/* swi.c  */
/*
* Project: jpl for Yap Prolog
* Author: Steve Moyle and Vitor Santos Costa
* Email:  steve.moyle@comlab.ox.ac.uk
* Date:   21 January 2002

* Copyright (c) 2002-2014 Vitor Santos Costa from an original version by Steve
Moyle.  All rights reserved.

*/

/**
 *
 *   @file swi.c
 *
 *   @addtogroup swi-c-interface
 *
 * @{
 */

#define PL_KERNEL 1
#define _EXPORT_KERNEL 1

//=== includes ===============================================================
#include <assert.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <wchar.h>

#include <Yap.h>
#include <YapEval.h>
#include <Yatom.h>

#include "swi.h"
#include <YapHeap.h>

#include <YapHandles.h>

#include <YapText.h>
#include <yapio.h>

#if HAVE_MATH_H
#include <math.h>
#endif
#if HAVE_ERRNO_H
#include <errno.h>
#endif
#if HAVE_SIGNAL_H
#include <signal.h>
#endif

#if !HAVE_SNPRINTF
#define snprintf(X, Y, Z, A) sprintf(X, Z, A)
#endif

#define PL_KERNEL 1

#ifdef USE_GMP
#include <gmp.h>
#endif

#ifdef __WIN32__
/* Windows */
#include <fcntl.h>
#endif

//#include "pl-error.h"

static atom_t ATOM_nil;

extern int PL_unify_termv(term_t l, va_list args);

extern X_API Atom YAP_AtomFromSWIAtom(atom_t at);
extern X_API atom_t YAP_SWIAtomFromAtom(Atom at);

static int do_gc(UInt sz) {
  /* always called from user_call_cpred */
  CACHE_REGS
  UInt arity;
  yamop *nextpc;

  if (P && PREVOP(P, Osbpp)->opc == Yap_opcode(_call_usercpred)) {
    arity = PREVOP(P, Osbpp)->y_u.Osbpp.p->ArityOfPE;
    nextpc = P;
  } else {
    arity = 0;
    nextpc = CP;
  }
  return Yap_gcl(sz, arity, ENV, nextpc);
}

X_API extern Atom YAP_AtomFromSWIAtom(atom_t at) { return SWIAtomToAtom(at); }

X_API extern atom_t YAP_SWIAtomFromAtom(Atom at) { return AtomToSWIAtom(at); }

extern X_API Int YAP_PLArityOfSWIFunctor(functor_t at);

/* This is silly, but let's keep it like that for now */
X_API Int YAP_PLArityOfSWIFunctor(functor_t f) {
  if (IsAtomTerm(f))
    return 0;
  return ArityOfFunctor((Functor)f);
}

static void UserCPredicate(char *a, CPredicate def, unsigned long int arity,
                           Term mod, int flags) {
  CACHE_REGS

  Term cm = CurrentModule;
  /* fprintf(stderr,"doing %s:%s/%d\n", RepAtom(AtomOfTerm(mod))->StrOfAE,
   * a,arity); */
  CurrentModule = mod;
  Yap_InitCPred(a, arity, def, (UserCPredFlag | CArgsPredFlag | flags));
  CurrentModule = cm;
}

//!  @{

/** @defgroup swi-ATOMS Atom Construction
 *  @ingroup swi-c-interface
 *  */

static UInt cvtFlags(unsigned flags) {
  UInt inptype = 0;
  if (flags & CVT_ATOM) {
    inptype |= YAP_STRING_ATOM;
  }
  if (flags & CVT_STRING) {
    inptype |= YAP_STRING_STRING;
  }
  if (flags & CVT_LIST) {
    inptype |= (YAP_STRING_CODES | YAP_STRING_ATOMS);
  }
  if (flags & CVT_INTEGER) {
    inptype |= YAP_STRING_INT | YAP_STRING_BIG;
  }
  if (flags & CVT_FLOAT) {
    inptype |= YAP_STRING_FLOAT;
  }
  if (flags & CVT_VARIABLE) {
    inptype |= YAP_STRING_DATUM;
  }
  if (flags & CVT_WRITE) {
    inptype |= YAP_STRING_DATUM;
  }
  if (flags & CVT_WRITEQ) {
    inptype |= YAP_STRING_DATUM | YAP_STRING_WQ;
  }
  if (flags & CVT_WRITE_CANONICAL) {
    inptype |= YAP_STRING_DATUM | YAP_STRING_WC;
  }
  return inptype;
}

/*  void PL_agc_hook(void) */
/** @brief Atom garbage collection hook
 *
 */
X_API PL_agc_hook_t PL_agc_hook(PL_agc_hook_t entry) {
  return (PL_agc_hook_t)YAP_AGCRegisterHook((YAP_agc_hook)entry);
}

/*  void PL_get_nchars(term_t ref, size_t *length, char **output, unsigned
 * flags) */
/** @brief extract a text representing the term _ref_. A pointer to a string
with the text will
* be output to *_s_, and the size of the string will be written to *_length_,
* if _length_ is not null.
*
* The following flags are recognised (as in the SWI manual )
*   *CVT_ATOM* Convert if term is an atom.
*   *CVT_STRING* Convert if term is a string.
*   *CVT_LIST* Convert if term is a list of of character codes.
*   *CVT_INTEGER* Convert if term is an integer.
*   *CVT_FLOAT* Convert if term is a float. The characters returned are the same
as write/1 would write for the floating point number.
*   *CVT_NUMBER* Convert if term is an integer or float.
*   *CVT_ATOMIC* Convert if term is atomic.
*   *CVT_VARIABLE* Convert variable to print-name
*   *CVT_WRITE* Convert any term that is not converted by any of the other flags
using write/1. * If no BUF_* is provided, BUF_RING is implied.
*   *CVT_WRITE_CANONICAL* As CVT_WRITE, but using write_canonical/2.
*   *CVT_WRITEQ* As CVT_WRITE, but using writeq/2.
*   *CVT_ALL* Convert if term is any of the above, except for CVT_VARIABLE and
CVT_WRITE*.
*
*   *CVT_EXCEPTION* If conversion fails due to a type error, raise a Prolog type
error exception in addition to failure
*   *BUF_DISCARDABLE* Data must copied immediately
*   *BUF_RING* Data is stored in a ring of buffers, currenty implemented as
BUF_DISCARDABLE
*   *BUF_MALLOC* Data is copied to a new buffer returned by PL_malloc(3). When
no longer needed the user must call PL_free() on the data.
*
*   *REP_ISO_LATIN_1
Text is in ISO Latin-1 encoding and the call fails if text cannot be
represented. This flag has the value 0 and is thus the default.
*   *REP_UTF8* Convert the text to a UTF-8 string. This works for all text.
*   *REP_MB* Convert the text using the current locale
*/
X_API int PL_get_nchars(term_t l, size_t *lengthp, char **s, unsigned flags) {
  CACHE_REGS
  seq_tv_t inp, out;

  int lvl = push_text_stack();
  inp.val.t = Yap_GetFromSlot(l);
  inp.type = cvtFlags(flags);
  out.type = YAP_STRING_CHARS;

  if (flags & (REP_UTF8 | REP_MB)) {
    out.enc = ENC_ISO_UTF8;
  } else {
    out.enc = ENC_ISO_LATIN1;
  }
  out.val.c = NULL;
  if (!Yap_CVT_Text(&inp, &out PASS_REGS)) {
    pop_text_stack(lvl);
    return false;
  }
  if (s) {
    size_t len = strlen(out.val.c);
    if (flags & (BUF_DISCARDABLE | BUF_RING)) {
      strncpy(LOCAL_FileNameBuf, out.val.c, YAP_FILENAME_MAX);
      *s = LOCAL_FileNameBuf;
      pop_text_stack(lvl);
      return true;
    }
    if (*s == out.val.c) {
      pop_text_stack(lvl);
    } else if (*s == NULL) {
      *s = pop_output_text_stack(lvl, out.val.c);
    } else {
      strcpy(*s, out.val.c);
      pop_text_stack(lvl);
    }
    if (lengthp)
      *lengthp = len;
  }
  return true;
}

int PL_get_chars(term_t t, char **s, unsigned flags) {
  return PL_get_nchars(t, NULL, s, flags);
}

int PL_get_wchars(term_t l, size_t *lengthp, wchar_t **s, unsigned flags) {
  CACHE_REGS

  seq_tv_t inp, out;
  inp.val.t = Yap_GetFromSlot(l);
  inp.type = cvtFlags(flags);
  out.type = YAP_STRING_WCHARS;
  if (flags & BUF_MALLOC) {
    out.type |= YAP_STRING_MALLOC;
    out.val.c = NULL;
  }
  if (lengthp) {
    out.type |= YAP_STRING_NCHARS;
    out.max = *lengthp;
  }
  if (!Yap_CVT_Text(&inp, &out PASS_REGS))
    return false;
  *s = out.val.w;
  if (lengthp && (out.type & YAP_STRING_NCHARS))
    *lengthp = out.max;
  return true;
}

X_API int PL_unify_chars(term_t l, int flags, size_t length, const char *s) {
  CACHE_REGS
  seq_tv_t inp, out;

  if (flags & REP_UTF8) {
    inp.val.c0 = s;
    inp.type = YAP_STRING_CHARS | ENC_ISO_UTF8;
    if (length != (size_t)-1) {
      inp.type |= YAP_STRING_NCHARS;
    }
  }
  if (flags & PL_ATOM) {
    out.type = YAP_STRING_ATOM;
  } else if (flags & PL_STRING) {
    out.type = YAP_STRING_STRING;
  } else if (flags & PL_CODE_LIST) {
    out.type = YAP_STRING_CODES;
  } else if (flags & PL_CHAR_LIST) {
    out.type = YAP_STRING_ATOMS;
  }
  out.max = length;
  if (!Yap_CVT_Text(&inp, &out PASS_REGS))
    return 0L;
  return Yap_unify(Yap_GetFromSlot(l), out.val.t);
}

/** @brief extract the text representation from atom
 *
 */
X_API char *PL_atom_chars(atom_t a) /* SAM check type */
{
  Atom at = SWIAtomToAtom(a);
  return RepAtom(at)->StrOfAE;
}

/** @brief extract the text representation from atom, including its length
 *
 */
X_API char *PL_atom_nchars(atom_t a, size_t *len) /* SAM check type */
{
  char *s = RepAtom(SWIAtomToAtom(a))->StrOfAE;
  *len = strlen(s);
  return s;
}

//!  @}

/** @{
 *
 * @defgroup swi-term_references Term References
 *  @ingroup swi-c-interface
 *  */

/** @brief create a clean term reference
 *
 */
X_API term_t PL_new_term_ref(void) {
  CACHE_REGS
  term_t to = Yap_NewSlots(1);
  return to;
}

/** @brief duplicate a term reference
 *
 */
X_API term_t PL_copy_term_ref(term_t from) {
  CACHE_REGS
  return Yap_InitSlot(Yap_GetFromSlot(from));
}

/** @brief create several new term references
 *
 * @par n is the number of references
 */
X_API term_t PL_new_term_refs(int n) {
  CACHE_REGS
  term_t to = Yap_NewSlots(n);
  return to;
}

/** @brief dispose of all term references created since after
 *
 */
X_API void PL_reset_term_refs(term_t after) {
  CACHE_REGS
  LOCAL_CurSlot = after;
}

/** @}
 */

//!  @{

/**  @defgroup swi-term_manipulation Term Manipulation
 *  @ingroup swi-c-interface
 *  */

/**
 *  @defgroup swi-get-operations Reading Terms
 *  @ingroup swi-term_manipulation
 *  */

/** @brief *name is assigned the name and *arity the arity if term ts, or the
 * operaton fails.
 *
 */
X_API int PL_get_name_arity(term_t ts, atom_t *name, int *arity) {
  CACHE_REGS
  YAP_Term t = Yap_GetFromSlot(ts);
  if (IsAtomTerm(t)) {
    if (name)
      *name = AtomToSWIAtom(AtomOfTerm(t));
    if (arity)
      *arity = 0;
    return 1;
  }
  if (YAP_IsApplTerm(t)) {
    Functor f = FunctorOfTerm(t);
    if (IsExtensionFunctor(f)) {
      return 0;
    }
    if (name)
      *name = AtomToSWIAtom(NameOfFunctor(f));
    if (arity)
      *arity = ArityOfFunctor(f);
    return 1;
  }
  if (YAP_IsPairTerm(t)) {
    if (name)
      *name = AtomToSWIAtom(AtomDot);
    if (arity)
      *arity = 2;
    return 1;
  }
  return 0;
}

/** @brief a is assigned the argument index from term  ts
 *
 */
X_API int PL_get_arg(int index, term_t ts, term_t a) {
  CACHE_REGS
  YAP_Term t = Yap_GetFromSlot(ts);
  if (IsVarTerm(t))
    return 0;
  if (!IsApplTerm(t)) {
    if (IsPairTerm(t)) {
      if (index == 1) {
        Yap_PutInSlot(a, HeadOfTerm(t));
        return 1;
      } else if (index == 2) {
        Yap_PutInSlot(a, TailOfTerm(t));
        return 1;
      }
    }
    return 0;
  } else {
    Functor f = FunctorOfTerm(t);
    if (IsExtensionFunctor(f))
      return 0;
    if (index < 1 || index > ArityOfFunctor(f))
      return 0;
    Yap_PutInSlot(a, ArgOfTerm(index, t));
    return 1;
  }
}

/** @brief *ap is assigned the name and *ip the arity from term  ts
 *
 */
X_API int PL_get_compound_name_arity(term_t ts, atom_t *ap, int *ip) {
  CACHE_REGS
  YAP_Term t = Yap_GetFromSlot(ts);
  if (!YAP_IsApplTerm(t)) {
    if (YAP_IsPairTerm(t)) {
      if (ip)
        *ip = 2;
      if (ap)
        *ap = ATOM_nil;
      return 1;
    }
    return 0;
  } else {
    Functor f = FunctorOfTerm(t);
    if (IsExtensionFunctor(f))
      return FALSE;
    if (ip)
      *ip = ArityOfFunctor(f);
    if (ap)
      *ap = AtomToSWIAtom(NameOfFunctor(f));
    return 1;
  }
}

/** @brief *a is assigned the atom in term  ts, or the operation fails
 *
 */
X_API int PL_get_atom(term_t ts, atom_t *a) {
  CACHE_REGS
  YAP_Term t = Yap_GetFromSlot(ts);
  if (!IsAtomTerm(t))
    return 0;
  *a = AtomToSWIAtom(AtomOfTerm(t));
  return 1;
}

/** @brief *i is assigned the int in term  ts, or the operation fails
 *
 */
/*  int PL_get_integer(term_t t, int *i)
YAP: long int  YAP_IntOfTerm(Term) */
X_API int PL_get_integer(term_t ts, int *i) {
  CACHE_REGS
  YAP_Term t = Yap_GetFromSlot(ts);
  if (IsVarTerm(t) || !IsIntegerTerm(t))
    return 0;
  *i = (int)IntegerOfTerm(t);
  return 1;
}

/** @brief *i is assigned the boolean atom `true` or `false` in term  ts, or the
 * operation fails
 *
 */
X_API int PL_get_long(term_t ts, long *i) {
  CACHE_REGS
  YAP_Term t = Yap_GetFromSlot(ts);
  if (!YAP_IsIntTerm(t)) {
    if (YAP_IsFloatTerm(t)) {
      double dbl = YAP_FloatOfTerm(t);
      if (dbl - (long)dbl == 0.0) {
        *i = (long)dbl;
        return 1;
      }
    }
    return 0;
  }
  *i = YAP_IntOfTerm(t);
  return 1;
}

/*  int PL_get_bool(term_t t, int *i)
YAP: long int  YAP_AtomOfTerm(Term) */
X_API int PL_get_bool(term_t ts, int *i) {
  CACHE_REGS
  YAP_Term t = Yap_GetFromSlot(ts);
  Atom at;

  if (!IsAtomTerm(t))
    return 0;
  at = AtomOfTerm(t);
  if (at == AtomTrue) {
    *i = true;
    return 1;
  }
  if (at == AtomFalse) {
    *i = false;
    return 1;
  }
  return 0;
}

/** @brief *a is assigned the int64 in term  ts, or the operation fails
 *
 */
X_API int PL_get_int64(term_t ts, int64_t *i) {
  CACHE_REGS
  YAP_Term t = Yap_GetFromSlot(ts);
  if (!YAP_IsIntTerm(t)) {
    if (YAP_IsFloatTerm(t)) {
      double dbl = YAP_FloatOfTerm(t);
      if (dbl - (int64_t)dbl == 0.0) {
        *i = (int64_t)dbl;
        return 1;
      }
#if SIZEOF_INT_P == 4 && !USE_GMP
      {
        union {
          double d;
          int64_t i;
        } udbi_;
        udbi_.d = YAP_FloatOfTerm(t);
        *i = udbi_.i;
        return 1;
      }
#endif
      return 0;
    }
#if USE_GMP
    else if (YAP_IsBigNumTerm(t)) {
      MP_INT g;
      char s[64];
      YAP_BigNumOfTerm(t, (void *)&g);
      if (mpz_sizeinbase(&g, 2) > 64) {
        return 0;
      }
      mpz_get_str(s, 10, &g);
#ifdef _WIN32
      sscanf(s, "%I64d", (long long int *)i);
#else
      sscanf(s, "%lld", (long long int *)i);
#endif
      return 1;
    }
#endif
    return 0;
  }
  *i = YAP_IntOfTerm(t);
  return 1;
}

X_API int PL_get_int64_ex(term_t ts, int64_t *i) { return PL_get_int64(ts, i); }

/** @brief *a is assigned the intptr_t in term  ts, or the operation fails
 *
 */
X_API int PL_get_intptr(term_t ts, intptr_t *a) {
  CACHE_REGS
  Term t = Yap_GetFromSlot(ts);
  if (!IsIntegerTerm(t))
    return 0;
  *a = (intptr_t)(IntegerOfTerm(t));
  return 1;
}

/** @brief *a is assigned the uintptr_t in term  ts, or the operation fails
 *
 */
X_API int PL_get_uintptr(term_t ts, uintptr_t *a) {
  CACHE_REGS
  Term t = Yap_GetFromSlot(ts);
  if (!IsIntegerTerm(t))
    return 0;
  *a = (uintptr_t)(IntegerOfTerm(t));
  return 1;
}
#ifdef do_not_ld
/** @brief a is assigned the argument index from term  ts
 *
 */
X_API int _PL_get_arg(int index, term_t ts, term_t a) {
  CACHE_REGS
  YAP_Term t = Yap_GetFromSlot(ts);
  if (!YAP_IsApplTerm(t)) {
    if (YAP_IsPairTerm(t)) {
      if (index == 1) {
        Yap_PutInSlot(a, HeadOfTerm(t) PASS_REGS);
        return 1;
      } else if (index == 2) {
        Yap_PutInSlot(a, TailOfTerm(t) PASS_REGS);
        return 1;
      }
    }
    return 0;
  }
  Yap_PutInSlot(a, ArgOfTerm(index, t) PASS_REGS);
  return 1;
}
#endif

/** @brief *a is assigned the string representation of the atom in term  ts, or
 * the operation fails
 *
 */
X_API int PL_get_atom_chars(term_t ts, char **a) /* SAM check type */
{
  CACHE_REGS
  Term t = Yap_GetFromSlot(ts);
  char *src;
  if (!IsAtomTerm(t)) {
    return 0;
  }
  src = (char *)RepAtom(AtomOfTerm(t))->StrOfAE;
  if (!a)
    return 0;
  if (*a && *a != src)
    strcpy(*a, src);
  else
    *a = src;
  return 1;
}

/** @brief *a is assigned the string representation of the atom in term  ts, and
 * *len its size, or the operation fails
 *
 */
X_API int PL_get_atom_nchars(term_t ts, size_t *len,
                             char **s) /* SAM check type */
{
  CACHE_REGS
  Term t = Yap_GetFromSlot(ts);
  if (!IsAtomTerm(t)) {
    return 0;
  }
  if (s)
    *s = (char *)RepAtom(AtomOfTerm(t))->StrOfAE;
  if (len) {
    *len = strlen(*s);
  }
  return 1;
}

/** PL_get_chars converts a term t to a string.
*
* From the SWI manual:
*
* int PL_get_chars(term_t +t, char **s, unsigned flags) Convert the
* argument term t to a 0-terminated C-string. flags is a bitwise
* disjunction from two groups of constants. The first specifies which
* term-types should converted and the second how the argument is
* stored. Below is a specification of these constants. BUF_RING
* implies, if the data is not static (as from an atom), the data is
* copied to the next buffer from a ring of sixteen (16) buffers. This is a
* convenient way of converting multiple arguments passed to a foreign
* predicate to C-strings. If BUF_MALLOC is used, the data must be
* freed using free() when not needed any longer.

- CVT_ATOM Convert if term is an atom
- CVT_STRING Convert if term is a string
- CVT_LIST Convert if term is a list of integers between 1 and 255
- CVT_INTEGER Convert if term is an integer (using %d)
- CVT_FLOAT Convert if term is a float (using %f)
- CVT_NUMBER Convert if term is a integer or float
- CVT_ATOMIC Convert if term is atomic
- CVT_VARIABLE Convert variable to print-name
- CVT_ALL Convert if term is any of the above, except for variables
- BUF_DISCARDABLE Data must copied immediately
- BUF_RING Data is stored in a ring of buffers
- BUF_MALLOC Data is copied to a new buffer returned by malloc(3)
*/

/** @brief *f is assigned the functor of term  ts, or the operation fails
 *
 */
X_API int PL_get_functor(term_t ts, functor_t *f) {
  CACHE_REGS
  Term t = Yap_GetFromSlot(ts);
  if (IsAtomTerm(t)) {
    *f = t;
  } else if (IsPairTerm(t)) {
    *f = FunctorToSWIFunctor(FunctorDot);
  } else if (IsApplTerm(t) && !IsExtensionFunctor(FunctorOfTerm(t))) {
    *f = FunctorToSWIFunctor(FunctorOfTerm(t));
  } else {
    return false;
  }
  return true;
}

/** @brief *f is assigned the floating  point number of term  ts, or the
 * operation fails
 *
 */
X_API int PL_get_float(term_t ts, double *f) /* SAM type check*/
{
  CACHE_REGS
  YAP_Term t = Yap_GetFromSlot(ts);
  if (IsFloatTerm(t)) {
    *f = FloatOfTerm(t);
  } else if (IsIntegerTerm(t)) {
    *f = IntegerOfTerm(t);
#if USE_GMP
  } else if (IsBigIntTerm(t)) {
    *f = Yap_gmp_to_float(t);
#endif
  } else {
    return 0;
  }
  return 1;
}

/** @brief *s is assigned the string representation of the term  ts, and *len
 * its size, or the operation fails
 *
 */
X_API int PL_get_string_chars(term_t t, char **s, size_t *len) {
  return PL_get_string(t, s, len);
}

/** @brief *s is assigned the string representation of the string in term  ts,
 * and *len its size, or the operation fails
 *
 */
X_API int PL_get_string(term_t t, char **s, size_t *len) {
  CACHE_REGS
  Term tt = Yap_GetFromSlot(t);
  if (!IsStringTerm(tt)) {
    return false;
  } else {
    const unsigned char *s0;

    s0 = UStringOfTerm(tt);
    if (s)
      *s = (char *)s0;
    if (len) {
      *len = strlen_utf8(s0);
    }
  }
  return TRUE;
}

/** @brief h is assigned the head of the pair term  ts, and tl its tail, or the
 * operation fails
 *
 */

X_API int PL_get_list(term_t ts, term_t h, term_t tl) {
  CACHE_REGS
  YAP_Term t = Yap_GetFromSlot(ts);
  if (IsVarTerm(t) || !IsPairTerm(t)) {
    return 0;
  }
  Yap_PutInSlot(h, HeadOfTerm(t));
  Yap_PutInSlot(tl, TailOfTerm(t));
  return 1;
}

/** @brief h is assigned the head of the pair term  ts, or the operation fails
 *
 */
X_API int PL_get_head(term_t ts, term_t h) {
  CACHE_REGS
  YAP_Term t = Yap_GetFromSlot(ts);
  if (!YAP_IsPairTerm(t)) {
    return 0;
  }
  Yap_PutInSlot(h, YAP_HeadOfTerm(t));
  return 1;
}

/**
 *  @}
 *  */

//!  @{
/**
*  @defgroup swi-unify-operations Unifying Terms
*  @ingroup swi-term_manipulation

*  */

/*b* @brief t unifies with the true/false value in a.
 *
 */
X_API int PL_unify_bool(term_t t, int a) {
  CACHE_REGS
  Term iterm = (a ? MkAtomTerm(AtomTrue) : MkAtomTerm(AtomFalse));
  return Yap_unify(Yap_GetFromSlot(t), iterm);
}

#if USE_GMP

/*******************************
 *	       GMP		*
 *******************************/

X_API int PL_get_mpz(term_t t, mpz_t mpz) {
  CACHE_REGS
  Term t0 = Yap_GetFromSlot(t);

  return Yap_term_to_existing_big(t0, mpz);
}

X_API int PL_unify_mpz(term_t t, mpz_t mpz) {
  CACHE_REGS
  Term iterm = Yap_MkBigIntTerm(mpz);
  return Yap_unify(Yap_GetFromSlot(t), iterm);
}

X_API int PL_get_mpq(term_t t, mpq_t mpz) {
  CACHE_REGS
  Term t0 = Yap_GetFromSlot(t);

  return Yap_term_to_existing_rat(t0, mpz);
}

X_API int PL_unify_mpq(term_t t, mpq_t mpq) {
  CACHE_REGS
  Term iterm = Yap_MkBigRatTerm(mpq);
  return Yap_unify(Yap_GetFromSlot(t), iterm);
}

#endif

/*  int PL_get_module(term_t t, module_t *m) */
X_API int PL_get_module(term_t ts, module_t *m) {
  CACHE_REGS
  YAP_Term t = Yap_GetFromSlot(ts);
  if (!IsAtomTerm(t))
    return FALSE;
  *m = Yap_GetModuleEntry(t);
  return TRUE;
}

/*  int PL_new_module(term_t t, module_t *m) */
X_API module_t PL_new_module(atom_t swiat) {
  Atom at = SWIAtomToAtom(swiat);
  Term t;

  WRITE_LOCK(RepAtom(at)->ARWLock);
  t = Yap_Module(MkAtomTerm(at));
  WRITE_UNLOCK(RepAtom(at)->ARWLock);
  return Yap_GetModuleEntry(t);
}

/*  int PL_get_atom(term_t t, YAP_Atom *a)
YAP: YAP_Atom YAP_AtomOfTerm(Term) */
X_API int PL_get_nil(term_t ts) {
  CACHE_REGS
  Term t = Yap_GetFromSlot(ts);
  return (t == TermNil);
}

/*  int PL_get_pointer(term_t t, int *i)
YAP: NO EQUIVALENT */
/* SAM TO DO */
X_API int PL_get_pointer(term_t ts, void **i) {
  CACHE_REGS
  YAP_Term t = Yap_GetFromSlot(ts);
  if (IsVarTerm(t) || !IsIntegerTerm(t))
    return 0;
  *i = (void *)IntegerOfTerm(t);
  return 1;
}

X_API int PL_get_tail(term_t ts, term_t tl) {
  CACHE_REGS
  YAP_Term t = Yap_GetFromSlot(ts);
  if (!YAP_IsPairTerm(t)) {
    return 0;
  }
  Yap_PutInSlot(tl, YAP_TailOfTerm(t));
  return 1;
}

/* end PL_get_* functions  =============================*/

/* begin PL_new_* functions =============================*/

/*  atom_t PL_new_atom(const char *)
YAP: YAP_Atom LookupAtom(char *) */
/*  SAM should the following be used instead?
YAP_Atom  FullLookupAtom(char *)
*/
X_API atom_t PL_new_atom(const char *c) {
  CACHE_REGS
  Atom at;
  atom_t sat;

  while ((at = Yap_LookupAtom(c)) == 0L) {
    if (LOCAL_Error_TYPE && !Yap_SWIHandleError("PL_new_atom"))
      return false;
  }
  Yap_AtomIncreaseHold(at);
  sat = AtomToSWIAtom(at);
  return sat;
}

X_API atom_t PL_new_atom_nchars(size_t len, const char *c) {
  CACHE_REGS
  Atom at;
  atom_t sat;

  while ((at = Yap_NCharsToAtom(c, len, ENC_ISO_LATIN1 PASS_REGS)) == 0L) {
    if (LOCAL_Error_TYPE && !Yap_SWIHandleError("PL_new_atom_nchars"))
      return FALSE;
  }
  Yap_AtomIncreaseHold(at);
  sat = AtomToSWIAtom(at);
  return sat;
}

X_API atom_t PL_new_atom_wchars(size_t len, const wchar_t *c) {
  CACHE_REGS
  Atom at;
  atom_t sat;

  while ((at = Yap_NWCharsToAtom(c, len PASS_REGS)) == 0L) {
    if (LOCAL_Error_TYPE && !Yap_SWIHandleError("PL_new_atom_wchars"))
      return FALSE;
  }
  Yap_AtomIncreaseHold(at);
  sat = AtomToSWIAtom(at);
  return sat;
}

X_API wchar_t *PL_atom_wchars(atom_t name, size_t *sp) {
  Atom at = SWIAtomToAtom(name);
  const unsigned char *s = at->UStrOfAE;
  size_t sz = *sp = strlen_utf8(s);
  wchar_t *out = Malloc((sz + 1) * sizeof(wchar_t));
  size_t i = 0;
  for (; i < sz; i++) {
    int32_t v;
    s += get_utf8(s, 1, &v);
    out[i] = v;
  }
  return out;
}

X_API functor_t PL_new_functor(atom_t name, int arity) {
  functor_t f;
  Atom at = SWIAtomToAtom(name);
  if (arity == 0) {
    f = FunctorToSWIFunctor((Functor)MkAtomTerm(at));
  } else {
    f = FunctorToSWIFunctor(Yap_MkFunctor(at, arity));
  }
  return f;
}

X_API atom_t PL_functor_name(functor_t f) {
  if (IsAtomTerm(f)) {
    return AtomToSWIAtom(AtomOfTerm((Term)SWIFunctorToFunctor(f)));
  } else {
    return AtomToSWIAtom(NameOfFunctor(SWIFunctorToFunctor(f)));
  }
}

X_API int PL_functor_arity(functor_t f) {
  if (IsAtomTerm(f)) {
    return 0;
  } else {
    return ArityOfFunctor(SWIFunctorToFunctor(f));
  }
}

/* end PL_new_* functions =============================*/

/* begin PL_put_* functions =============================*/

X_API int PL_cons_functor(term_t d, functor_t f, ...) {
  CACHE_REGS
  va_list ap;
  int arity, i;
  Term *tmp, t;
  Functor ff = SWIFunctorToFunctor(f);

  if (IsAtomTerm((Term)ff)) {
    Yap_PutInSlot(d, (YAP_Term)f);
    return TRUE;
  }
  arity = ArityOfFunctor(ff);
  if (Unsigned(HR) + arity > Unsigned(ASP) - CreepFlag) {
    if (!do_gc(arity * sizeof(CELL))) {
      return FALSE;
    }
  }
  if (arity == 2 && ff == FunctorDot) {
    t = Yap_MkNewPairTerm();
    tmp = RepPair(t);
  } else {
    t = Yap_MkNewApplTerm(ff, arity);
    tmp = RepAppl(t) + 1;
  }
  va_start(ap, f);
  for (i = 0; i < arity; i++) {
    Yap_unify(tmp[i], Yap_GetFromSlot(va_arg(ap, term_t)));
  }
  va_end(ap);
  Yap_PutInSlot(d, t);
  return TRUE;
}

X_API int PL_cons_functor_v(term_t d, functor_t f, term_t a0) {
  CACHE_REGS
  int arity, i;
  Term *tmp, t;
  Functor ff = SWIFunctorToFunctor(f);

  if (IsAtomTerm((Term)ff)) {
    Yap_PutInSlot(d, (YAP_Term)f);
    return TRUE;
  }
  arity = ArityOfFunctor(ff);
  if (Unsigned(HR) > Unsigned(ASP) - CreepFlag) {
    if (!do_gc(0)) {
      return FALSE;
    }
  }
  if (arity == 2 && ff == FunctorDot) {
    t = Yap_MkNewPairTerm();
    tmp = RepPair(t);
  } else {
    t = Yap_MkNewApplTerm(ff, arity);
    tmp = RepAppl(t) + 1;
  }
  for (i = 0; i < arity; i++) {
    Yap_unify(tmp[i], Yap_GetFromSlot(a0));
    a0++;
  }
  Yap_PutInSlot(d, t);

  return TRUE;
}

X_API int PL_cons_list(term_t d, term_t h, term_t t) {
  CACHE_REGS
  if (Unsigned(HR) > Unsigned(ASP) - CreepFlag) {
    if (!do_gc(0)) {
      return FALSE;
    }
  }
  Yap_PutInSlot(d, MkPairTerm(Yap_GetFromSlot(h), Yap_GetFromSlot(t)));
  return true;
}

X_API int PL_put_atom(term_t t, atom_t a) {
  CACHE_REGS
  Yap_PutInSlot(t, MkAtomTerm(SWIAtomToAtom(a)));
  return TRUE;
}

X_API int PL_put_atom_chars(term_t t, const char *s) {
  CACHE_REGS
  Atom at;
  while ((at = Yap_CharsToAtom(s, ENC_ISO_LATIN1 PASS_REGS)) == 0L) {
    if (LOCAL_Error_TYPE && !Yap_SWIHandleError("PL_unify_atom_nchars"))
      return FALSE;
  }
  Yap_AtomIncreaseHold(at);
  Yap_PutInSlot(t, MkAtomTerm(at));

  return TRUE;
}

X_API int PL_put_atom_nchars(term_t t, size_t len, const char *s) {
  CACHE_REGS
  Atom at;
  while ((at = Yap_NCharsToAtom(s, len, ENC_ISO_LATIN1 PASS_REGS)) == 0L) {
    if (LOCAL_Error_TYPE && !Yap_SWIHandleError("PL_unify_atom_nchars"))
      return FALSE;
  }
  Yap_AtomIncreaseHold(at);
  Yap_PutInSlot(t, MkAtomTerm(at));
  return TRUE;
}

X_API int PL_put_float(term_t t, double fl) {
  CACHE_REGS
  Yap_PutInSlot(t, YAP_MkFloatTerm(fl));
  return TRUE;
}

X_API int PL_put_functor(term_t t, functor_t f) {
  long int arity;
  Functor ff = SWIFunctorToFunctor(f);

  CACHE_REGS
  if (IsAtomTerm((Term)ff)) {
    Yap_PutInSlot(t, (Term)ff);
  } else {
    arity = ArityOfFunctor(ff);
    if (Unsigned(HR) + arity > Unsigned(ASP) - CreepFlag) {
      if (!do_gc(arity * sizeof(CELL))) {
        return FALSE;
      }
    }
    if (arity == 2 && ff == FunctorDot) {
    } else
      Yap_PutInSlot(t, YAP_MkNewApplTerm((YAP_Functor)ff, arity));
  }
  return TRUE;
}

X_API int PL_put_integer(term_t t, long n) {
  CACHE_REGS
  Yap_PutInSlot(t, YAP_MkIntTerm(n));
  return TRUE;
}

X_API int PL_put_boolean(term_t t, uintptr_t n) {
  CACHE_REGS
  Yap_PutInSlot(t, (n == 0 ? TermFalse : TermTrue));
  return TRUE;
}

X_API int PL_put_int64(term_t t, int64_t n) {
  CACHE_REGS
#if SIZEOF_INT_P == 8
  Yap_PutInSlot(t, MkIntegerTerm(n));
  return TRUE;
#elif USE_GMP
  char s[64];
  MP_INT rop;

#ifdef _WIN32
  snprintf(s, 64, "%I64d", (long long int)n);
#elif HAVE_SNPRINTF
  snprintf(s, 64, "%lld", (long long int)n);
#else
  sprintf(s, "%lld", (long long int)n);
#endif
  mpz_init_set_str(&rop, s, 10);
  Yap_PutInSlot(t, YAP_MkBigNumTerm((void *)&rop) PASS_REGS);
  return TRUE;
#else
  // use a double, but will mess up writing.
  Int x = n;
  if (x == n)
    return PL_put_integer(t, x);
  else {
    union {
      int64_t i;
      double d;
    } udi_;
    udi_.i = n;
    return PL_put_float(t, udi_.d);
  }
#endif
}

X_API int PL_put_intptr(term_t t, intptr_t n) {
  CACHE_REGS
  Yap_PutInSlot(t, YAP_MkIntTerm(n));
  return TRUE;
}

X_API int PL_put_uintptr(term_t t, uintptr_t n) {
  CACHE_REGS
  Yap_PutInSlot(t, YAP_MkIntTerm(n));
  return TRUE;
}

X_API int PL_put_list(term_t t) {
  CACHE_REGS
  Yap_PutInSlot(t, YAP_MkNewPairTerm());
  if (Unsigned(HR) > Unsigned(ASP) - CreepFlag) {
    if (!do_gc(0)) {
      return FALSE;
    }
  }
  return TRUE;
}

X_API int PL_put_list_chars(term_t t, const char *s) {
  CACHE_REGS
  Term nt;
  while ((nt = Yap_CharsToListOfAtoms(s, ENC_ISO_LATIN1 PASS_REGS)) == 0L) {
    if (LOCAL_Error_TYPE && !Yap_SWIHandleError("PL_put_string_nchars"))
      return FALSE;
  }
  Yap_PutInSlot(t, nt);
  return TRUE;
}

X_API void PL_put_nil(term_t t) {
  CACHE_REGS
  Yap_PutInSlot(t, TermNil);
}

/*  void PL_put_pointer(term_t -t, void *ptr)
YAP: NO EQUIVALENT */
/* SAM TO DO */
X_API int PL_put_pointer(term_t t, void *ptr) {
  CACHE_REGS
  YAP_Term tptr = YAP_MkIntTerm((YAP_Int)ptr);
  Yap_PutInSlot(t, tptr);
  return TRUE;
}

X_API int PL_put_string_chars(term_t t, const char *chars) {
  CACHE_REGS
  Term nt;
  while ((nt = Yap_CharsToString(chars, ENC_ISO_LATIN1 PASS_REGS)) == 0L) {
    if (LOCAL_Error_TYPE && !Yap_SWIHandleError("PL_putPL_put_string_chars"))
      return FALSE;
  }
  Yap_PutInSlot(t, nt);
  return TRUE;
}

X_API int PL_put_string_nchars(term_t t, size_t len, const char *chars) {
  CACHE_REGS
  Term nt;
  while ((nt = Yap_NCharsToString(chars, len, ENC_ISO_LATIN1 PASS_REGS)) ==
         0L) {
    if (LOCAL_Error_TYPE && !Yap_SWIHandleError("PL_putPL_put_string_chars"))
      return FALSE;
  }
  Yap_PutInSlot(t, nt);
  return TRUE;
}

X_API int PL_put_term(term_t d, term_t s) {
  CACHE_REGS
  Yap_PutInSlot(d, Yap_GetFromSlot(s));
  return TRUE;
}

X_API int PL_put_variable(term_t t) {
  CACHE_REGS
  Yap_PutInSlot(t, MkVarTerm());
  return TRUE;
}

/* end PL_put_* functions =============================*/

/*  int PL_raise_exception(term_t exception)
YAP: NO EQUIVALENT */
/* SAM TO DO */

X_API int PL_raise_exception(term_t exception) {
  CACHE_REGS
  LOCAL_Error_TYPE = THROW_EVENT;
  LOCAL_ActiveError->errorGoal = Yap_TermToBuffer(Yap_GetFromHandle(exception), LOCAL_encoding, TermNil);
  //Yap_PutException(Yap_GetFromSlot(exception));
  Yap_RaiseException();
  return 0;
}

X_API int PL_throw(term_t exception) {
  return PL_raise_exception( exception );
}

X_API void PL_fatal_error(const char *msg) {
  fprintf(stderr, "[ FATAL ERROR: %s ]\n", msg);
  Yap_exit(1);
}

X_API int PL_warning(const char *msg, ...) {
  va_list args;
  va_start(args, msg);
  // just print the warning message and return?
  fprintf(stderr, "[Warning:");
  fprintf(stderr, msg, args);
  fprintf(stderr, "]\n");
  va_end(args);
  PL_fail;
}

/* begin PL_unify_* functions =============================*/

X_API int PL_unify(term_t t1, term_t t2) {
  CACHE_REGS
  return Yap_unify(Yap_GetFromSlot(t1), Yap_GetFromSlot(t2));
}

/*  int PL_unify_atom(term_t ?t, atom  *at)
YAP long int  unify(YAP_Term* a, Term* b) */
X_API int PL_unify_atom(term_t t, atom_t at) {
  CACHE_REGS
  YAP_Term cterm = MkAtomTerm(SWIAtomToAtom(at));
  return YAP_Unify(Yap_GetFromSlot(t), cterm);
}

/*  int PL_unify_atom_chars(term_t ?t, const char *chars)
YAP long int  unify(YAP_Term* a, Term* b) */
X_API int PL_unify_atom_chars(term_t t, const char *s) {
  CACHE_REGS
  Atom at;
  while ((at = Yap_CharsToAtom(s, ENC_ISO_LATIN1 PASS_REGS)) == 0L) {
    if (LOCAL_Error_TYPE && !Yap_SWIHandleError("PL_unify_atom_nchars"))
      return FALSE;
  }
  Yap_AtomIncreaseHold(at);
  return Yap_unify(Yap_GetFromSlot(t), MkAtomTerm(at));
}

/*  int PL_unify_atom_chars(term_t ?t, const char *chars)
YAP long int  unify(YAP_Term* a, Term* b) */
X_API int PL_unify_atom_nchars(term_t t, size_t len, const char *s) {
  CACHE_REGS
  Atom at;
  while ((at = Yap_NCharsToAtom(s, len, ENC_ISO_LATIN1 PASS_REGS)) == 0L) {
    if (LOCAL_Error_TYPE && !Yap_SWIHandleError("PL_unify_atom_nchars"))
      return FALSE;
  }
  Yap_AtomIncreaseHold(at);
  return Yap_unify(Yap_GetFromSlot(t), MkAtomTerm(at));
}

/*  int PL_unify_float(term_t ?t, double f)
YAP long int  unify(YAP_Term* a, Term* b) */
X_API int PL_unify_float(term_t t, double f) {
  CACHE_REGS
  Term fterm = MkFloatTerm(f);
  return Yap_unify(Yap_GetFromSlot(t), fterm);
}

/*  int PL_unify_integer(term_t ?t, long n)
YAP long int  unify(YAP_Term* a, Term* b) */
X_API int PL_unify_integer(term_t t, long n) {
  CACHE_REGS
  Term iterm = MkIntegerTerm(n);
  return Yap_unify(Yap_GetFromSlot(t), iterm);
}

X_API int PL_unify_intptr(term_t t, intptr_t n) {
  CACHE_REGS
  Term iterm = MkIntegerTerm(n);
  return Yap_unify(Yap_GetFromSlot(t), iterm);
}

X_API int PL_unify_uintptr(term_t t, uintptr_t n) {
  CACHE_REGS
  Term iterm = MkIntegerTerm(n);
  return Yap_unify(Yap_GetFromSlot(t), iterm);
}

X_API int PL_unify_boolean(term_t t, int n) {
  CACHE_REGS
  Term iterm = (n == 0 ? TermFalse : TermTrue);
  return Yap_unify(Yap_GetFromSlot(t), iterm);
}

/*  int PL_unify_integer(term_t ?t, long n)
YAP long int  unify(YAP_Term* a, Term* b) */
X_API int PL_unify_functor(term_t t, functor_t f) {
  CACHE_REGS
  Term tt = Yap_GetFromSlot(t);
  Functor ff = SWIFunctorToFunctor(f);
  if (IsVarTerm(tt)) {
    if (Unsigned(HR) + ArityOfFunctor(ff) > Unsigned(ASP) - CreepFlag) {
      if (!do_gc(0)) {
        return FALSE;
      }
    }
    return Yap_unify(tt, Yap_MkNewApplTerm(ff, ArityOfFunctor(ff)));
  }
  if (IsPairTerm(tt))
    return ff == FunctorDot;
  if (!IsApplTerm(tt))
    return FALSE;
  return ff == FunctorOfTerm(tt);
}

/*  int PL_unify_integer(term_t ?t, long n)
YAP long int  unify(YAP_Term* a, Term* b) */
X_API int PL_unify_int64(term_t t, int64_t n) {
  CACHE_REGS
#if SIZEOF_INT_P == 8
  Term iterm = MkIntegerTerm(n);
  return Yap_unify(Yap_GetFromSlot(t), iterm);
#elif USE_GMP
  YAP_Term iterm;
  char s[64];
  MP_INT rop;

#ifdef _WIN32
  snprintf(s, 64, "%I64d", (long long int)n);
#elif HAVE_SNPRINTF
  snprintf(s, 64, "%lld", (long long int)n);
#else
  sprintf(s, "%lld", (long long int)n);
#endif
  mpz_init_set_str(&rop, s, 10);
  iterm = YAP_MkBigNumTerm((void *)&rop);
  return YAP_Unify(Yap_GetFromSlot(t), iterm);
#else
  if ((long)n == n)
    return PL_unify_integer(t, n);
  // use a double, but will mess up writing.
  else {
    union {
      int64_t i;
      double d;
    } udi_;
    udi_.i = n;
    return PL_unify_float(t, udi_.d);
  }
#endif
}

/*  int PL_unify_list(term_t ?t, term_t +h, term_t -t)
YAP long int  unify(YAP_Term* a, Term* b) */
X_API int PL_unify_list(term_t tt, term_t h, term_t tail) {
  CACHE_REGS
  Term t;
  if (Unsigned(HR) > Unsigned(ASP) - CreepFlag) {
    if (!do_gc(0)) {
      return FALSE;
    }
  }
  t = Deref(Yap_GetFromSlot(tt));
  if (IsVarTerm(t)) {
    Term pairterm = Yap_MkNewPairTerm();
    Yap_unify(t, pairterm);
    /* avoid calling deref */
    t = pairterm;
  } else if (!IsPairTerm(t)) {
    return FALSE;
  }
  Yap_PutInSlot(h, HeadOfTerm(t));
  Yap_PutInSlot(tail, TailOfTerm(t));
  return TRUE;
}

/*  int PL_unify_list(term_t ?t, term_t +h, term_t -t)
YAP long int  unify(YAP_Term* a, Term* b) */
X_API int PL_unify_arg(int index, term_t tt, term_t arg) {
  CACHE_REGS
  Term t = Deref(Yap_GetFromSlot(tt)), to;
  if (index < 0)
    return FALSE;
  if (IsVarTerm(t) || IsAtomOrIntTerm(t)) {
    return FALSE;
  } else if (IsPairTerm(t)) {
    if (index == 1)
      to = HeadOfTerm(t);
    else if (index == 2)
      to = TailOfTerm(t);
    else
      return FALSE;
  } else {
    Functor f = FunctorOfTerm(t);
    if (IsExtensionFunctor(f))
      return FALSE;
    if (index > ArityOfFunctor(f))
      return FALSE;
    to = ArgOfTerm(index, t);
  }
  return Yap_unify(Yap_GetFromSlot(arg), to);
}

/*  int PL_unify_list(term_t ?t, term_t +h, term_t -t)
YAP long int  unify(YAP_Term* a, Term* b) */
X_API int PL_unify_list_chars(term_t t, const char *chars) {
  CACHE_REGS
  Term chterm;
  while ((chterm = Yap_CharsToListOfAtoms(chars, ENC_ISO_LATIN1 PASS_REGS)) ==
         0L) {
    if (LOCAL_Error_TYPE && !Yap_SWIHandleError("PL_unify_list_chars"))
      return FALSE;
  }
  return Yap_unify(Yap_GetFromSlot(t), chterm);
}

/*  int PL_unify_list(term_t ?t, term_t +h, term_t -t)
YAP long int  unify(YAP_Term* a, Term* b) */
X_API int PL_unify_list_ncodes(term_t t, size_t len, const char *chars) {
  CACHE_REGS
  Term chterm;
  while ((chterm = Yap_NCharsToListOfCodes(chars, len,
                                           ENC_ISO_LATIN1 PASS_REGS)) == 0L) {
    if (LOCAL_Error_TYPE && !Yap_SWIHandleError("PL_unify_list_ncodes"))
      return FALSE;
  }
  return Yap_unify(Yap_GetFromSlot(t), chterm);
}

X_API int PL_unify_list_codes(term_t t, const char *chars) {
  CACHE_REGS
  Term chterm;
  while ((chterm = Yap_CharsToListOfCodes(chars, ENC_ISO_LATIN1 PASS_REGS)) ==
         0L) {
    if (LOCAL_Error_TYPE && !Yap_SWIHandleError("PL_unify_list_codes"))
      return FALSE;
  }
  return Yap_unify(Yap_GetFromSlot(t), chterm);
}

/*  int PL_unify_nil(term_t ?l)
YAP long int  unify(YAP_Term* a, Term* b) */
X_API int PL_unify_nil(term_t t) {
  CACHE_REGS
  return Yap_unify(Yap_GetFromSlot(t), TermNil);
}

/*  int PL_unify_pointer(term_t ?t, void *ptr)
YAP: NO EQUIVALENT */
/* SAM TO DO */
X_API int PL_unify_pointer(term_t t, void *ptr) {
  CACHE_REGS
  YAP_Term ptrterm = YAP_MkIntTerm((YAP_Int)ptr);
  return YAP_Unify(Yap_GetFromSlot(t), ptrterm);
}

/*  int PL_unify_list(term_t ?t, term_t +h, term_t -t)
YAP long int  unify(YAP_Term* a, Term* b) */
X_API int PL_unify_string_chars(term_t t, const char *chars) {
  CACHE_REGS
  Term chterm;
  while ((chterm = Yap_CharsToString(chars, ENC_ISO_LATIN1 PASS_REGS)) == 0L) {
    if (LOCAL_Error_TYPE && !Yap_SWIHandleError("PL_unify_list_ncodes"))
      return FALSE;
  }
  return Yap_unify(Yap_GetFromSlot(t), chterm);
}

X_API int PL_unify_string_nchars(term_t t, size_t len, const char *chars) {
  CACHE_REGS
  Term chterm;
  while ((chterm = Yap_NCharsToString(chars, len, ENC_ISO_LATIN1 PASS_REGS)) ==
         0L) {
    if (LOCAL_Error_TYPE && !Yap_SWIHandleError("PL_unify_list_ncodes"))
      return FALSE;
  }
  return Yap_unify(Yap_GetFromSlot(t), chterm);
}

/*  int PL_unify_wchars(term_t ?t, int type, size_t len,, const pl_wchar_t *s)
 */
X_API int PL_unify_wchars(term_t t, int type, size_t len,
                          const pl_wchar_t *chars) {
  CACHE_REGS
  YAP_Term chterm;

  while (TRUE) {
    switch (type) {
    case PL_ATOM: {
      Atom at;
      at = Yap_NWCharsToAtom(chars, len PASS_REGS);
      if (at) {
        Yap_AtomIncreaseHold(at);
        chterm = MkAtomTerm(at);
        return Yap_unify(Yap_GetFromSlot(t), chterm);
      }
    } break;
    case PL_UTF8_STRING:
    case PL_STRING:
      if ((chterm = Yap_NWCharsToString(chars, len PASS_REGS)) != 0) {
        return YAP_Unify(Yap_GetFromSlot(t), chterm);
      }
      break;
    case PL_CODE_LIST:
      if ((chterm = Yap_NWCharsToListOfCodes(chars, len PASS_REGS)) != 0) {
        return YAP_Unify(Yap_GetFromSlot(t), chterm);
      }
      break;
    case PL_CHAR_LIST:
      if ((chterm = Yap_NWCharsToListOfAtoms(chars, len PASS_REGS)) != 0) {
        return YAP_Unify(Yap_GetFromSlot(t), chterm);
      }
      break;
    default:
      /* should give error?? */
      return FALSE;
    }
    if (LOCAL_Error_TYPE && !Yap_SWIHandleError("PL_unify_wchars"))
      return FALSE;
  }
  return FALSE;
}

typedef struct {
  int type;
  union {
    functor_t f;
    term_t t;
    atom_t a;
    long l;
    int i;
    double dbl;
    char *s;
    struct {
      size_t n;
      char *s;
    } ns;
    struct {
      size_t n;
      wchar_t *w;
    } nw;
    void *p;
    wchar_t *w;
  } arg;
} arg_types;

static YAP_Term MkBoolTerm(int b) {
  if (b)
    return MkAtomTerm(AtomTrue);
  else
    return MkAtomTerm(AtomFalse);
}

#define MAX_DEPTH 64

typedef struct {
  int nels;
  CELL *ptr;
} stack_el;

/*  int PL_unify_term(term_t ?t1, term_t ?t2)
YAP long int  YAP_Unify(YAP_Term* a, Term* b) */
int PL_unify_termv(term_t l, va_list ap) {
  CACHE_REGS
  int type, res;
  int nels = 1;
  int depth = 1;
  Term a[1], *pt;
  stack_el stack[MAX_DEPTH];

  BACKUP_MACHINE_REGS();
  if (Unsigned(HR) > Unsigned(ASP) - CreepFlag) {
    if (!do_gc(0)) {
      RECOVER_MACHINE_REGS();
      return FALSE;
    }
  }
  pt = a;
  while (depth > 0) {
    while (nels > 0) {
      type = va_arg(ap, int);
      nels--;
      switch (type) {
      case PL_VARIABLE:
        *pt++ = MkVarTerm();
        break;
      case PL_BOOL:
        *pt++ = MkBoolTerm(va_arg(ap, int));
        break;
      case PL_ATOM:
        *pt++ = MkAtomTerm(SWIAtomToAtom(va_arg(ap, atom_t)));
        break;
      case PL_INTEGER:
        *pt++ = MkIntegerTerm(va_arg(ap, long));
        break;
      case PL_SHORT:
        *pt++ = MkIntegerTerm(va_arg(ap, int));
        break;
      case PL_LONG:
        *pt++ = MkIntegerTerm(va_arg(ap, long));
        break;
      case PL_INT:
        *pt++ = MkIntegerTerm(va_arg(ap, int));
        break;
      case PL_FLOAT:
        *pt++ = MkFloatTerm(va_arg(ap, double));
        break;
      case PL_STRING: {
        Term chterm;
        const char *chars = va_arg(ap, char *);

        while ((chterm = Yap_CharsToString(chars, ENC_ISO_LATIN1 PASS_REGS)) ==
               0L) {
          if (LOCAL_Error_TYPE && !Yap_SWIHandleError("PL_unify_term"))
            return FALSE;
        }
        *pt++ = chterm;
      } break;
      case PL_CHARS: {
        Atom at;
        const char *chars = va_arg(ap, char *);
        while ((at = Yap_CharsToAtom(chars, ENC_ISO_LATIN1 PASS_REGS)) == 0L) {
          if (LOCAL_Error_TYPE && !Yap_SWIHandleError("PL_unify_term"))
            return FALSE;
        }
        *pt++ = MkAtomTerm(at);
        Yap_AtomIncreaseHold(at);
      } break;
      case PL_NCHARS: {
        Atom at;
        size_t sz = va_arg(ap, size_t);
        const char *chars = va_arg(ap, char *);
        while ((at = Yap_NCharsToAtom(chars, sz, ENC_ISO_LATIN1 PASS_REGS)) ==
               0L) {
          if (LOCAL_Error_TYPE && !Yap_SWIHandleError("PL_unify_term"))
            return FALSE;
        }
        *pt++ = MkAtomTerm(at);
        Yap_AtomIncreaseHold(at);
      } break;
      case PL_NWCHARS: {
        Atom at;
        size_t sz = va_arg(ap, size_t);
        const wchar_t *chars = va_arg(ap, wchar_t *);
        while ((at = Yap_NWCharsToAtom(chars, sz PASS_REGS)) == 0L) {
          if (LOCAL_Error_TYPE && !Yap_SWIHandleError("PL_unify_term"))
            return FALSE;
        }
        *pt++ = MkAtomTerm(at);
        Yap_AtomIncreaseHold(at);
      } break;
      case PL_TERM: {
        Term t = Yap_GetFromSlot(va_arg(ap, size_t));
        if (IsVarTerm(t) && VarOfTerm(t) >= ASP && VarOfTerm(t) < LCL0) {
          Yap_unify(*pt++, t);
        } else {
          *pt++ = t;
        }
      } break;
      case PL_POINTER:
        *pt++ = MkIntegerTerm((Int)va_arg(ap, void *));
        break;
      case PL_INTPTR:
        *pt++ = MkIntegerTerm((UInt)va_arg(ap, intptr_t));
        break;
      case PL_INT64:
#if SIZEOF_INT_P == 8
        *pt++ = MkIntegerTerm((Int)va_arg(ap, long int));
#elif USE_GMP
      {
        char s[64];
        MP_INT rop;

#ifdef _WIN32
        snprintf(s, 64, "%I64d", va_arg(ap, long long int));
#elif HAVE_SNPRINTF
        snprintf(s, 64, "%lld", va_arg(ap, long long int));
#else
        sprintf(s, "%lld", va_arg(ap, long long int));
#endif
        mpz_init_set_str(&rop, s, 10);
        *pt++ = YAP_MkBigNumTerm((void *)&rop);
      }
#else
      {
        int64_t i = (Int)va_arg(ap, int64_t);
        intptr_t x = i;
        if (x == i)
          *pt++ = MkIntegerTerm(x);
        else {
          // use a double, but will mess up writing.
          union {
            int64_t i;
            double d;
          } udi_;
          udi_.i = i;
          *pt++ = MkFloatTerm(udi_.d);
        }
      }
#endif
        break;
      case PL_FUNCTOR: {
        functor_t f = va_arg(ap, functor_t);
        Functor ff = SWIFunctorToFunctor(f);
        UInt arity = ArityOfFunctor(ff);

        if (!arity) {
          *pt++ = MkAtomTerm((Atom)f);
        } else {
          Term t = Yap_MkNewApplTerm(ff, arity);
          if (nels) {
            if (depth == MAX_DEPTH) {
              fprintf(stderr,
                      "ERROR: very deep term in PL_unify_term, change "
                      "MAX_DEPTH from %d\n",
                      MAX_DEPTH);
              return FALSE;
            }
            stack[depth - 1].nels = nels;
            stack[depth - 1].ptr = pt + 1;
            depth++;
          }
          *pt = t;
          if (ff == FunctorDot)
            pt = RepPair(t);
          else
            pt = RepAppl(t) + 1;
          nels = arity;
        }
      } break;
      case PL_FUNCTOR_CHARS: {
        char *fname = va_arg(ap, char *);
        size_t arity = va_arg(ap, size_t);
        Atom at;

        while ((at = Yap_CharsToAtom(fname, ENC_ISO_LATIN1 PASS_REGS)) == 0L) {
          if (LOCAL_Error_TYPE && !Yap_SWIHandleError("PL_unify_term"))
            return FALSE;
        }
        Yap_AtomIncreaseHold(at);
        if (!arity) {
          *pt++ = MkAtomTerm(at);
        } else {
          Functor ff;
          Term t;

          ff = Yap_MkFunctor(at, arity);
          t = Yap_MkNewApplTerm(ff, arity);
          if (nels) {
            if (depth == MAX_DEPTH) {
              fprintf(stderr, "very deep term in PL_unify_term\n");
              return FALSE;
            }
            stack[depth - 1].nels = nels;
            stack[depth - 1].ptr = pt + 1;
            depth++;
          }
          *pt = t;
          if (ff == FunctorDot)
            pt = RepPair(t);
          else
            pt = RepAppl(t) + 1;
          nels = arity;
        }
      } break;
      case PL_LIST: {
        Term t = Yap_MkNewPairTerm();

        if (nels) {
          if (depth == MAX_DEPTH) {
            fprintf(stderr, "very deep term in PL_unify_term\n");
            return FALSE;
          }
          stack[depth - 1].nels = nels;
          stack[depth].ptr = pt + 1;
          depth++;
        }
        *pt = t;
        pt = RepPair(t);
        nels = 2;
      } break;
      default:
        fprintf(stderr, "PL_unify_term: %d not supported\n", type);
        exit(1);
      }
    }
    depth--;
    if (depth) {
      pt = stack[depth - 1].ptr;
      nels = stack[depth - 1].nels;
    }
  }
  res = Yap_unify(Yap_GetFromSlot(l), a[0]);
  RECOVER_MACHINE_REGS();
  return res;
}

int PL_unify_term(term_t t, ...) {
  va_list args;
  int rval;

  va_start(args, t);
  rval = PL_unify_termv(t, args);
  va_end(args);

  return rval;
}

/* end PL_unify_* functions =============================*/

/*  void PL_register_atom(atom_t atom) */
X_API void PL_register_atom(atom_t atom) {
  Yap_AtomIncreaseHold(SWIAtomToAtom(atom));
}

/*  void PL_unregister_atom(atom_t atom) */
X_API void PL_unregister_atom(atom_t atom) {
  Yap_AtomDecreaseHold(SWIAtomToAtom(atom));
}

X_API int PL_term_type(term_t t) {
  CACHE_REGS
  /* YAP_ does not support strings as different objects */
  YAP_Term v = Yap_GetFromSlot(t);
  if (IsVarTerm(v)) {
    return PL_VARIABLE;
  } else if (IsAtomTerm(v)) {
    return PL_ATOM;
  } else if (IsIntegerTerm(v)) {
    return PL_INTEGER;
  } else if (IsStringTerm(v)) {
    return PL_STRING;
  } else if (IsFloatTerm(v)) {
    return PL_FLOAT;
  } else {
    return PL_TERM;
  }
}

X_API int PL_is_atom(term_t t) {
  CACHE_REGS
  return IsAtomTerm(Yap_GetFromSlot(t));
}

X_API int PL_is_ground(term_t t) {
  CACHE_REGS
  return Yap_IsGroundTerm(Yap_GetFromSlot(t));
}

X_API int PL_is_acyclic(term_t t) {
  CACHE_REGS
  return Yap_IsAcyclicTerm(Yap_GetFromSlot(t));
}

X_API int PL_is_callable(term_t t) {
  CACHE_REGS
  YAP_Term t1 = Yap_GetFromSlot(t);
  if (IsVarTerm(t1))
    return FALSE;
  if (IsAtomTerm(t1) || IsPairTerm(t1))
    return TRUE;
  if (IsApplTerm(t1) && !IsExtensionFunctor(FunctorOfTerm(t1)))
    return TRUE;
  return FALSE;
}

X_API int PL_is_atomic(term_t ts) {
  CACHE_REGS
  YAP_Term t = Yap_GetFromSlot(ts);
  return !IsVarTerm(t) || !IsApplTerm(t) || !IsPairTerm(t);
}

X_API int PL_is_compound(term_t ts) {
  CACHE_REGS
  YAP_Term t = Yap_GetFromSlot(ts);
  return (IsApplTerm(t) || IsPairTerm(t));
}

X_API int PL_is_functor(term_t ts, functor_t f) {
  CACHE_REGS
  YAP_Term t = Yap_GetFromSlot(ts);
  Functor ff = SWIFunctorToFunctor(f);
  if (YAP_IsApplTerm(t)) {
    return FunctorOfTerm(t) == (Functor)ff;
  } else if (YAP_IsPairTerm(t)) {
    return ff == FunctorDot;
  } else
    return 0;
}

X_API int PL_is_float(term_t ts) {
  CACHE_REGS
  YAP_Term t = Yap_GetFromSlot(ts);
  return !IsVarTerm(t) && IsFloatTerm(t);
}

X_API int PL_is_integer(term_t ts) {
  CACHE_REGS
  YAP_Term t = Yap_GetFromSlot(ts);
  if (IsVarTerm(t))
    return FALSE;
  if (IsIntTerm(t))
    return TRUE;
  if (IsApplTerm(t)) {
    Functor f = FunctorOfTerm(t);
    if (f == FunctorLongInt)
      return TRUE;
    if (f == FunctorBigInt) {
      CELL mask = RepAppl(t)[1];
      return (mask == BIG_INT);
    }
  }
  return FALSE;
}

X_API int PL_is_list(term_t ts) {
  CACHE_REGS
  YAP_Term t = Yap_GetFromSlot(ts);
  return !IsVarTerm(t) && (t == TermNil || IsPairTerm(t));
}

X_API int PL_is_pair(term_t ts) {
  CACHE_REGS
  YAP_Term t = Yap_GetFromSlot(ts);
  return !IsVarTerm(t) && IsPairTerm(t);
}

X_API int PL_skip_list(term_t list, term_t tail, size_t *len) {
  CACHE_REGS
  Term t0 = Yap_GetFromSlot(list);
  Term *l = &t0;
  Term *t;
  intptr_t length;

  length = Yap_SkipList(l, &t);
  if (len)
    *len = length;
  if (tail) {
    Term t2 = Yap_GetFromSlot(tail);

    Yap_unify(t2, *t);
  }

  if (*t == TermNil)
    return PL_LIST;
  else if (IsVarTerm(*t))
    return PL_PARTIAL_LIST;
  else if (IsPairTerm(*t))
    return PL_CYCLIC_TERM;
  else
    return PL_NOT_A_LIST;
}

X_API int PL_is_number(term_t ts) {
  CACHE_REGS
  YAP_Term t = Yap_GetFromSlot(ts);
  return IsIntegerTerm(t) || IsBigIntTerm(t) || IsFloatTerm(t);
}

X_API int PL_is_string(term_t ts) {
  CACHE_REGS
  Term t = Yap_GetFromSlot(ts);
  return IsStringTerm(t);
}

X_API int PL_is_variable(term_t ts) {
  CACHE_REGS
  YAP_Term t = Yap_GetFromSlot(ts);
  return YAP_IsVarTerm(t);
}

X_API int PL_compare(term_t ts1, term_t ts2) {
  CACHE_REGS
  YAP_Term t1 = Yap_GetFromSlot(ts1);
  YAP_Term t2 = Yap_GetFromSlot(ts2);
  return YAP_CompareTerms(t1, t2);
}

X_API char *PL_record_external(term_t ts, size_t *sz) {
  CACHE_REGS
  Term t = Yap_GetFromSlot(ts);
  size_t len = 512, nsz;
  char *s;

  while (TRUE) {
    if (!(s = Yap_AllocCodeSpace(len)))
      return NULL;
    if ((nsz = Yap_ExportTerm(t, s, len, 0))) {
      *sz = nsz;
      return (char *)s;
    } else {
      if (len < 16 * 1024)
        len = len * 2;
      else
        len += 16 * 1024;
    }
  }
  return NULL;
}

/*
partial implementation of recorded_external, does not guarantee endianness nor
portability, and does not
support constraints.
*/

X_API int PL_recorded_external(const char *tp, term_t ts) {
  CACHE_REGS
  Term t = Yap_ImportTerm((void *)tp);
  if (t == 0)
    return FALSE;
  Yap_PutInSlot(ts, t);
  return TRUE;
}

X_API int PL_erase_external(char *tp) {
  Yap_FreeCodeSpace(tp);
  return TRUE;
}

X_API record_t PL_record(term_t ts) {
  CACHE_REGS
  Term t = Yap_GetFromSlot(ts);
  return (record_t)YAP_Record(t);
}

X_API int PL_recorded(record_t db, term_t ts) {
  CACHE_REGS
  Term t = YAP_Recorded((void *)db);
  if (t == ((CELL)0))
    return FALSE;
  Yap_PutInSlot(ts, t);
  return TRUE;
}

X_API record_t PL_duplicate_record(record_t db) {
  Term t = YAP_Recorded((void *)db);
  if (t == ((CELL)0))
    return FALSE;
  return (record_t)YAP_Record(t);
}

X_API void PL_erase(record_t db) { YAP_Erase((void *)db); }

X_API void PL_halt(int e) { YAP_Halt(e); }

X_API int PL_action(int action, ...) {
  va_list ap;

  va_start(ap, action);
  switch (action) {
  case PL_ACTION_TRACE:
    fprintf(stderr, "PL_ACTION_TRACE not supported\n");
    break;
  case PL_ACTION_DEBUG:
    fprintf(stderr, "PL_ACTION_DEBUG not supported\n");
    break;
  case PL_ACTION_BACKTRACE:
    fprintf(stderr, "PL_ACTION_BACKTRACE not supported\n");
    break;
  case PL_ACTION_HALT: {
    int halt_arg = va_arg(ap, int);
    YAP_Halt(halt_arg);
  } break;
  case PL_ACTION_ABORT: {
    YAP_Throw(MkAtomTerm(Yap_LookupAtom("abort")));
  } break;
  case PL_ACTION_BREAK:
    fprintf(stderr, "PL_ACTION_BREAK not supported\n");
    break;
  case PL_ACTION_GUIAPP:
    fprintf(stderr, "PL_ACTION_GUIAPP not supported\n");
    break;
  case PL_ACTION_WRITE:
    fprintf(stderr, "PL_ACTION_WRITE not supported\n");
    break;
  case PL_ACTION_FLUSH:
    fprintf(stderr, "PL_ACTION_WRITE not supported\n");
    break;
  case PL_ACTION_ATTACH_CONSOLE:
    fprintf(stderr, "PL_ACTION_WRITE not supported\n");
    break;
  }
  va_end(ap);
  return 0;
}

X_API term_t PL_exception(qid_t q) {
  YAP_Term t;
  if (YAP_GoalHasException(&t)) {
    CACHE_REGS
    term_t to = Yap_NewSlots(1);
    Yap_PutInSlot(to, t);
    return to;
  } else {
    return 0L;
  }
}

X_API void PL_clear_exception(void) {
  CACHE_REGS
  Yap_ResetException(worker_id);
}

X_API int PL_initialise(int myargc, char **myargv) {
  YAP_init_args init_args;

  memset((void *)&init_args, 0, sizeof(init_args));
  init_args.Argv = myargv;
  init_args.Argc = myargc;
#if BOOT_FROM_SAVED_STATE
  init_args.STARTUP = "startup.yss";
#else
  init_args.INPUT_STARTUP = NULL;
#endif
  init_args.LIBDIR = NULL;
  init_args.BOOTFILE = NULL;
  init_args.HaltAfterBoot = true;
  init_args.FastBoot = FALSE;
  init_args.MaxTableSpaceSize = 0;
  init_args.NumberWorkers = 1;
  init_args.SchedulerLoop = 10;
  init_args.DelayedReleaseLoad = 3;

  YAP_parse_yap_arguments(myargc, myargv, &init_args);

  GLOBAL_PL_Argc = myargc;
  GLOBAL_PL_Argv = myargv;
  GLOBAL_InitialisedFromPL = true;
  ATOM_nil = YAP_SWIAtomFromAtom(AtomNil);
  YAP_Init(&init_args);
  return true;
}

X_API int PL_is_initialised(int *argcp, char ***argvp) {
  if (GLOBAL_InitialisedFromPL) {
    if (argcp)
      *argcp = GLOBAL_PL_Argc;
    if (argvp)
      *argvp = GLOBAL_PL_Argv;
  }
  return GLOBAL_InitialisedFromPL;
}

X_API module_t PL_context(void) {
  CACHE_REGS
  return Yap_GetModuleEntry(LOCAL_SourceModule);
}

X_API int PL_strip_module(term_t raw, module_t *m, term_t plain) {
  CACHE_REGS
  Term m0, t;
  if (m) {
    if (*m)
      m0 = MkAtomTerm((*m)->AtomOfME);
    else
      m0 = MkAtomTerm(AtomProlog);
  } else
    m0 = USER_MODULE;
  t = Yap_StripModule(Yap_GetFromSlot(raw), &m0);
  if (!t)
    return FALSE;
  *m = Yap_GetModuleEntry(m0);
  Yap_PutInSlot(plain, t);
  return TRUE;
}

X_API atom_t PL_module_name(module_t m) {
  Atom at = m->AtomOfME;
  return AtomToSWIAtom(at);
}

X_API predicate_t PL_pred(functor_t f, module_t m) {
  Functor ff = SWIFunctorToFunctor(f);
  Term mod = SWIModuleToModule(m);

  if (IsAtomTerm((Term)f)) {
    return YAP_Predicate(YAP_AtomOfTerm((Term)f), 0, mod);
  } else {
    return YAP_Predicate((YAP_Atom)NameOfFunctor(ff), ArityOfFunctor(ff), mod);
  }
}

X_API predicate_t PL_predicate(const char *name, int arity, const char *m) {
  CACHE_REGS
  Term mod;
  Atom at;
  if (m == NULL) {
    mod = CurrentModule;
    if (!mod)
      mod = USER_MODULE;
  } else {
    Atom at;
    while (!(at = Yap_LookupAtom((char *)m))) {
      if (!Yap_growheap(FALSE, 0L, NULL)) {
        Yap_Error(RESOURCE_ERROR_HEAP, TermNil, LOCAL_ErrorMessage);
        return NULL;
      }
    }
    mod = MkAtomTerm(at);
  }
  while (!(at = Yap_LookupAtom((char *)name))) {
    if (!Yap_growheap(FALSE, 0L, NULL)) {
      Yap_Error(RESOURCE_ERROR_HEAP, TermNil, LOCAL_ErrorMessage);
      return NULL;
    }
  }
  return YAP_Predicate((YAP_Atom)at, arity, mod);
}

X_API int PL_unify_predicate(term_t head, predicate_t pred, int how) {
  CACHE_REGS
  PredEntry *pe = (PredEntry *)pred;
  Term ts[2], nt;
  if (!pe->ModuleOfPred) {
    ts[0] = pe->ModuleOfPred;
  } else {
    ts[0] = TermProlog;
  }
  if (how == GP_NAMEARITY) {
    Term nts[2];
    nts[1] = MkIntegerTerm(pe->ArityOfPE);
    if (pe->ArityOfPE) {
      nts[0] = MkAtomTerm(NameOfFunctor(pe->FunctorOfPred));
    } else {
      nts[0] = MkAtomTerm((Atom)pe->FunctorOfPred);
    }
    ts[1] = Yap_MkApplTerm(FunctorSlash, 2, nts);
  } else {
    if (pe->ArityOfPE) {
      ts[1] = Yap_MkNewApplTerm(pe->FunctorOfPred, pe->ArityOfPE);
    } else {
      ts[1] = MkAtomTerm((Atom)pe->FunctorOfPred);
    }
  }
  nt = Yap_MkApplTerm(FunctorModule, 2, ts);
  return Yap_unify(Yap_GetFromSlot(head), nt);
}

X_API void PL_predicate_info(predicate_t p, atom_t *name, int *arity,
                             module_t *m) {
  PredEntry *pd = (PredEntry *)p;
  Atom aname;

  if (pd->ArityOfPE) {
    if (arity)
      *arity = pd->ArityOfPE;
    aname = NameOfFunctor(pd->FunctorOfPred);
  } else {
    if (arity)
      *arity = 0;
    aname = (Atom)(pd->FunctorOfPred);
  }
  if (pd->ModuleOfPred && m)
    *m = Yap_GetModuleEntry(pd->ModuleOfPred);
  else if (m)
    *m = Yap_GetModuleEntry(TermProlog);
  if (name)
    *name = AtomToSWIAtom(aname);
}

#undef S_YREG

X_API fid_t PL_open_foreign_frame(void) {
  CACHE_REGS
  /* initialise a new marker choicepoint */
  choiceptr cp_b = ((choiceptr)(ASP - 1)) - 1;
  cp_b->cp_tr = TR;
  cp_b->cp_h = HR;
  cp_b->cp_b = B;
  cp_b->cp_cp = CP;
  cp_b->cp_env = ENV;
  cp_b->cp_ap = NOCODE;
#ifdef DEPTH_LIMIT
  cp_b->cp_depth = DEPTH;
#endif /* DEPTH_LIMIT */
  cp_b->cp_a1 = MkIntTerm(Yap_StartSlots());
  HB = HR;
  B = cp_b;
  ASP = (CELL *)B;

  return (fid_t)(LCL0 - (CELL *)cp_b);
}

X_API void PL_close_foreign_frame(fid_t f) {
  CACHE_REGS
  choiceptr cp_b = (choiceptr)(LCL0 - (UInt)f);
  Yap_CloseSlots(IntOfTerm(cp_b->cp_a1));
  B = cp_b;
  HB = B->cp_h;
  Yap_TrimTrail();
  B = cp_b->cp_b;
  CP = cp_b->cp_cp;
  ENV = cp_b->cp_env;
#ifdef DEPTH_LIMIT
  DEPTH = cp_b->cp_depth;
#endif /* DEPTH_LIMIT */
  HB = B->cp_h;
  ASP = ((CELL *)(cp_b + 1)) + 1;
}

static void backtrack(void) {
  CACHE_REGS
  P = FAILCODE;
  Yap_absmi(0);
  TR = B->cp_tr;
}

X_API void PL_rewind_foreign_frame(fid_t f) {
  CACHE_REGS
  choiceptr cp_b = (choiceptr)(LCL0 - (UInt)f);
  if (B != cp_b) {
    while (B->cp_b != cp_b)
      B = B->cp_b;
  }
  backtrack();
  // restore to original location
  ASP = (CELL *)B;
  Yap_CloseSlots(IntOfTerm(cp_b->cp_a1));
}

X_API void PL_discard_foreign_frame(fid_t f) {
  CACHE_REGS
  choiceptr cp_b = (choiceptr)(LCL0 - (UInt)f);

  if (B != cp_b) {
    while (B->cp_b != cp_b)
      B = B->cp_b;
    backtrack();
  }
  Yap_CloseSlots(IntOfTerm(cp_b->cp_a1));
  B = cp_b->cp_b;
  CP = cp_b->cp_cp;
  ENV = cp_b->cp_env;
  HB = B->cp_h;
#ifdef DEPTH_LIMIT
  DEPTH = cp_b->cp_depth;
#endif /* DEPTH_LIMIT */
  /* we can assume there was a slot before */
  ASP = ((CELL *)(cp_b + 1)) + 1;
}

X_API qid_t PL_open_query(module_t ctx, int flags, predicate_t p, term_t t0) {
  CACHE_REGS

  /* ignore flags  and module for now */
  qid_t new = (qid_t)Yap_AllocCodeSpace(sizeof(struct open_query_struct));
  new->oq = LOCAL_execution;
  LOCAL_execution = new;
  new->q_open = 1;
  new->q_state = 0;
  new->q_flags = flags;
  new->q_pe = (PredEntry *)p;
  new->q_g = t0;
  return new;
}

X_API int PL_next_solution(qid_t qi) {
  CACHE_REGS
  int result;
  if (qi->q_open != 1)
    return 0;
  if (setjmp(LOCAL_execution->q_env))
    return 0;
  // don't forget, on success these guys must create slots
  if (qi->q_state == 0) {
    result = YAP_EnterGoal((YAP_PredEntryPtr)qi->q_pe,
                           Yap_GetPtrFromHandle(qi->q_g), &qi->q_h);
  } else {
    LOCAL_AllowRestart = qi->q_open;
    result = YAP_RetryGoal(&qi->q_h);
  }
  qi->q_state = 1;
  if (result == 0) {
    YAP_LeaveGoal(false, &qi->q_h);
    qi->q_open = 0;
  }
  return result;
}

X_API void PL_cut_query(qid_t qi) {
  CACHE_REGS

  if (qi->q_open != 1 || qi->q_state == 0)
    return;
  YAP_LeaveGoal(false, &qi->q_h);
  qi->q_open = 0;
  LOCAL_execution = qi->oq;
  Yap_FreeCodeSpace((char *)qi);
}

X_API void PL_close_query(qid_t qi) {
  CACHE_REGS

  if (Yap_HasException() && !(qi->q_flags & (PL_Q_CATCH_EXCEPTION))) {
    Yap_ResetException(worker_id);
  }
  /* need to implement backtracking here */
  if (qi->q_open != 1 || qi->q_state == 0) {
    return;
  }
  YAP_LeaveGoal(FALSE, &qi->q_h);
  qi->q_open = 0;
  LOCAL_execution = qi->oq;
  Yap_FreeCodeSpace((char *)qi);
}

X_API int PL_call_predicate(module_t ctx, int flags, predicate_t p, term_t t0) {
  fid_t f = PL_open_foreign_frame();
  qid_t qi = PL_open_query(ctx, flags, p, t0);
  int ret = PL_next_solution(qi);
  PL_cut_query(qi);
  PL_close_foreign_frame(f);
  return ret;
}

X_API int PL_toplevel(void) {
  while (TRUE) {
    if (YAP_RunGoal(MkAtomTerm(Yap_FullLookupAtom("$live")))) {
      return TRUE;
    }
  }
  return TRUE;
}

X_API int PL_call(term_t tp, module_t m) {
  CACHE_REGS
  int out;

  BACKUP_B();
  BACKUP_H();

  Term t[2], g;
  t[0] = SWIModuleToModule(m);
  t[1] = Yap_GetFromSlot(tp);
  g = Yap_MkApplTerm(FunctorModule, 2, t);
  out = YAP_RunGoal(g);

  RECOVER_H();
  RECOVER_B();
  return out;
}

X_API void PL_register_foreign_in_module(const char *module, const char *name,
                                         int arity, pl_function_t function,
                                         int flags) {
  CACHE_REGS
  Term tmod;
  Int nflags = 0;

#ifdef DEBUG
  if (flags & (PL_FA_CREF)) {
    fprintf(stderr,
            "PL_register_foreign_in_module called with non-implemented "
            "flag %x when creating predicate %s:%s/%d\n",
            flags, module, name, arity);
  }
#endif
  if (module == NULL) {
    tmod = CurrentModule;
  } else {
    tmod = MkAtomTerm(Yap_LookupAtom((char *)module));
  }
  if (flags & PL_FA_VARARGS) {
    nflags = SWIEnvPredFlag;
  }
  if (flags & PL_FA_TRANSPARENT) {
    nflags |= ModuleTransparentPredFlag;
  } else {
    nflags |= CArgsPredFlag;
  }
  if (flags & PL_FA_NONDETERMINISTIC) {
    Yap_InitCPredBackCut((char *)name, arity,
                         sizeof(struct foreign_context) / sizeof(CELL),
                         (CPredicate)function, (CPredicate)function,
                         (CPredicate)function, UserCPredFlag | nflags);
  } else {
    UserCPredicate((char *)name, (CPredicate)function, arity, tmod, nflags);
  }
  if (flags & PL_FA_NOTRACE) {
    Yap_SetNoTrace((char *)name, arity, tmod);
  }
}

X_API void PL_register_extensions(const PL_extension *ptr) {
  // implemented as register foreign
  // may cause problems during initialization?
  PL_load_extensions(ptr);
}

X_API void PL_register_extensions_in_module(const char *module,
                                            const PL_extension *e) {
  // implemented as register foreign
  /* ignore flags for now */
  while (e->predicate_name != NULL) {
    PL_register_foreign_in_module(module, e->predicate_name, e->arity,
                                  e->function, e->flags);
    e++;
  }
}

X_API void PL_register_foreign(const char *name, int arity,
                               pl_function_t function, int flags) {
  PL_register_foreign_in_module(NULL, name, arity, function, flags);
}

X_API void PL_load_extensions(const PL_extension *ptr) {
  /* ignore flags for now */
  while (ptr->predicate_name != NULL) {
    PL_register_foreign_in_module(NULL, ptr->predicate_name, ptr->arity,
                                  ptr->function, ptr->flags);
    ptr++;
  }
}

X_API int PL_is_inf(term_t st) {
  CACHE_REGS
  Term t = Deref(Yap_GetFromSlot(st));
  if (IsVarTerm(t))
    return FALSE;
  if (!IsFloatTerm(t))
    return FALSE;
#if HAVE_ISINF
  Float fl;
  fl = FloatOfTerm(t);
  return isinf(fl);
#elif HAVE_FPCLASS
  Float fl;
  fl = FloatOfTerm(t);
  return (fpclass(fl) == FP_NINF || fpclass(fl) == FP_PINF);
#else
  return FALSE;
#endif
}

X_API int PL_thread_self(void) {
  CACHE_REGS
#if THREADS
  if (pthread_getspecific(Yap_yaamregs_key) == NULL)
    return -1;
  return (worker_id + 1) << 3;
#else
  return -2;
#endif
}

/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
PL_thread_raise() is used  for  re-routing   interrupts  in  the Windows
version, where the signal handler is running  from a different thread as
Prolog.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */

#if 0
int
PL_thread_raise(int tid, int sig)
{
  PL_LOCK(L_THREAD);
  if ( tid < 1  )
  { error:
    PL_UNLOCK(L_THREAD);
    return FALSE;
  }
  if ( !REMOTE_ThreadHandle(tid).in_use )
  goto error;


  PL_UNLOCK(L_THREAD);

  return TRUE;
}
#else

int PL_thread_raise(int tid, int sig) {
#if 0
  if ( !raiseSignal(NULL, sig) )
#endif
  return FALSE;

  return TRUE;
}

#endif

X_API int PL_unify_thread_id(term_t t, int i) {
  CACHE_REGS
  Term iterm = MkIntegerTerm(i);
  return Yap_unify(Yap_GetFromSlot(t), iterm);
}

static int pl_thread_self(void) {
  CACHE_REGS
#if THREADS
  if (pthread_getspecific(Yap_yaamregs_key) == NULL)
    return -1;
  return worker_id;
#else
  return -2;
#endif
}

X_API int PL_thread_attach_engine(const PL_thread_attr_t *attr) {
  int wid = pl_thread_self();

  if (wid < 0) {
    /* we do not have an engine */
    if (attr) {
      YAP_thread_attr yapt;

      yapt.ssize = attr->local_size;
      yapt.tsize = attr->global_size;
      yapt.alias = MkAtomTerm(Yap_LookupAtom(attr->alias));
      yapt.cancel = attr->cancel;
      wid = YAP_ThreadCreateEngine(&yapt);
    } else {
      wid = YAP_ThreadCreateEngine(NULL);
    }
    if (wid < 0)
      return -1;
    if (YAP_ThreadAttachEngine(wid)) {
      return wid;
    }
    return -1;
  } else {
    /* attach myself again */
    return YAP_ThreadAttachEngine(wid);
  }
}

X_API int PL_thread_destroy_engine(void) {
  int wid = pl_thread_self();

  if (wid < 0) {
    /* we do not have an engine */
    return FALSE;
  }
  YAP_ThreadDetachEngine(wid);
  return YAP_ThreadDestroyEngine(wid);
}

X_API int PL_thread_at_exit(void (*function)(void *), void *closure,
                            int global) {
  /* don't do nothing for now */
  fprintf(stderr, "%% YAP ERROR: PL_thread_at_exit not implemented yet\n");
  return TRUE;
}

X_API PL_engine_t PL_create_engine(const PL_thread_attr_t *attr) {
#if THREADS
  int eng;
  if (attr) {
    YAP_thread_attr yapt;

    yapt.ssize = attr->local_size;
    yapt.tsize = attr->global_size;
    yapt.alias = MkAtomTerm(Yap_LookupAtom(attr->alias));
    yapt.cancel = attr->cancel;

    eng = YAP_ThreadCreateEngine(&yapt);
  } else {
    eng = YAP_ThreadCreateEngine(NULL);
  }
  if (eng >= 0)
    return Yap_local[eng];
#endif
  return NULL;
}

X_API int PL_destroy_engine(PL_engine_t e) {
#if THREADS
  return YAP_ThreadDestroyEngine(
      ((struct worker_local *)e)->ThreadHandle_.current_yaam_regs->worker_id_);
#else
  return FALSE;
#endif
}

X_API int PL_set_engine(PL_engine_t engine, PL_engine_t *old) {
  CACHE_REGS
#if THREADS
  int cwid = pl_thread_self(), nwid;
  if (cwid >= 0) {
    if (old)
      *old = (PL_engine_t)(Yap_local[cwid]);
  }
  if (!engine) {
    if (cwid < 0)
      return PL_ENGINE_INVAL;
    if (!YAP_ThreadDetachEngine(worker_id)) {
      return PL_ENGINE_INVAL;
    }
    return PL_ENGINE_SET;
  }
  if (engine == PL_ENGINE_MAIN) {
    nwid = 0;
  } else if (engine == PL_ENGINE_CURRENT) {
    if (cwid < 0) {
      if (old)
        *old = NULL;
      return PL_ENGINE_INVAL;
    }
    return PL_ENGINE_SET;
  } else {
    nwid = ((struct worker_local *)engine)->ThreadHandle_.id;
  }

  MUTEX_LOCK(&(REMOTE_ThreadHandle(nwid).tlock));
  if (REMOTE_ThreadHandle(nwid).ref_count) {
    MUTEX_UNLOCK(&(REMOTE_ThreadHandle(nwid).tlock));
    if (cwid != nwid) {
      return PL_ENGINE_INUSE;
    }
    return PL_ENGINE_SET;
  }
  if (!YAP_ThreadAttachEngine(nwid)) {
    return PL_ENGINE_INVAL;
  }
  return PL_ENGINE_SET;
#else
  if (old)
    *old = (PL_engine_t)&Yap_local;
  return FALSE;
#endif
}

X_API void *PL_malloc(size_t sz) {
  if (sz == 0)
    return NULL;
  return (void *)malloc((long unsigned int)sz);
}

X_API void *PL_realloc(void *ptr, size_t sz) {
  if (ptr) {
    if (sz) {
      return realloc((char *)ptr, (long unsigned int)sz);
    } else {
      free(ptr);
      return NULL;
    }
  } else {
    return PL_malloc(sz);
  }
}

X_API void PL_free(void *obj) {
  if (obj)
    free(obj);
}

X_API int PL_eval_expression_to_int64_ex(term_t t, int64_t *val) {
  CACHE_REGS
  Term res = Yap_Eval(Yap_GetFromSlot(t));
  if (!res) {
    return FALSE;
  }
  if (IsIntegerTerm(res)) {
    *val = IntegerOfTerm(res);
    return TRUE;
#if SIZEOF_INT_P == 4 && USE_GMP
  } else if (YAP_IsBigNumTerm(res)) {
    MP_INT g;
    char s[64];

    YAP_BigNumOfTerm(t, (void *)&g);
    if (mpz_sizeinbase(&g, 2) > 64) {
      Yap_Error(EVALUATION_ERROR_INT_OVERFLOW, Yap_GetFromSlot(t),
                "integer_overflow");
    }
    mpz_get_str(s, 10, &g);
#ifdef _WIN32
    sscanf(s, "%I64d", (long long int *)val);
#else
    sscanf(s, "%lld", (long long int *)val);
#endif
    return 1;
#endif
  }
  Yap_Error(TYPE_ERROR_ATOM, Yap_GetFromSlot(t), "integer_expression");
  return FALSE;
}

foreign_t _PL_retry(intptr_t v) {
  return (((uintptr_t)(v) << FRG_REDO_BITS) | REDO_INT);
}

foreign_t _PL_retry_address(void *addr) {
  return (((uintptr_t)(addr)) | REDO_PTR);
}

X_API int PL_foreign_control(control_t ctx) {
  switch (ctx->control) {
  case FRG_REDO:
    return PL_REDO;
  case FRG_FIRST_CALL:
    return PL_FIRST_CALL;
  default:
    return PL_CUTTED;
  }
}

X_API intptr_t PL_foreign_context(control_t ctx) {
  switch (ctx->control) {
  case FRG_FIRST_CALL:
    return 0L;
  default:
    return (intptr_t)(ctx->context);
  }
}

X_API void *PL_foreign_context_address(control_t ctx) {
  switch (ctx->control) {
  case FRG_FIRST_CALL:
    return NULL;
  default:
    return (void *)(ctx->context);
  }
}

X_API int PL_get_signum_ex(term_t sig, int *n) {
  CACHE_REGS
  char *s;
  int i = -1;

  if (PL_get_integer(sig, &i)) {
  } else if (IsAtomTerm(Yap_GetFromSlot(sig))) {
    s = RepAtom(AtomOfTerm(Yap_GetFromSlot(sig)))->StrOfAE;
    i = Yap_signal_index(s);
  } else {
    Yap_Error(TYPE_ERROR_ATOM, Yap_GetFromSlot(sig), "signal handling");
    return FALSE;
  }

  if (i > 0 && i < 32) /* where to get these? */
  {
    *n = i;
    return TRUE;
  }
  Yap_Error(DOMAIN_ERROR_OUT_OF_RANGE, Yap_GetFromSlot(sig), "signal handling");
  return FALSE;
}

typedef struct blob {
  Functor f;
  CELL type;
  MP_INT blinfo; /* total size should go here */
  PL_blob_t *blb;
  size_t size;
  CELL blob_data[1];
} blob_t;

X_API intptr_t PL_query(int query) {
  switch (query) {
  case PL_QUERY_ARGC:
    return (intptr_t)GLOBAL_argc;
  case PL_QUERY_ARGV:
    return (intptr_t)GLOBAL_argv;
  case PL_QUERY_USER_CPU:
    return (intptr_t)Yap_cputime();
  case PL_QUERY_VERSION:
    return (intptr_t)60300;
  default:
    fprintf(stderr, "Unimplemented PL_query %d\n", query);
    return (intptr_t)0;
  }
}

X_API void PL_cleanup_fork(void) {}

X_API void (*PL_signal(int sig, void (*func)(int)))(int) {
  //  return Yap_signal2(sig,func);
  return NULL;
}

X_API void PL_on_halt(int (*f)(int, void *), void *closure) {
  Yap_HaltRegisterHook((HaltHookFunc)f, closure);
}

#define is_signalled() unlikely(LD && LD->signal.pending != 0)

#ifdef O_PLMT
#include <pthread.h>
static pthread_key_t atomgen_key;
#endif

typedef struct scan_atoms {
  Int pos;
  Atom atom;
} scan_atoms_t;

static inline int str_prefix(const char *p0, char *s) {
  char *p = (char *)p0;
  while (*p && *p == *s) {
    p++;
    s++;
  }
  return p[0] == '\0';
}

static int atom_generator(const char *prefix, char **hit, int state) {
  CACHE_REGS
  struct scan_atoms *index;
  Atom catom;
  UInt i;

  if (!state) {
    index = (struct scan_atoms *)malloc(sizeof(struct scan_atoms));
    i = 0;
    catom = NIL;
  } else {
    index = LOCAL_search_atoms;
    catom = index->atom;
    i = index->pos;
  }

  while (catom != NIL || i < AtomHashTableSize) {
    //    if ( is_signalled() )		/* Notably allow windows version */
    //      PL_handle_signals();		/* to break out on ^C */
    AtomEntry *ap;

    if (catom == NIL) {
      /* move away from current hash table line */
      READ_LOCK(HashChain[i].AERWLock);
      catom = HashChain[i].Entry;
      READ_UNLOCK(HashChain[i].AERWLock);
      i++;
    } else {
      ap = RepAtom(catom);
      READ_LOCK(ap->ARWLock);
      if (str_prefix(prefix, ap->StrOfAE)) {
        CACHE_REGS
        index->pos = i;
        index->atom = ap->NextOfAE;
        LOCAL_search_atoms = index;
        *hit = ap->StrOfAE;
        READ_UNLOCK(ap->ARWLock);
        return TRUE;
      }
      catom = ap->NextOfAE;
      READ_UNLOCK(ap->ARWLock);
    }
  }
  LOCAL_search_atoms = NULL;
  free(index);
  return FALSE;
}

char *PL_atom_generator(const char *prefix, int state) {
  char *hit = NULL;
  if (atom_generator(prefix, &hit, state)) {
    return hit;
  }
  return NULL;
}

X_API pl_wchar_t *PL_atom_generator_w(const pl_wchar_t *pref,
                                      pl_wchar_t *buffer, size_t buflen,
                                      int state) {
  return NULL;
}

const char *Yap_GetCurrentPredName(void);
Int Yap_GetCurrentPredArity(void);

const char *Yap_GetCurrentPredName(void) {
  CACHE_REGS
  if (!PP)
    return NULL;
  if (PP->ArityOfPE)
    return NameOfFunctor(PP->FunctorOfPred)->StrOfAE;
  return RepAtom((Atom)(PP->FunctorOfPred))->StrOfAE;
}

Int Yap_GetCurrentPredArity(void) {
  CACHE_REGS
  if (!PP)
    return (Int)0;
  return PP->ArityOfPE;
}

void Yap_swi_install(void) { Yap_install_blobs(); }

X_API int PL_raise(int sig) {
  Yap_signal(YAP_INT_SIGNAL);
  return 1;
}

int raiseSignal(void *ld, int sig);

int raiseSignal(void *ld, int sig) {
#if THREADSX
  if (sig == SIG_THREAD_SIGNAL) {
    Yap_signal(YAP_ITI_SIGNAL);
    return TRUE;
  }
#endif
  fprintf(stderr, "Unsupported signal %d\n", sig);
  return FALSE;
}

#if THREADS
void Yap_LockStream(void *s) {
  //  if ( s->mutex ) recursiveMutexLock(s->mutex);
}

void Yap_UnLockStream(void *s) {
  //  if ( s->mutex ) recursiveMutexUnlock(s->mutex);
}
#endif

extern term_t Yap_CvtTerm(term_t ts);

term_t Yap_CvtTerm(term_t ts) {
  CACHE_REGS
  Term t = Yap_GetFromSlot(ts);
  if (IsVarTerm(t))
    return ts;
  if (IsPairTerm(t))
    return ts;
  if (IsAtomTerm(t))
    return ts;
  if (IsIntTerm(t))
    return ts;
  if (IsApplTerm(t)) {
    Functor f = FunctorOfTerm(t);
    if (IsExtensionFunctor(f)) {
      if (f == FunctorBigInt) {
        big_blob_type flag = RepAppl(t)[1];
        switch (flag) {
        case BIG_INT:
          return ts;
        case BIG_RATIONAL:
#if USE_GMP
        {
          MP_RAT *b = Yap_BigRatOfTerm(t);
          Term ta[2];
          ta[0] = Yap_MkBigIntTerm(mpq_numref(b));
          if (ta[0] == TermNil)
            return ts;
          ta[1] = Yap_MkBigIntTerm(mpq_denref(b));
          if (ta[1] == TermNil)
            return ts;
          return Yap_InitSlot(Yap_MkApplTerm(FunctorRDiv, 2, ta));
        }
#endif
        case EMPTY_ARENA:
        case ARRAY_INT:
        case ARRAY_FLOAT:
        case CLAUSE_LIST:
        case EXTERNAL_BLOB:
          return Yap_InitSlot(MkIntTerm(0));
        default:
          return ts;
        }
      } else if (f == FunctorDBRef) {
        Term ta[1];
        ta[0] = MkIntegerTerm((Int)DBRefOfTerm(t));
        return Yap_InitSlot(Yap_MkApplTerm(FunctorDBREF, 1, ta));
      }
    }
  }
  return ts;
}

char *PL_cwd(char *cwd, size_t cwdlen) {
  return (char *)Yap_getcwd(cwd, cwdlen);
}

/**
 * @}
 * @}
 */