#include #include #include #include #include "BeliefProp.h" #include "FactorGraph.h" #include "Factor.h" #include "Indexer.h" #include "Horus.h" BeliefProp::BeliefProp (const FactorGraph& fg) : Solver (fg) { runned_ = false; } BeliefProp::~BeliefProp (void) { for (size_t i = 0; i < varsI_.size(); i++) { delete varsI_[i]; } for (size_t i = 0; i < facsI_.size(); i++) { delete facsI_[i]; } for (size_t i = 0; i < links_.size(); i++) { delete links_[i]; } } Params BeliefProp::solveQuery (VarIds queryVids) { assert (queryVids.empty() == false); return queryVids.size() == 1 ? getPosterioriOf (queryVids[0]) : getJointDistributionOf (queryVids); } void BeliefProp::printSolverFlags (void) const { stringstream ss; ss << "belief propagation [" ; ss << "schedule=" ; typedef BpOptions::Schedule Sch; switch (BpOptions::schedule) { case Sch::SEQ_FIXED: ss << "seq_fixed"; break; case Sch::SEQ_RANDOM: ss << "seq_random"; break; case Sch::PARALLEL: ss << "parallel"; break; case Sch::MAX_RESIDUAL: ss << "max_residual"; break; } ss << ",max_iter=" << Util::toString (BpOptions::maxIter); ss << ",accuracy=" << Util::toString (BpOptions::accuracy); ss << ",log_domain=" << Util::toString (Globals::logDomain); ss << "]" ; cout << ss.str() << endl; } Params BeliefProp::getPosterioriOf (VarId vid) { if (runned_ == false) { runSolver(); } assert (fg.getVarNode (vid)); VarNode* var = fg.getVarNode (vid); Params probs; if (var->hasEvidence()) { probs.resize (var->range(), LogAware::noEvidence()); probs[var->getEvidence()] = LogAware::withEvidence(); } else { probs.resize (var->range(), LogAware::multIdenty()); const BpLinks& links = ninf(var)->getLinks(); if (Globals::logDomain) { for (size_t i = 0; i < links.size(); i++) { probs += links[i]->message(); } LogAware::normalize (probs); Util::exp (probs); } else { for (size_t i = 0; i < links.size(); i++) { probs *= links[i]->message(); } LogAware::normalize (probs); } } return probs; } Params BeliefProp::getJointDistributionOf (const VarIds& jointVarIds) { if (runned_ == false) { runSolver(); } VarNode* vn = fg.getVarNode (jointVarIds[0]); const FacNodes& facNodes = vn->neighbors(); size_t idx = facNodes.size(); for (size_t i = 0; i < facNodes.size(); i++) { if (facNodes[i]->factor().contains (jointVarIds)) { idx = i; break; } } if (idx == facNodes.size()) { return getJointByConditioning (jointVarIds); } return getFactorJoint (idx, jointVarIds); } Params BeliefProp::getFactorJoint ( size_t fnIdx, const VarIds& jointVarIds) { if (runned_ == false) { runSolver(); } FacNode* fn = fg.facNodes()[fnIdx]; Factor res (fn->factor()); const BpLinks& links = ninf(fn)->getLinks(); for (size_t i = 0; i < links.size(); i++) { Factor msg ({links[i]->varNode()->varId()}, {links[i]->varNode()->range()}, getVarToFactorMsg (links[i])); res.multiply (msg); } res.sumOutAllExcept (jointVarIds); res.reorderArguments (jointVarIds); res.normalize(); Params jointDist = res.params(); if (Globals::logDomain) { Util::exp (jointDist); } return jointDist; } void BeliefProp::runSolver (void) { initializeSolver(); nIters_ = 0; while (!converged() && nIters_ < BpOptions::maxIter) { nIters_ ++; if (Globals::verbosity > 1) { Util::printHeader (string ("Iteration ") + Util::toString (nIters_)); } switch (BpOptions::schedule) { case BpOptions::Schedule::SEQ_RANDOM: std::random_shuffle (links_.begin(), links_.end()); // no break case BpOptions::Schedule::SEQ_FIXED: for (size_t i = 0; i < links_.size(); i++) { calculateAndUpdateMessage (links_[i]); } break; case BpOptions::Schedule::PARALLEL: for (size_t i = 0; i < links_.size(); i++) { calculateMessage (links_[i]); } for (size_t i = 0; i < links_.size(); i++) { updateMessage(links_[i]); } break; case BpOptions::Schedule::MAX_RESIDUAL: maxResidualSchedule(); break; } } if (Globals::verbosity > 0) { if (nIters_ < BpOptions::maxIter) { cout << "Belief propagation converged in " ; cout << nIters_ << " iterations" << endl; } else { cout << "The maximum number of iterations was hit, terminating..." ; cout << endl; } cout << endl; } runned_ = true; } void BeliefProp::createLinks (void) { const FacNodes& facNodes = fg.facNodes(); for (size_t i = 0; i < facNodes.size(); i++) { const VarNodes& neighbors = facNodes[i]->neighbors(); for (size_t j = 0; j < neighbors.size(); j++) { links_.push_back (new BpLink (facNodes[i], neighbors[j])); } } } void BeliefProp::maxResidualSchedule (void) { if (nIters_ == 1) { for (size_t i = 0; i < links_.size(); i++) { calculateMessage (links_[i]); SortedOrder::iterator it = sortedOrder_.insert (links_[i]); linkMap_.insert (make_pair (links_[i], it)); } return; } for (size_t c = 0; c < links_.size(); c++) { if (Globals::verbosity > 1) { cout << "current residuals:" << endl; for (SortedOrder::iterator it = sortedOrder_.begin(); it != sortedOrder_.end(); ++it) { cout << " " << setw (30) << left << (*it)->toString(); cout << "residual = " << (*it)->residual() << endl; } } SortedOrder::iterator it = sortedOrder_.begin(); BpLink* link = *it; if (link->residual() < BpOptions::accuracy) { return; } updateMessage (link); link->clearResidual(); sortedOrder_.erase (it); linkMap_.find (link)->second = sortedOrder_.insert (link); // update the messages that depend on message source --> destin const FacNodes& factorNeighbors = link->varNode()->neighbors(); for (size_t i = 0; i < factorNeighbors.size(); i++) { if (factorNeighbors[i] != link->facNode()) { const BpLinks& links = ninf(factorNeighbors[i])->getLinks(); for (size_t j = 0; j < links.size(); j++) { if (links[j]->varNode() != link->varNode()) { calculateMessage (links[j]); BpLinkMap::iterator iter = linkMap_.find (links[j]); sortedOrder_.erase (iter->second); iter->second = sortedOrder_.insert (links[j]); } } } } if (Globals::verbosity > 1) { Util::printDashedLine(); } } } void BeliefProp::calcFactorToVarMsg (BpLink* link) { FacNode* src = link->facNode(); const VarNode* dst = link->varNode(); const BpLinks& links = ninf(src)->getLinks(); // calculate the product of messages that were sent // to factor `src', except from var `dst' unsigned reps = 1; unsigned msgSize = Util::sizeExpected (src->factor().ranges()); Params msgProduct (msgSize, LogAware::multIdenty()); if (Globals::logDomain) { for (size_t i = links.size(); i-- > 0; ) { if (links[i]->varNode() != dst) { if (Constants::SHOW_BP_CALCS) { cout << " message from " << links[i]->varNode()->label(); cout << ": " ; } Util::apply_n_times (msgProduct, getVarToFactorMsg (links[i]), reps, std::plus()); if (Constants::SHOW_BP_CALCS) { cout << endl; } } reps *= links[i]->varNode()->range(); } } else { for (size_t i = links.size(); i-- > 0; ) { if (links[i]->varNode() != dst) { if (Constants::SHOW_BP_CALCS) { cout << " message from " << links[i]->varNode()->label(); cout << ": " ; } Util::apply_n_times (msgProduct, getVarToFactorMsg (links[i]), reps, std::multiplies()); if (Constants::SHOW_BP_CALCS) { cout << endl; } } reps *= links[i]->varNode()->range(); } } Factor result (src->factor().arguments(), src->factor().ranges(), msgProduct); result.multiply (src->factor()); if (Constants::SHOW_BP_CALCS) { cout << " message product: " << msgProduct << endl; cout << " original factor: " << src->factor().params() << endl; cout << " factor product: " << result.params() << endl; } result.sumOutAllExcept (dst->varId()); if (Constants::SHOW_BP_CALCS) { cout << " marginalized: " << result.params() << endl; } link->nextMessage() = result.params(); LogAware::normalize (link->nextMessage()); if (Constants::SHOW_BP_CALCS) { cout << " curr msg: " << link->message() << endl; cout << " next msg: " << link->nextMessage() << endl; } } Params BeliefProp::getVarToFactorMsg (const BpLink* link) const { const VarNode* src = link->varNode(); Params msg; if (src->hasEvidence()) { msg.resize (src->range(), LogAware::noEvidence()); msg[src->getEvidence()] = LogAware::withEvidence(); } else { msg.resize (src->range(), LogAware::one()); } if (Constants::SHOW_BP_CALCS) { cout << msg; } BpLinks::const_iterator it; const BpLinks& links = ninf (src)->getLinks(); if (Globals::logDomain) { for (it = links.begin(); it != links.end(); ++it) { msg += (*it)->message(); if (Constants::SHOW_BP_CALCS) { cout << " x " << (*it)->message(); } } msg -= link->message(); } else { for (it = links.begin(); it != links.end(); ++it) { msg *= (*it)->message(); if (Constants::SHOW_BP_CALCS) { cout << " x " << (*it)->message(); } } msg /= link->message(); } if (Constants::SHOW_BP_CALCS) { cout << " = " << msg; } return msg; } Params BeliefProp::getJointByConditioning (const VarIds& jointVarIds) const { return Solver::getJointByConditioning (GroundSolver::BP, fg, jointVarIds); } void BeliefProp::initializeSolver (void) { const VarNodes& varNodes = fg.varNodes(); varsI_.reserve (varNodes.size()); for (size_t i = 0; i < varNodes.size(); i++) { varsI_.push_back (new SPNodeInfo()); } const FacNodes& facNodes = fg.facNodes(); facsI_.reserve (facNodes.size()); for (size_t i = 0; i < facNodes.size(); i++) { facsI_.push_back (new SPNodeInfo()); } createLinks(); for (size_t i = 0; i < links_.size(); i++) { FacNode* src = links_[i]->facNode(); VarNode* dst = links_[i]->varNode(); ninf (dst)->addBpLink (links_[i]); ninf (src)->addBpLink (links_[i]); } } bool BeliefProp::converged (void) { if (links_.size() == 0) { return true; } if (nIters_ == 0) { return false; } if (Globals::verbosity > 2) { cout << endl; } if (nIters_ == 1) { if (Globals::verbosity > 1) { cout << "no residuals" << endl << endl; } return false; } bool converged = true; if (BpOptions::schedule == BpOptions::Schedule::MAX_RESIDUAL) { double maxResidual = (*(sortedOrder_.begin()))->residual(); if (maxResidual > BpOptions::accuracy) { converged = false; } else { converged = true; } } else { for (size_t i = 0; i < links_.size(); i++) { double residual = links_[i]->residual(); if (Globals::verbosity > 1) { cout << links_[i]->toString() + " residual = " << residual << endl; } if (residual > BpOptions::accuracy) { converged = false; if (Globals::verbosity < 2) { break; } } } if (Globals::verbosity > 1) { cout << endl; } } return converged; } void BeliefProp::printLinkInformation (void) const { for (size_t i = 0; i < links_.size(); i++) { BpLink* l = links_[i]; cout << l->toString() << ":" << endl; cout << " curr msg = " ; cout << l->message() << endl; cout << " next msg = " ; cout << l->nextMessage() << endl; cout << " residual = " << l->residual() << endl; } }