
cplint Version 2.0 Manual

Fabrizio Riguzzi
fabrizio.riguzzi@unife.it

July 27, 2010

1 Introduction

cplint is a suite of programs for reasoning with LPADs [11, 12] and CP-logic
programs [10, 13].

It consists of three Prolog modules for answering queries using goal-
oriented procedures plus three Prolog modules for answering queries using
the definition of the semantics of LPADs and CP-logic.

The modules for answering queries using using goal-oriented procedures
are lpadsld.pl, lpad.pl and cpl.pl:

• lpadsld.pl: computes the probability of a query using the top-down
procedure described in in [7] and [8]. It is based on SLDNF resolution
and is an adaptation of the interpreter for ProbLog [4].

It was proved correct [8] with respect to the semantics of LPADs for
range restricted acyclic programs [1] without function symbols.

It is also able to deal with extensions of LPADs and CP-logic: the
clause bodies can contain setof and bagof, the probabilities in the
head may be depend on variables in the body and it is possible to
specify a uniform distribution in the head with reference to a setof or
bagof operator. These extended features have been introduced in order
to represent CLP(BN) [9] programs and PRM models [6]: setof and
bagof allow to express dependency of an attribute from an aggregate
function of another attribute, as in CLP(BN) and PRM, while the
possibility of specifying a uniform distribution allows the use of the
reference uncertainty feature of PRM.

• lpad.pl: computes the probability of a query using a top-down proce-
dure based on SLG resolution [3]. As a consequence, it works for any

1

sound LPADs, i.e., any LPAD such that each of its instances has a two
valued well founded model.

• cpl.pl: computes the probability of a query using a top-down proce-
dure based on SLG resolution and moreover checks that the CP-logic
program is valid, i.e., that it has at least an execution model.

The modules for answering queries using the definition of the semantics
of LPADs and CP-logic are semlpadsld.pl, semlpad.pl and semcpl.pl:

• semlpadsld.pl: given an LPAD P , it generates all the instances of
P . The probability of a query Q is computed by identifying all the
instances where Q is derivable by SLDNF resolution.

• semlpad.pl: given an LPAD P , it generates all the instances of P . The
probability of a query Q is computed by identifying all the instances
where Q is derivable by SLG resolution.

• semlcpl.pl: given an LPAD P , it builds an execution model of P , i.e.,
a probabilistic process that satisfy the principles of universal causation,
sufficient causation, independent causation, no deus ex machina events
and temporal precedence. It uses the definition of the semantics given
in [13].

2 Installation

cplint is distributed in source code in the git version of Yap. It includes
Prolog and C files. Download it by following the instruction in http://www.

ncc.up.pt/~vsc/Yap/downloads.html.
cplint requires cudd and glib-2.0. You can download cudd from http:

//vlsi.colorado.edu/~fabio/CUDD/. You can download glib-2.0 (version
≥ 2.0) from http://www.gtk.org/. This is a standard GNU package so it
is easy to install it using the package management software of your Linux or
Cygwin distribution.

Compile cudd:

1. downlad cudd-2.4.2.tar.gz

2. decompress it

3. cd cudd-2.4.2

4. check makefile options

2

http://www.ncc.up.pt/~vsc/Yap/downloads.html
http://www.ncc.up.pt/~vsc/Yap/downloads.html
http://vlsi.colorado.edu/~fabio/CUDD/
http://vlsi.colorado.edu/~fabio/CUDD/
http://www.gtk.org/

5. make

Install Yap together with cplint: when compiling Yap following the
instuction of the INSTALL file in the root of the Yap folder, use

configure --enable-cplint=DIR

Under Windows, you have to use Cygwin (glu does not compile under MinGW),
so

configure --enable-cplint=DIR --enable-cygwin

where DIR is the path to the directory cudd-2.4.2 (including cudd-2.4.2).
After having performed make install you can do make installcheck

that will execute a suite of tests of the various programs. If no error is
reported you have a working installation of cplint.

3 Syntax

Disjunction in the head is represented with a semicolon and atoms in the
head are separated from probabilities by a colon. For the rest, the usual
syntax of Prolog is used. For example, the CP-logic clause

h1 : p1 ∨ . . . ∨ hn : pn ← b1, . . . , bm,¬c1, . . . ,¬cl

is represented by

h1:p1 ; ... ; hn:pn :- b1,...,bm,\+ c1,....,\+ cl

No parentheses are necessary. The pi are numeric expressions. It is up to
the user to ensure that the numeric expressions are legal, i.e. that they sum
up to less than one.

If the clause has an empty body, it can be represented like this

h1:p1 ; ... ;hn:pn.

If the clause has a single head with probability 1, the annotation can be
omitted and the clause takes the form of a normal prolog clause, i.e.

h1:- b1,...,bm,\+ c1,...,\+ cl.

stands for

h1:1 :- b1,...,bm,\+ c1,...,\+ cl.

3

The coin example of [12] is represented as (see file coin.cpl)

heads(Coin):1/2 ; tails(Coin):1/2:-

toss(Coin),\+biased(Coin).

heads(Coin):0.6 ; tails(Coin):0.4:-

toss(Coin),biased(Coin).

fair(Coin):0.9 ; biased(Coin):0.1.

toss(coin).

The first clause states that if we toss a coin that is not biased it has equal
probability of landing heads and tails. The second states that if the coin is
biased it has a slightly higher probability of landing heads. The third states
that the coin is fair with probability 0.9 and biased with probability 0.1 and
the last clause states that we toss a coin with certainty.

4 Commands

All six modules accept the same commands for reading in files and answering
queries. The LPAD or CP-logic program must be stored in a text file with
extension .cpl. Suppose you have stored the example above in file coin.cpl.
In order to answer queries from this program, you have to run Yap, load one
of the modules (such as for example lpad.pl) by issuing the command

use_module(library(lpad)).

at the command prompt. Then you must parse the source file coin.cpl with
the command

p(coin).

if coin.cpl is in the current directory, or

p(’path_to_coin/coin’).

if coin.cpl is in a different directory. At this point you can pose query
to the program by using the predicate s/2 (for solve) that takes as its first
argument a conjunction of goals in the form of a list and returns the computed
probability as its second argument. For example, the probability of the
conjunction head(coin),biased(coin) can be asked with the query

s([head(coin),biased(coin)],P).

4

For computing the probability of a conjunction given another conjunction
you can use the predicate sc/3 (for solve conditional) that take takes as
input the query conjunction as its first argument, the evidence conjunction
as its second argument and returns the probability in its third argument.
For example, the probability of the query heads(coin) given the evidence
biased(coin) can be asked with the query

sc([heads(coin)],[biased(coin)],P).

After having parsed a program, in order to read in a new program you must
restart Yap when using semlpadsld.pl and semlpad.pl. With the other
modules, you can directly parse a new program.

When using lpad.pl, the system can print the message “Uunsound pro-
gram” in the case in which an instance with a three valued well founded
model is found. Moreover, it can print the message “It requires the choice of
a head atom from a non ground head”: in this case, in order to answer the
query, all the groundings of the culprit clause must be generated, which may
be impossible for programs with function symbols.

When using semcpl.pl, you can print the execution process by using the
command print. after p(file). Moreover, you can build an execution
process given a context by issuing the command parse(file). and then
build(context). where context is a list of atoms that are true in the
context. semcpl.pl can print “Invalid program” in the case in which no
execution process exists.

When using cpl.pl you can print a partial execution model including all
the clauses involved in the query issued with print. cpl.pl can print the
messages “Uunsound program”, “It requires the choice of a head atom from
a non ground head” and “Invalid program”.

The modules make use of a number of parameters in order to control their
behavior. They that can be set with the command

set(parameter,value).

from the Yap prompt after having loaded the module. The current value can
be read with

setting(parameter,Value).

from the Yap prompt. The available parameters are:

• epsilon_parsing (valid for all six modules): if (1 - the sum of the
probabilities of all the head atoms) is smaller than epsilon_parsing

then cplint adds the null events to the head. Default value 0.00001

5

• save_dot (valid for all goal-oriented modules): if true a graph repre-
senting the BDD is saved in the file cpl.dot in the current directory
in dot format. The variables names are of the form Xn_m where n is
the number of the multivalued variable and m is the number of the bi-
nary variable. The correspondence between variables and clauses can
be evinced from the message printed on the screen, such as

Variables: [(2,[X=2,X1=1]),(2,[X=1,X1=0]),(1,[])]

where the first element of each couple is the clause number of the input
file (starting from 1). In the example above variable X0 corresponds to
clause 2 with the substitutions X=2,X1=1, variable X1 corresponds to
clause 2 with the substitutions X=1,X1=0 and variable X2 corresponds
to clause 1 with the empty substitution. You can view the graph with
graphviz (www.graphviz.org) using the command

dotty cpl.dot &

• ground_body (valid for lpadsld.pl and all semantic modules): de-
termines how non ground clauses are treated: if true, ground clauses
are obtained from a non ground clause by replacing each variable with
a constant, if false, ground clauses are obtained by replacing only
variables in the head with a constant. In the case where the body con-
tains variables not in the head, setting it to false means that the body
represents an existential event.

5 Semantic Modules

The three semantic modules need to produce a grounding of the program in
order to compute the semantics. They require an extra file with extension
.uni (for universe) in the same directory where the .cpl file is.

There are two ways to specify how to ground a program. The first consists
in providing the list of constants to which each variable can be instantiated.
For example, in our case the current directory will contain a file coin.uni

that is a Prolog file containing facts of the form

universe(var_list,const_list).

where var_list is a list of variables names (each must be included in single
quotes) and const_list is a list of constants. The semantic modules generate
the grounding by instantiating in all possible ways the variables of var_list

6

www.graphviz.org

with the constants of const_list. Note that the variables are identified
by name, so a variable with the same name in two different clauses will be
instantiated with the same constants.

The other way to specify how to ground a program consists in using mode
and type information. For each predicate, the file .uni must contain a fact
of the form

mode(predicate(t1,...,tn)).

that specifies the number and types of each argument of the predicate. Then,
the list of constants that are in the domain of each type ti must be specified
with a fact of the form

type(ti,list_of_constants).

The file .uni can contain both universe and mode declaration, the ones
to be used depend on the value of the parameter grounding: with value
variables, the universe declarations are used, with value modes the mode
declarations are used.

With semcpl.pl only mode declarations can be used.

6 Extensions

In this section we will present the extensions to the syntax of LPADs and
CP-logic programs that cplint can handle.

The first is the use of some standard Prolog predicates. The bodies can
contain the built-in predicates:

is/2

>/2

</2

>=/2

=</2

=:=/2

=\=/2

true/0

false/0

=/2

==/2

\=/2

\==/2

length/2

7

The bodies can also contain the following library predicates:

member/2

max_list/2

min_list/2

nth0/3

nth/3

plus the predicate

average/2

that, given a list of numbers, computes its arithmetic mean.
When using lpadsld.pl, the bodies can contain the predicates setof/3

and bagof/3 with the same meaning as in Prolog. Existential quantifiers are
allowed in both, so for example the query

setof(Z, (term(X,Y))^foo(X,Y,Z), L).

returns all the instantiations of Z such that there exists an instantiation of
X and Y for which foo(X,Y,Z) is true.

An example of the use of setof and bagof is in the file female.cpl:

male(C):M/P ; female(C):F/P:-

person(C),

setof(Male,known_male(Male),LM),

length(LM,M),

setof(Female,known_female(Female),LF),

length(LF,F),

P is F+M.

person(f).

known_female(a).

known_female(b).

known_female(c).

known_male(d).

known_male(e).

8

The disjunctive rule expresses the probability of a person of unknown sex of
being male or female depending on the number of males and females that
are known. This is an example of the use of expressions in the probabilities
in the head that depend on variables in the body. The probabilities are well
defined because they always sum to 1 (unless P is 0).

Another use of setof and bagof is to have an attribute depend on an
aggregate function of another attribute, similarly to what is done in PRM
and CLP(BN).

So, in the classical school example (available in student.cpl) you can
find the following clauses:

student_rank(S,h):0.6 ; student_rank(S,l):0.4:-

bagof(G,R^(registr_stu(R,S),registr_gr(R,G)),L),

average(L,Av),Av>1.5.

student_rank(S,h):0.4 ; student_rank(S,l):0.6:-

bagof(G,R^(registr_stu(R,S),registr_gr(R,G)),L),

average(L,Av),Av =< 1.5.

where registr_stu(R,S) expresses that registration R refers to student S

and registr_gr(R,G) expresses that registration R reports grade G which is
a natural number. The two clauses express a dependency of the rank of the
student from the average of her grades.

Another extension can be used with lpadsld.pl in order to be able to
represent reference uncertainty of PRMs. Reference uncertainty means that
the link structure of a relational model is not fixed but is uncertain: this is
represented by having the instance referenced in a relationship be chosen uni-
formly from a set. For example, consider a domain modeling scientific papers:
you have a single entity, paper, and a relationship, cites, between paper and
itself that connects the citing paper to the cited paper. To represent the fact
that the cited paper and the citing paper are selected uniformly from certain
sets, the following clauses can be used (see file paper_ref_simple.cpl):

uniform(cites_cited(C,P),P,L):-

bagof(Pap,paper_topic(Pap,theory),L).

uniform(cites_citing(C,P),P,L):-

bagof(Pap,paper_topic(Pap,ai),L).

The first clauses states that the paper P cited in a citation C is selected
uniformly from the set of all papers with topic theory. The second clauses
expresses that the citing paper is selected uniformly from the papers with
topic ai.

9

These clauses make use of the predicate

uniform(Atom,Variable,List)

in the head, where Atom must contain Variable. The meaning is the fol-
lowing: the set of all the atoms obtained by instantiating Variable of Atom
with a term taken from List is generated and the head is obtained by having
a disjunct for each instantiation with probability 1/N where N is the length
of List.

A more elaborate example is present in file paper_ref.cpl:

uniform(cites_citing(C,P),P,L):-

setof(Pap,paper(Pap),L).

cites_cited_group(C,theory):0.9 ; cites_cited_group(C,ai):0.1:-

cites_citing(C,P),paper_topic(P,theory).

cites_cited_group(C,theory):0.01;cites_cited_group(C,ai):0.99:-

cites_citing(C,P),paper_topic(P,ai).

uniform(cites_cited(C,P),P,L):-

cites_cited_group(C,T),bagof(Pap,paper_topic(Pap,T),L).

where the cited paper depends on the topic of the citing paper. In partic-
ular, if the topic is theory, the cited paper is selected uniformly from the
papers about theory with probability 0.9 and from the papers about ai with
probability 0.1. if the topic is ai, the cited paper is selected uniformly from
the papers about theory with probability 0.01 and from the papers about ai
with probability 0.99.

PRMs take into account as well existence uncertainty, where the existence
of instances is also probabilistic. For example, in the paper domain, the total
number of citations may be unknown and a citation between any two paper
may have a probability of existing. For example, a citation between two
paper may be more probable if they are about the same topic:

cites(X,Y):0.005 :-

paper_topic(X,theory),paper_topic(Y,theory).

cites(X,Y):0.001 :-

paper_topic(X,theory),paper_topic(Y,ai).

cites(X,Y):0.003 :-

paper_topic(X,ai),paper_topic(Y,theory).

10

cites(X,Y):0.008 :-

paper_topic(X,ai),paper_topic(Y,ai).

This is an example where the probabilities in the head do not sum up to one
so the null event is automatically added to the head. The first clause states
that, if the topic of a paper X is theory and of paper Y is theory, there is a
probability of 0.005 that there is a citation from X to Y. The other clauses
consider the remaining cases for the topics.

7 Additional Files

In the directory where Yap keeps the library files (usually /usr/local/share/

Yap) you can find the directory cplint that contains the files:

• testlpadsld_gbtrue.pl, testlpadsld_gbfalse.pl, testlpad.pl,

testcpl.pl, testsemlpadsld.pl, testsemlpad.pl testsemcpl.pl:
Prolog programs for testing the modules. They are executed when is-
suing the command make installcheck during the installation. To
execute them afterwords, load the file and issue the command t.

• Subdirectory examples:

– alarm.cpl: representation of the Bayesian network in Figure 2 of
[12].

– coin.cpl: coin example from [12].

– coin2.cpl: coin example with two coins.

– dice.cpl: dice example from [12].

– twosideddice.cpl, threesideddice.cpl game with idealized
dice with two or three sides. Used in the experiments in [8].

– ex.cpl: first example in [8].

– exapprox.cpl: example showing the problems of approximate
inference (see [8]).

– exrange.cpl: example showing the problems with non range re-
stricted programs (see [8]).

– female.cpl: example showing the dependence of probabilities in
the head from variables in the body (from [12]).

– mendel.cpl, mendels.cpl: programs describing the Mendelian
rules of inheritance, taken from [2].

11

– paper_ref.cpl, paper_ref_simple.cpl: paper citations exam-
ples, showing reference uncertainty, inspired by [6].

– paper_ref_not.cpl: paper citations example showing that nega-
tion can be used also for predicates defined by clauses with uniform

in the head.

– school.cpl: example inspired by the example school_32.yap

from the source distribution of Yap in the CLPBN directory.

– school_simple.cpl: simplified version of school.cpl.

– student.cpl: student example from Figure 1.3 of [5].

– win.cpl, light.cpl, trigger.cpl, throws.cpl, hiv.cpl,

invalid.cpl: programs taken from [13]. invalid.cpl is an ex-
ample of a program that is invalid but sound.

The files *.uni that are present for some of the examples are used by
the semantical modules. Some of the example files contain in an initial
comment some queries together with their result.

• Subdirectory doc: contains this manual in latex, html and pdf.

8 License

cplint, as Yap, follows the Artistic License 2.0 that you can find in Yap
CVS root dir. The copyright is by Fabrizio Riguzzi.

The program uses the library CUDD for manipulating BDDs that is in-
cluded in glu. For the use of CUDD, the following license must be accepted:

Copyright (c) 1995-2004, Regents of the University of Colorado
All rights reserved.
Redistribution and use in source and binary forms, with or without mod-

ification, are permitted provided that the following conditions are met:

• Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.

• Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the docu-
mentation and/or other materials provided with the distribution.

• Neither the name of the University of Colorado nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.

12

http://vlsi.colorado.edu/~fabio/

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS
AND CONTRIBUTORS ”AS IS” AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PAR-
TICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DI-
RECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CON-
SEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PRO-
CUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAU-
SED
AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFT-
WARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

lpad.pl, semlpad.pl and cpl.pl are based on the SLG system by Wei-
dong Chen and David Scott Warren, Copyright (C) 1993 Southern Methodist
University, 1993 SUNY at Stony Brook, see the file COYPRIGHT SLG for
detailed information on this copyright.

References

[1] K. R. Apt and M. Bezem. Acyclic programs. New Generation Comput.,
9(3/4):335–364, 1991.

[2] H. Blockeel. Probabilistic logical models for mendel’s experiments: An
exercise. In Inductive Logic Programming (ILP 2004), Work in Progress
Track, 2004.

[3] Weidong Chen and David Scott Warren. Tabled evaluation with delaying
for general logic programs. J. ACM, 43(1):20–74, 1996.

[4] L. De Raedt, A. Kimmig, and H. Toivonen. Problog: A probabilistic
prolog and its application in link discovery. In Proceedings of the 20th
International Joint Conference on Artificial Intelligence, pages 2462–
2467, 2007.

[5] L. Getoor, N. Friedman, D. Koller, and A. Pfeffer. Learning probabilistic
relational models. In Saso Dzeroski and Nada Lavrac, editors, Relational
Data Mining. Springer-Verlag, Berlin, 2001.

13

http://engr.smu.edu/~wchen/
http://engr.smu.edu/~wchen/
http://www.cs.sunysb.edu/~warren/

[6] L. Getoor, N. Friedman, D. Koller, and B. Taskar. Learning probabilistic
models of relational structure. Journal of Machine Learning Research,
3:679–707, December 2002.

[7] Fabrizio Riguzzi. A top down interpreter for lpad and cp-logic. In 10th
Congress of the Italian Association for Artificial Intelligence. Springer,
2007. http://www.ing.unife.it/docenti/FabrizioRiguzzi/Papers/Rig-
AIIA07.pdf.

[8] Fabrizio Riguzzi. A top down interpreter for lpad and cp-logic.
In The 14th RCRA workshop Experimental Evaluation of Algo-
rithms for Solving Problems with Combinatorial Explosion, 2007.
http://pst.istc.cnr.it/RCRA07/articoli/P19-riguzzi-RCRA07.pdf.

[9] V. Santos Costa, D. Page, M. Qazi, and J. Cussens. CLP(BN): Con-
straint logic programming for probabilistic knowledge. In Uncertainty
in Artificial Intelligence (UAI 2003), 2003.

[10] J. Vennekens, M. Denecker, and M. Bruynooghe. Representing causal
information about a probabilistic process. In 10th European Confer-
ence on Logics in Artificial Intelligence, JELIA 2006, LNAI. Springer,
September 2006.

[11] J. Vennekens and S. Verbaeten. Logic programs with annotated
disjunctions. Technical Report CW386, K. U. Leuven, 2003.
http://www.cs.kuleuven.ac.be/∼joost/techrep.ps.

[12] J. Vennekens, S. Verbaeten, and M. Bruynooghe. Logic pro-
grams with annotated disjunctions. In The 20th Interna-
tional Conference on Logic Programming (ICLP 2004), 2004.
http://www.cs.kuleuven.ac.be/∼joost/.

[13] Joost Vennekens, Marc Denecker, and Maurice Bruynooge.
Extending the role of causality in probabilistic modeling.
http://www.cs.kuleuven.ac.be/∼joost/cplogic.pdf, 2006.

14

http://www.ing.unife.it/docenti/FabrizioRiguzzi/Papers/Rig-AIIA07.pdf
http://www.ing.unife.it/docenti/FabrizioRiguzzi/Papers/Rig-AIIA07.pdf
http://pst.istc.cnr.it/RCRA07/articoli/P19-riguzzi-RCRA07.pdf
http://www.cs.kuleuven.ac.be/~joost/techrep.ps
http://www.cs.kuleuven.ac.be/~joost/
http://www.cs.kuleuven.ac.be/~joost/cplogic.pdf

	Introduction
	Installation
	Syntax
	Commands
	Semantic Modules
	Extensions
	Additional Files
	License

