/* $Id$ Part of SWI-Prolog Author: Jan Wielemaker E-mail: wielemak@science.uva.nl WWW: http://www.swi-prolog.org Copyright (C): 1985-2007, University of Amsterdam This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA As a special exception, if you link this library with other files, compiled with a Free Software compiler, to produce an executable, this library does not by itself cause the resulting executable to be covered by the GNU General Public License. This exception does not however invalidate any other reasons why the executable file might be covered by the GNU General Public License. */ :- module(rdf_persistency, [ rdf_attach_db/2, % +Directory, +Options rdf_detach_db/0, % +Detach current DB rdf_current_db/1, % -Directory rdf_persistency/2, % +DB, +Bool rdf_flush_journals/1, % +Options rdf_journal_file/2, % ?DB, ?JournalFile rdf_db_to_file/2 % ?DB, ?FileBase ]). :- use_module(library('semweb/rdf_db')). :- use_module(library(lists)). :- use_module(library(url)). :- use_module(library(debug)). :- use_module(library(error)). :- use_module(library(thread)). :- use_module(library(pairs)). /** <module> RDF persistency plugin This module provides persistency for rdf_db.pl based on the rdf_monitor/2 predicate to track changes to the repository. Where previous versions used autosafe of the whole database using the quick-load format of rdf_db, this version is based on a quick-load file per source (4th argument of rdf/4), and journalling for edit operations. The result is safe, avoids frequent small changes to large files which makes synchronisation and backup expensive and avoids long disruption of the server doing the autosafe. Only loading large files disrupts service for some time. The persistent backup of the database is realised in a directory, using a lock file to avoid corruption due to concurrent access. Each source is represented by two files, the latest snapshot and a journal. The state is restored by loading the snapshot and replaying the journal. The predicate rdf_flush_journals/1 can be used to create fresh snapshots and delete the journals. @tbd if there is a complete `.new' snapshot and no journal, we should move the .new to the plain snapshot name as a means of recovery. @see rdf_edit.pl */ :- volatile rdf_directory/1, rdf_option/1, source_journal_fd/2, db_file_base/2, file_base_db/2. :- dynamic rdf_directory/1, % Absolute path rdf_option/1, % Defined options source_journal_fd/2, % DB, JournalFD db_file_base/2, % DB, FileBase file_base_db/2. % FileBase, DB :- meta_predicate no_agc(0). %% rdf_attach_db(+Directory, +Options) % % Start persistent operations using Directory as place to store % files. There are several cases: % % * Empty DB, existing directory % Load the DB from the existing directory % % * Full DB, empty directory % Create snapshots for all sources in directory % % Options: % % * concurrency(+Jobs) % Number of threads to use for loading the initial % database. If not provided it is the number of CPUs % as optained from the flag =cpu_count=. % % * max_open_journals(+Count) % Maximum number of journals kept open. If not provided, % the default is 10. See limit_fd_pool/0. % % * silent(+BoolOrBrief) % If =true= (default =false=), do not print informational % messages. Finally, if =brief= it will show minimal % feedback. % % * log_nested_transactions(+Boolean) % If =true=, nested _log_ transactions are added to the % journal information. By default (=false=), no log-term % is added for nested transactions. rdf_attach_db(DirSpec, Options) :- absolute_file_name(DirSpec, Directory, [ access(write), file_type(directory), file_errors(fail) ]), !, ( rdf_directory(Directory) -> true % update settings? ; rdf_detach_db, mkdir(Directory), lock_db(Directory), assert(rdf_directory(Directory)), assert_options(Options), stop_monitor, % make sure not to register load no_agc(load_db), at_halt(rdf_detach_db), start_monitor ). rdf_attach_db(DirSpec, Options) :- absolute_file_name(DirSpec, Directory, [ solutions(all) ]), ( exists_directory(Directory) -> access_file(Directory, write) ; catch(make_directory(Directory), _, fail) ), !, rdf_attach_db(Directory, Options). assert_options([]). assert_options([H|T]) :- ( option_type(H, Check) -> Check, assert(rdf_option(H)) ; true % ignore options we do not understand ), assert_options(T). option_type(concurrency(X), must_be(positive_integer, X)). option_type(max_open_journals(X), must_be(positive_integer, X)). option_type(silent(X), must_be(oneof([true,false,brief]), X)). option_type(log_nested_transactions(X), must_be(boolean, X)). %% no_agc(:Goal) % % Run Goal with atom garbage collection disabled. Loading an RDF % database creates large amounts of atoms we *know* are not % garbage. no_agc(Goal) :- current_prolog_flag(agc_margin, Old), set_prolog_flag(agc_margin, 0), call_cleanup(Goal, set_prolog_flag(agc_margin, Old)). %% rdf_detach_db is det. % % Detach from the current database. Succeeds silently if no % database is attached. Normally called at the end of the program % through at_halt/1. rdf_detach_db :- debug(halt, 'Detaching database', []), stop_monitor, close_journals, ( retract(rdf_directory(Dir)) -> debug(halt, 'DB Directory: ~w', [Dir]), retractall(rdf_option(_)), retractall(source_journal_fd(_,_)), retractall(db_file_base(_,_)), unlock_db(Dir) ; true ). %% rdf_current_db(?Dir) % % True if Dir is the current RDF persistent database. rdf_current_db(Directory) :- rdf_directory(Dir), !, Dir = Directory. %% rdf_flush_journals(+Options) % % Flush dirty journals. Options: % % * min_size(+KB) % Only flush if journal is over KB in size. % TBD: sensible default size rdf_flush_journals(Options) :- forall(rdf_source(DB), rdf_flush_journal(DB, Options)). rdf_flush_journal(DB, Options) :- db_files(DB, _SnapshotFile, JournalFile), db_file(JournalFile, File), ( \+ exists_file(File) -> true ; memberchk(min_size(KB), Options), size_file(JournalFile, Size), Size / 1024 < KB -> true ; create_db(DB) ). /******************************* * LOAD * *******************************/ %% load_db is det. % % Reload database from the directory specified by rdf_directory/1. % First we find all names graphs using find_dbs/1 and then we load % them. load_db :- rdf_directory(Dir), working_directory(Old, Dir), get_time(Wall0), statistics(cputime, T0), call_cleanup(find_dbs(DBs), working_directory(_, Old)), length(DBs, DBCount), verbosity(DBCount, Silent), make_goals(DBs, Silent, 1, DBCount, Goals), concurrency(Jobs), concurrent(Jobs, Goals, []), statistics(cputime, T1), get_time(Wall1), T is T1 - T0, Wall is Wall1 - Wall0, message_level(Silent, Level), print_message(Level, rdf(restore(attached(DBCount, T/Wall)))). make_goals([], _, _, _, []). make_goals([DB|T0], Silent, I, Total, [load_source(DB, Silent, I, Total)|T]) :- I2 is I + 1, make_goals(T0, Silent, I2, Total, T). verbosity(_DBCount, Silent) :- rdf_option(silent(Silent)), !. verbosity(DBCount, Silent) :- DBCount > 25, !, Silent = brief. verbosity(_DBCount, false). %% concurrency(-Jobs) % % Number of jobs to run concurrently. concurrency(Jobs) :- rdf_option(concurrency(Jobs)), !. concurrency(Jobs) :- current_prolog_flag(cpu_count, Jobs), Jobs > 0, !. concurrency(1). %% find_dbs(-DBs:list(atom)) is det. % % DBs is a list of database (named graph) names, sorted in % increasing file-size. Small files are loaded first as these % typically contain the schemas and we want to avoid re-hashing % large databases due to added rdfs:subPropertyOf triples. find_dbs(DBs) :- expand_file_name(*, Files), phrase(scan_db_files(Files), Scanned), sort(Scanned, ByDB), join_snapshot_and_journals(ByDB, BySize), keysort(BySize, SortedBySize), pairs_values(SortedBySize, DBs). %% scan_db_files(+Files)// is det. % % Produces a list of db(DB, Size, File) for all recognised RDF % database files. scan_db_files([]) --> []. scan_db_files([File|T]) --> { file_name_extension(Base, Ext, File), db_extension(Ext), !, rdf_db_to_file(DB, Base), size_file(File, Size) }, [ db(DB, Size, File) ], scan_db_files(T). scan_db_files([_|T]) --> scan_db_files(T). db_extension(trp). db_extension(jrn). join_snapshot_and_journals([], []). join_snapshot_and_journals([db(DB,S0,_)|T0], [S-DB|T]) :- !, same_db(DB, T0, T1, S0, S), join_snapshot_and_journals(T1, T). same_db(DB, [db(DB,S1,_)|T0], T, S0, S) :- !, S2 is S0+S1, same_db(DB, T0, T, S2, S). same_db(_, L, L, S, S). %% load_source(+DB, +Silent, +Nth, +Total) is det. % % Load triples and reload journal from the indicated snapshot % file. % % @param Silent One of =false=, =true= or =brief= load_source(DB, Silent, Nth, Total) :- message_level(Silent, Level), db_files(DB, SnapshotFile, JournalFile), rdf_retractall(_,_,_,DB), statistics(cputime, T0), print_message(Level, rdf(restore(Silent, source(DB, Nth, Total)))), db_file(SnapshotFile, AbsSnapShot), ( exists_file(AbsSnapShot) -> print_message(Level, rdf(restore(Silent, snapshot(SnapshotFile)))), rdf_load_db(AbsSnapShot) ; true ), ( exists_db(JournalFile) -> print_message(Level, rdf(restore(Silent, journal(JournalFile)))), load_journal(JournalFile, DB) ; true ), statistics(cputime, T1), T is T1 - T0, ( rdf_statistics(triples_by_file(DB, Count)) -> true ; Count = 0 ), print_message(Level, rdf(restore(Silent, done(DB, T, Count, Nth, Total)))). message_level(true, silent) :- !. message_level(_, informational). /******************************* * LOAD JOURNAL * *******************************/ %% load_journal(+File:atom, +DB:atom) is det. % % Process transactions from the RDF journal File, adding the given % named graph. load_journal(File, DB) :- open_db(File, read, In, []), call_cleanup(( read(In, T0), process_journal(T0, In, DB) ), close(In)). process_journal(end_of_file, _, _) :- !. process_journal(Term, In, DB) :- ( process_journal_term(Term, DB) -> true ; throw(error(type_error(journal_term, Term), _)) ), read(In, T2), process_journal(T2, In, DB). process_journal_term(assert(S,P,O), DB) :- rdf_assert(S,P,O,DB). process_journal_term(assert(S,P,O,Line), DB) :- rdf_assert(S,P,O,DB:Line). process_journal_term(retract(S,P,O), DB) :- rdf_retractall(S,P,O,DB). process_journal_term(retract(S,P,O,Line), DB) :- rdf_retractall(S,P,O,DB:Line). process_journal_term(update(S,P,O,Action), DB) :- ( rdf_update(S,P,O,DB, Action) -> true ; print_message(warning, rdf(update_failed(S,P,O,Action))) ). process_journal_term(start(_), _). % journal open/close process_journal_term(end(_), _). process_journal_term(begin(_), _). % logged transaction (compatibility) process_journal_term(end, _). process_journal_term(begin(_,_,_,_), _). % logged transaction (current) process_journal_term(end(_,_,_), _). /******************************* * CREATE JOURNAL * *******************************/ :- dynamic blocked_db/2, % DB, Reason transaction_message/3, % Nesting, Time, Message transaction_db/3. % Nesting, DB, Id %% rdf_persistency(+DB, Bool) % % Specify whether a database is persistent. Switching to =false= % kills the persistent state. Switching to =true= creates it. rdf_persistency(DB, Bool) :- must_be(atom, DB), must_be(boolean, Bool), fail. rdf_persistency(DB, false) :- !, ( blocked_db(DB, persistency) -> true ; assert(blocked_db(DB, persistency)), delete_db(DB) ). rdf_persistency(DB, true) :- ( retract(blocked_db(DB, persistency)) -> create_db(DB) ; true ). %% start_monitor is det. %% stop_monitor is det. % % Start/stop monitoring the RDF database for changes and update % the journal. start_monitor :- rdf_monitor(monitor, [ -assert(load) ]). stop_monitor :- rdf_monitor(monitor, [ -all ]). %% monitor(+Term) is semidet. % % Handle an rdf_monitor/2 callback to deal with persistency. Note % that the monitor calls that come from rdf_db.pl that deal with % database changes are serialized. They do come from different % threads though. monitor(Msg) :- debug(monitor, 'Monitor: ~p~n', [Msg]), fail. monitor(assert(S,P,O,DB:Line)) :- !, \+ blocked_db(DB, _), journal_fd(DB, Fd), open_transaction(DB, Fd), format(Fd, '~q.~n', [assert(S,P,O,Line)]), sync_journal(DB, Fd). monitor(assert(S,P,O,DB)) :- \+ blocked_db(DB, _), journal_fd(DB, Fd), open_transaction(DB, Fd), format(Fd, '~q.~n', [assert(S,P,O)]), sync_journal(DB, Fd). monitor(retract(S,P,O,DB:Line)) :- !, \+ blocked_db(DB, _), journal_fd(DB, Fd), open_transaction(DB, Fd), format(Fd, '~q.~n', [retract(S,P,O,Line)]), sync_journal(DB, Fd). monitor(retract(S,P,O,DB)) :- \+ blocked_db(DB, _), journal_fd(DB, Fd), open_transaction(DB, Fd), format(Fd, '~q.~n', [retract(S,P,O)]), sync_journal(DB, Fd). monitor(update(S,P,O,DB:Line,Action)) :- !, \+ blocked_db(DB, _), ( Action = source(NewDB) -> monitor(assert(S,P,O,NewDB)), monitor(retract(S,P,O,DB:Line)) ; journal_fd(DB, Fd), format(Fd, '~q.~n', [update(S,P,O,Action)]), sync_journal(DB, Fd) ). monitor(update(S,P,O,DB,Action)) :- \+ blocked_db(DB, _), ( Action = source(NewDB) -> monitor(assert(S,P,O,NewDB)), monitor(retract(S,P,O,DB)) ; journal_fd(DB, Fd), open_transaction(DB, Fd), format(Fd, '~q.~n', [update(S,P,O,Action)]), sync_journal(DB, Fd) ). monitor(load(BE, Id)) :- ( BE == begin -> push_state(Id) ; sync_state(Id) ). monitor(transaction(BE, Id)) :- monitor_transaction(Id, BE). monitor_transaction(load_journal(DB), begin(_)) :- !, assert(blocked_db(DB, journal)). monitor_transaction(load_journal(DB), end(_)) :- !, retractall(blocked_db(DB, journal)). monitor_transaction(parse(URI), begin(_)) :- !, ( blocked_db(URI, persistency) -> true ; assert(blocked_db(URI, parse)) ). monitor_transaction(parse(URI), end(_)) :- !, ( retract(blocked_db(URI, parse)) -> create_db(URI) ; true ). monitor_transaction(unload(DB), begin(_)) :- !, ( blocked_db(DB, persistency) -> true ; assert(blocked_db(DB, unload)) ). monitor_transaction(unload(DB), end(_)) :- !, ( retract(blocked_db(DB, unload)) -> delete_db(DB) ; true ). monitor_transaction(log(Msg), begin(N)) :- !, check_nested(N), get_time(Time), asserta(transaction_message(N, Time, Msg)). monitor_transaction(log(_), end(N)) :- check_nested(N), retract(transaction_message(N, _, _)), !, findall(DB:Id, retract(transaction_db(N, DB, Id)), DBs), end_transactions(DBs, N). monitor_transaction(log(Msg, DB), begin(N)) :- !, check_nested(N), get_time(Time), asserta(transaction_message(N, Time, Msg)), journal_fd(DB, Fd), open_transaction(DB, Fd). monitor_transaction(log(Msg, _DB), end(N)) :- monitor_transaction(log(Msg), end(N)). monitor_transaction(reset, begin(L)) :- forall(rdf_graph(DB), monitor_transaction(unload(DB), begin(L))). monitor_transaction(reset, end(L)) :- forall(blocked_db(DB, unload), monitor_transaction(unload(DB), end(L))), retractall(current_transaction_id(_,_)). %% check_nested(+Level) is semidet. % % True if we must log this transaction. This is always the case % for toplevel transactions. Nested transactions are only logged % if log_nested_transactions(true) is defined. check_nested(0) :- !. check_nested(_) :- rdf_option(log_nested_transactions(true)). %% open_transaction(+DB, +Fd) is det. % % Add a begin(Id, Level, Time, Message) term if a transaction % involves DB. Id is an incremental integer, where each database % has its own counter. Level is the nesting level, Time a floating % point timestamp and Message te message provided as argument to % the log message. open_transaction(DB, Fd) :- transaction_message(N, Time, Msg), !, ( transaction_db(N, DB, _) -> true ; next_transaction_id(DB, Id), assert(transaction_db(N, DB, Id)), format(Fd, 'begin(~q, ~q, ~2f, ~q).~n', [Id, N, Time, Msg]) ). open_transaction(_,_). %% next_transaction_id(+DB, -Id) is det. % % Id is the number to user for the next logged transaction on DB. % Transactions in each named graph are numbered in sequence. % Searching the Id of the last transaction is performed by the 2nd % clause starting 1Kb from the end and doubling this offset each % failure. :- dynamic current_transaction_id/2. next_transaction_id(DB, Id) :- retract(current_transaction_id(DB, Last)), !, Id is Last + 1, assert(current_transaction_id(DB, Id)). next_transaction_id(DB, Id) :- db_files(DB, _, Journal), exists_file(Journal), !, size_file(Journal, Size), open_db(Journal, read, In, []), call_cleanup(iterative_expand(In, Size, Last), close(In)), Id is Last + 1, assert(current_transaction_id(DB, Id)). next_transaction_id(DB, 1) :- assert(current_transaction_id(DB, 1)). iterative_expand(_, 0, 0) :- !. iterative_expand(In, Size, Last) :- % Scan growing sections from the end Max is floor(log(Size)/log(2)), between(10, Max, Step), Offset is -(1<<Step), seek(In, Offset, eof, _), skip(In, 10), % records are line-based read(In, T0), last_transaction_id(T0, In, 0, Last), Last > 0, !. iterative_expand(In, _, Last) :- % Scan the whole file seek(In, 0, bof, _), read(In, T0), last_transaction_id(T0, In, 0, Last). last_transaction_id(end_of_file, _, Last, Last) :- !. last_transaction_id(end(Id, _, _), In, _, Last) :- read(In, T1), last_transaction_id(T1, In, Id, Last). last_transaction_id(_, In, Id, Last) :- read(In, T1), last_transaction_id(T1, In, Id, Last). %% end_transactions(+DBs:list(atom:id)) is det. % % End a transaction that affected the given list of databases. We % write the list of other affected databases as an argument to the % end-term to facilitate fast finding of the related transactions. % % In each database, the transaction is ended with a term end(Id, % Nesting, Others), where Id and Nesting are the transaction % identifier and nesting (see open_transaction/2) and Others is a % list of DB:Id, indicating other databases affected by the % transaction. end_transactions(DBs, N) :- end_transactions(DBs, DBs, N). end_transactions([], _, _). end_transactions([DB:Id|T], DBs, N) :- journal_fd(DB, Fd), once(select(DB:Id, DBs, Others)), format(Fd, 'end(~q, ~q, ~q).~n', [Id, N, Others]), sync_journal(DB, Fd), end_transactions(T, DBs, N). % State handling. We use this for trapping changes by % rdf_load_db/1. In theory, loading such files can add triples to % multiple sources. In practice this rarely happens. We save the % current state and sync all files that have changed. The only % drawback of this approach is that loaded files spreading triples % over multiple databases cause all these databases to be fully % synchronised. This shouldn't happen very often. :- dynamic pre_load_state/2. push_state(Id) :- get_state(State), asserta(pre_load_state(Id, State)). get_state(State) :- findall(DB-MD5, (rdf_graph(DB), rdf_md5(DB, MD5)), State0), keysort(State0, State). sync_state(Id) :- retract(pre_load_state(Id, PreState)), get_state(AfterState), sync_state(AfterState, PreState). sync_state([], _). sync_state([DB-MD5|TA], Pre) :- ( memberchk(DB-MD5P, Pre), MD5P == MD5 -> true ; create_db(DB) ), sync_state(TA, Pre). /******************************* * JOURNAL FILES * *******************************/ %% journal_fd(+DB, -Stream) is det. % % Get an open stream to a journal. If the journal is not open, old % journals are closed to satisfy the =max_open_journals= option. % Then the journal is opened in =append= mode. Journal files are % always encoded as UTF-8 for portability as well as to ensure % full coverage of Unicode. journal_fd(DB, Fd) :- source_journal_fd(DB, Fd), !. journal_fd(DB, Fd) :- with_mutex(rdf_journal_file, journal_fd_(DB, Out)), Fd = Out. journal_fd_(DB, Fd) :- source_journal_fd(DB, Fd), !. journal_fd_(DB, Fd) :- limit_fd_pool, db_files(DB, _Snapshot, Journal), open_db(Journal, append, Fd, [ close_on_abort(false) ]), time_stamp(Now), format(Fd, '~q.~n', [start([time(Now)])]), assert(source_journal_fd(DB, Fd)). % new one at the end %% limit_fd_pool is det. % % Limit the number of open journals to max_open_journals (10). % Note that calls from rdf_monitor/2 are issued in different % threads, but as they are part of write operations they are fully % synchronised. limit_fd_pool :- predicate_property(source_journal_fd(_, _), number_of_clauses(N)), !, ( rdf_option(max_open_journals(Max)) -> true ; Max = 10 ), Close is N - Max, forall(between(1, Close, _), close_oldest_journal). limit_fd_pool. close_oldest_journal :- source_journal_fd(DB, _Fd), !, debug(rdf_persistency, 'Closing old journal for ~q', [DB]), close_journal(DB). close_oldest_journal. %% sync_journal(+DB, +Fd) % % Sync journal represented by database and stream. If the DB is % involved in a transaction there is no point flushing until the % end of the transaction. sync_journal(DB, _) :- transaction_db(_, DB, _), !. sync_journal(_, Fd) :- flush_output(Fd). %% close_journal(+DB) is det. % % Close the journal associated with DB if it is open. close_journal(DB) :- with_mutex(rdf_journal_file, close_journal_(DB)). close_journal_(DB) :- ( retract(source_journal_fd(DB, Fd)) -> time_stamp(Now), format(Fd, '~q.~n', [end([time(Now)])]), close(Fd, [force(true)]) ; true ). % close_journals % % Close all open journals. close_journals :- forall(source_journal_fd(DB, _), catch(close_journal(DB), E, print_message(error, E))). %% create_db(+DB) % % Create a saved version of DB in corresponding file, close and % delete journals. create_db(DB) :- debug(rdf_persistency, 'Saving DB ~w', [DB]), db_abs_files(DB, Snapshot, Journal), atom_concat(Snapshot, '.new', NewSnapshot), ( catch(rdf_save_db(NewSnapshot, DB), _, fail) -> ( exists_file(Journal) -> delete_file(Journal) ; true ), rename_file(NewSnapshot, Snapshot), debug(rdf_persistency, 'Saved DB ~w', [DB]) ; catch(delete_file(NewSnapshot), _, true) ). %% delete_db(+DB) % % Remove snapshot and journal file for DB. delete_db(DB) :- db_abs_files(DB, Snapshot, Journal), ( exists_file(Journal) -> delete_file(Journal) ; true ), ( exists_file(Snapshot) -> delete_file(Snapshot) ; true ). /******************************* * LOCKING * *******************************/ %% lock_db(+Dir) % % Lock the database directory. This isn't safe as the file % operations are not atomic. Needs re-thinking, but with the % normal server setting it should be ok. lock_db(Dir) :- lockfile(Dir, File), exists_file(File), !, ( catch(read_file_to_terms(File, Terms, []), _, fail), Terms = [locked(Args)] -> Context = rdf_locked(Args) ; Context = context(_, 'Database is in use') ), throw(error(permission_error(lock, rdf_db, Dir), Context)). lock_db(Dir) :- lockfile(Dir, File), open(File, write, Out), ( current_prolog_flag(pid, PID) -> true ; PID = 0 % TBD: Fix in Prolog ), time_stamp(Now), format(Out, '/* RDF Database is in use */~n~n', []), format(Out, '~q.~n', [ locked([ time(Now), pid(PID) ]) ]), close(Out), at_halt(unlock_db(Dir)). unlock_db(Dir) :- lockfile(Dir, File), ( exists_file(File) -> delete_file(File) ; true ). /******************************* * FILENAMES * *******************************/ lockfile(Dir, LockFile) :- atomic_list_concat([Dir, /, lock], LockFile). db_file(Base, File) :- rdf_directory(Dir), atomic_list_concat([Dir, /, Base], File). open_db(Base, Mode, Stream, Options) :- db_file(Base, File), open(File, Mode, Stream, [encoding(utf8)|Options]). exists_db(Base) :- db_file(Base, File), exists_file(File). %% db_files(+DB, -Snapshot, -Journal). %% db_files(-DB, +Snapshot, -Journal). %% db_files(-DB, -Snapshot, +Journal). % % True if named graph DB is represented by the files Snapshot and % Journal. The filenames are local to the directory representing % the store. db_files(DB, Snapshot, Journal) :- nonvar(DB), !, rdf_db_to_file(DB, Base), atom_concat(Base, '.trp', Snapshot), atom_concat(Base, '.jrn', Journal). db_files(DB, Snapshot, Journal) :- nonvar(Snapshot), !, atom_concat(Base, '.trp', Snapshot), atom_concat(Base, '.jrn', Journal), rdf_db_to_file(DB, Base). db_files(DB, Snapshot, Journal) :- nonvar(Journal), !, atom_concat(Base, '.jrn', Journal), atom_concat(Base, '.trp', Snapshot), rdf_db_to_file(DB, Base). db_abs_files(DB, Snapshot, Journal) :- db_files(DB, Snapshot0, Journal0), db_file(Snapshot0, Snapshot), db_file(Journal0, Journal). %% rdf_journal_file(+DB, -File) is semidet. %% rdf_journal_file(-DB, -File) is nondet. % % True if File is the absolute file name of an existing named % graph DB. % % @tbd Avoid using private rdf_db:rdf_graphs_/1. rdf_journal_file(DB, Journal) :- ( var(DB) -> rdf_db:rdf_graphs_(All), % also pick the empty graphs member(DB, All) ; true ), db_abs_files(DB, _Snapshot, Journal), exists_file(Journal). %% rdf_db_to_file(+DB, -File) is det. %% rdf_db_to_file(-DB, +File) is det. % % Translate between database encoding (often an file or URL) and % the name we store in the directory. We keep a cache for two % reasons. Speed, but much more important is that the mapping of % raw --> encoded provided by www_form_encode/2 is not guaranteed % to be unique by the W3C standards. % % @tbd We keep two predicates for exploiting Prolog indexing. % Once multi-argument indexed is hashed we should clean % this up. rdf_db_to_file(DB, File) :- nonvar(File), file_base_db(File, DB), !. rdf_db_to_file(DB, File) :- nonvar(DB), db_file_base(DB, File), !. rdf_db_to_file(DB, File) :- url_to_filename(DB, File), assert(db_file_base(DB, File)), assert(file_base_db(File, DB)). %% url_to_filename(+URL, -FileName) is det. %% url_to_filename(-URL, +FileName) is det. % % Turn a valid URL into a filename. Earlier versions used % www_form_encode/2, but this can produce characters that are not % valid in filenames. We will use the same encoding as % www_form_encode/2, but using our own rules for allowed % characters. The only requirement is that we avoid any filename % special character in use. The current encoding use US-ASCII % alnum characters, _ and % url_to_filename(URL, FileName) :- atomic(URL), !, atom_codes(URL, Codes), phrase(url_encode(EncCodes), Codes), atom_codes(FileName, EncCodes). url_to_filename(URL, FileName) :- www_form_encode(URL, FileName). url_encode([0'+|T]) --> " ", !, url_encode(T). url_encode([C|T]) --> alphanum(C), !, url_encode(T). url_encode([C|T]) --> no_enc_extra(C), !, url_encode(T). url_encode(Enc) --> ( "\r\n" ; "\n" ), !, { append("%0D%0A", T, Enc) }, url_encode(T). url_encode([]) --> eos, !. url_encode([0'%,D1,D2|T]) --> [C], { Dv1 is (C>>4 /\ 0xf), Dv2 is (C /\ 0xf), code_type(D1, xdigit(Dv1)), code_type(D2, xdigit(Dv2)) }, url_encode(T). eos([], []). alphanum(C) --> [C], { C < 128, % US-ASCII code_type(C, alnum) }. no_enc_extra(0'_) --> "_". %' /******************************* * UTIL * *******************************/ %% mkdir(+Directory) % % Create a directory if it does not already exist. mkdir(Directory) :- exists_directory(Directory), !. mkdir(Directory) :- make_directory(Directory). %% time_stamp(-Integer) % % Return time-stamp rounded to integer. time_stamp(Int) :- get_time(Now), Int is round(Now). /******************************* * MESSAGES * *******************************/ :- multifile prolog:message/3, prolog:message_context/3. prolog:message(rdf(Term)) --> message(Term). message(restore(attached(Graphs, Time/Wall))) --> { catch(Percent is round(100*Time/Wall), _, Percent = 0) }, [ 'Attached ~D graphs in ~2f seconds (~d% CPU = ~2f sec.)'- [Graphs, Wall, Percent, Time] ]. message(restore(true, Action)) --> !, silent_message(Action). message(restore(brief, Action)) --> !, brief_message(Action). message(restore(_, source(DB, Nth, Total))) --> { file_base_name(DB, Base) }, [ 'Restoring ~w ... (~D of ~D graphs) '-[Base, Nth, Total], flush ]. message(restore(_, snapshot(_))) --> [ at_same_line, '(snapshot) '-[], flush ]. message(restore(_, journal(_))) --> [ at_same_line, '(journal) '-[], flush ]. message(restore(_, done(_, Time, Count, _Nth, _Total))) --> [ at_same_line, '~D triples in ~2f sec.'-[Count, Time] ]. message(update_failed(S,P,O,Action)) --> [ 'Failed to update <~p ~p ~p> with ~p'-[S,P,O,Action] ]. silent_message(_Action) --> []. brief_message(source(DB, Nth, Total)) --> { file_base_name(DB, Base) }, [ at_same_line, '\r~w~`.t ~D of ~D graphs~72|'-[Base, Nth, Total], flush ]. brief_message(snapshot(_File)) --> []. brief_message(journal(_File)) --> []. brief_message(done(_DB, _Time, _Count, _Nth, _Total)) --> []. prolog:message_context(rdf_locked(Args)) --> { memberchk(time(Time), Args), memberchk(pid(Pid), Args), format_time(string(S), '%+', Time) }, [ nl, 'locked at ~s by process id ~w'-[S,Pid] ].