOW_HB */ struct unif_record *unif = (struct unif_record *)AuxBase; struct v_record *to_visit = (struct v_record *)AuxSp; #define unif_base ((struct unif_record *)AuxBase) #define to_visit_base ((struct v_record *)AuxSp) loop: while (pt0 < pt0_end) { register CELL *ptd0 = pt0+1; register CELL d0; ++pt1; pt0 = ptd0; d0 = *ptd0; deref_head(d0, unifiable_comp_unk); unifiable_comp_nvar: { register CELL *ptd1 = pt1; register CELL d1 = *ptd1; deref_head(d1, unifiable_comp_nvar_unk); unifiable_comp_nvar_nvar: if (d0 == d1) continue; if (IsPairTerm(d0)) { if (!IsPairTerm(d1)) { goto cufail; } /* now link the two structures so that no one else will */ /* come here */ /* store the terms to visit */ if (RATIONAL_TREES || pt0 < pt0_end) { to_visit --; #ifdef RATIONAL_TREES unif++; #endif if ((void *)to_visit < (void *)unif) { CELL **urec = (CELL **)unif; to_visit = (struct v_record *)Yap_shift_visit((CELL **)to_visit, &urec, NULL); unif = (struct unif_record *)urec; } to_visit->start0 = pt0; to_visit->end0 = pt0_end; to_visit->start1 = pt1; #ifdef RATIONAL_TREES unif[-1].old = *pt0; unif[-1].ptr = pt0; *pt0 = d1; #endif } pt0_end = (pt0 = RepPair(d0) - 1) + 2; pt1 = RepPair(d1) - 1; continue; } if (IsApplTerm(d0)) { register Functor f; register CELL *ap2, *ap3; if (!IsApplTerm(d1)) { goto cufail; } /* store the terms to visit */ ap2 = RepAppl(d0); ap3 = RepAppl(d1); f = (Functor) (*ap2); /* compare functors */ if (f != (Functor) *ap3) goto cufail; if (IsExtensionFunctor(f)) { if (unify_extension(f, d0, ap2, d1)) continue; goto cufail; } /* now link the two structures so that no one else will */ /* come here */ /* store the terms to visit */ if (RATIONAL_TREES || pt0 < pt0_end) { to_visit --; #ifdef RATIONAL_TREES unif++; #endif if ((void *)to_visit < (void *)unif) { CELL **urec = (CELL **)unif; to_visit = (struct v_record *)Yap_shift_visit((CELL **)to_visit, &urec, NULL); unif = (struct unif_record *)urec; } to_visit->start0 = pt0; to_visit->end0 = pt0_end; to_visit->start1 = pt1; #ifdef RATIONAL_TREES unif[-1].old = *pt0; unif[-1].ptr = pt0; *pt0 = d1; #endif } d0 = ArityOfFunctor(f); pt0 = ap2; pt0_end = ap2 + d0; pt1 = ap3; continue; } goto cufail; derefa_body(d1, ptd1, unifiable_comp_nvar_unk, unifiable_comp_nvar_nvar); /* d1 and pt2 have the unbound value, whereas d0 is bound */ *(ptd1) = d0; DO_TRAIL(ptd1, d0); continue; } derefa_body(d0, ptd0, unifiable_comp_unk, unifiable_comp_nvar); /* first arg var */ { register CELL d1; register CELL *ptd1; ptd1 = pt1; d1 = ptd1[0]; /* pt2 is unbound */ deref_head(d1, unifiable_comp_var_unk); unifiable_comp_var_nvar: /* pt2 is unbound and d1 is bound */ *ptd0 = d1; DO_TRAIL(ptd0, d1); continue; derefa_body(d1, ptd1, unifiable_comp_var_unk, unifiable_comp_var_nvar); /* ptd0 and ptd1 are unbound */ UnifyAndTrailGlobalCells(ptd0, ptd1); } } /* Do we still have compound terms to visit */ if (to_visit < to_visit_base) { pt0 = to_visit->start0; pt0_end = to_visit->end0; pt1 = to_visit->start1; to_visit++; goto loop; } #ifdef RATIONAL_TREES /* restore bindigs */ while (unif-- != unif_base) { CELL *pt0; pt0 = unif->ptr; *pt0 = unif->old; } #endif return TRUE; cufail: #ifdef RATIONAL_TREES /* restore bindigs */ while (unif-- != unif_base) { CELL *pt0; pt0 = unif->ptr; *pt0 = unif->old; } #endif return FALSE; #ifdef THREADS #undef Yap_REGS #define Yap_REGS (*Yap_regp) #elif defined(SHADOW_REGS) #if defined(B) || defined(TR) #undef Yap_REGS #endif /* defined(B) || defined(TR) */ #endif } /* don't pollute name space */ #undef to_visit_base #undef unif_base static int unifiable(CELL d0, CELL d1) { CACHE_REGS #if THREADS #undef Yap_REGS register REGSTORE *regp = Yap_regp; #define Yap_REGS (*regp) #elif SHADOW_REGS #if defined(B) || defined(TR) register REGSTORE *regp = &Yap_REGS; #define Yap_REGS (*regp) #endif /* defined(B) || defined(TR) */ #endif #if SHADOW_HB register CELL *HBREG = HB; #endif register CELL *pt0, *pt1; deref_head(d0, unifiable_unk); unifiable_nvar: /* d0 is bound */ deref_head(d1, unifiable_nvar_unk); unifiable_nvar_nvar: /* both arguments are bound */ if (d0 == d1) return TRUE; if (IsPairTerm(d0)) { if (!IsPairTerm(d1)) { return (FALSE); } pt0 = RepPair(d0); pt1 = RepPair(d1); return (unifiable_complex(pt0 - 1, pt0 + 1, pt1 - 1)); } else if (IsApplTerm(d0)) { pt0 = RepAppl(d0); d0 = *pt0; if (!IsApplTerm(d1)) return (FALSE); pt1 = RepAppl(d1); d1 = *pt1; if (d0 != d1) { return (FALSE); } else { if (IsExtensionFunctor((Functor)d0)) { switch(d0) { case (CELL)FunctorDBRef: return(pt0 == pt1); case (CELL)FunctorLongInt: return(pt0[1] == pt1[1]); case (CELL)FunctorString: return(strcmp( (const char *)(pt0+2), (const char *)(pt1+2)) == 0); case (CELL)FunctorDouble: return(FloatOfTerm(AbsAppl(pt0)) == FloatOfTerm(AbsAppl(pt1))); #ifdef USE_GMP case (CELL)FunctorBigInt: return(Yap_gmp_tcmp_big_big(AbsAppl(pt0),AbsAppl(pt0)) == 0); #endif /* USE_GMP */ default: return(FALSE); } } return (unifiable_complex(pt0, pt0 + ArityOfFunctor((Functor) d0), pt1)); } } else { return (FALSE); } deref_body(d1, pt1, unifiable_nvar_unk, unifiable_nvar_nvar); /* d0 is bound and d1 is unbound */ *(pt1) = d0; DO_TRAIL(pt1, d0); return (TRUE); deref_body(d0, pt0, unifiable_unk, unifiable_nvar); /* pt0 is unbound */ deref_head(d1, unifiable_var_unk); unifiable_var_nvar: /* pt0 is unbound and d1 is bound */ *pt0 = d1; DO_TRAIL(pt0, d1); return TRUE; deref_body(d1, pt1, unifiable_var_unk, unifiable_var_nvar); /* d0 and pt1 are unbound */ UnifyAndTrailCells(pt0, pt1); return (TRUE); #if THREADS #undef Yap_REGS #define Yap_REGS (*Yap_regp) #elif SHADOW_REGS #if defined(B) || defined(TR) #undef Yap_REGS #endif /* defined(B) || defined(TR) */ #endif } static Int p_unifiable( USES_REGS1 ) { tr_fr_ptr trp, trp0 = TR; Term tf = TermNil; if (!unifiable(ARG1,ARG2)) { return FALSE; } trp = TR; while (trp != trp0) { Term t[2]; --trp; t[0] = TrailTerm(trp); t[1] = *(CELL *)t[0]; tf = MkPairTerm(Yap_MkApplTerm(FunctorEq,2,t),tf); RESET_VARIABLE(t[0]); } return Yap_unify(ARG3, tf); } int Yap_Unifiable( Term d0, Term d1 ) { CACHE_REGS tr_fr_ptr trp, trp0 = TR; if (!unifiable(d0,d1)) { return FALSE; } trp = TR; while (trp != trp0) { Term t; --trp; t = TrailTerm(trp); RESET_VARIABLE(t); } return TRUE; } void Yap_InitUnify(void) { CACHE_REGS Term cm = CurrentModule; Yap_InitCPred("unify_with_occurs_check", 2, p_ocunify, SafePredFlag); /** @pred unify_with_occurs_check(?T1,?T2) is iso Obtain the most general unifier of terms _T1_ and _T2_, if there is one. This predicate implements the full unification algorithm. An example:n ~~~~~{.prolog} unify_with_occurs_check(a(X,b,Z),a(X,A,f(B)). ~~~~~ will succeed with the bindings `A = b` and `Z = f(B)`. On the other hand: ~~~~~{.prolog} unify_with_occurs_check(a(X,b,Z),a(X,A,f(Z)). ~~~~~ would fail, because `Z` is not unifiable with `f(Z)`. Note that `(=)/2` would succeed for the previous examples, giving the following bindings `A = b` and `Z = f(Z)`. */ Yap_InitCPred("acyclic_term", 1, p_acyclic, SafePredFlag|TestPredFlag); /** @pred acyclic_term( _T_) is iso Succeeds if there are loops in the term _T_, that is, it is an infinite term. */ CurrentModule = TERMS_MODULE; Yap_InitCPred("cyclic_term", 1, p_cyclic, SafePredFlag|TestPredFlag); Yap_InitCPred("unifiable", 3, p_unifiable, 0); CurrentModule = cm; } void Yap_InitAbsmi(void) { /* initialise access to abstract machine instructions */ #if USE_THREADED_CODE Yap_absmi(1); InitReverseLookupOpcode(); #endif } void Yap_TrimTrail(void) { CACHE_REGS #ifdef saveregs #undef saveregs #define saveregs() #endif #ifdef setregs #undef setregs #define setregs() #endif #if SHADOW_HB register CELL *HBREG = HB; #endif #include "trim_trail.h" } //! @}