% % Utilities for learning % :- module(clpbn_learn_utils, [run_all/1, clpbn_vars/2, normalise_counts/2, compute_likelihood/3]). :- use_module(library(matrix), [matrix_agg_lines/3, matrix_op_to_lines/4, matrix_to_logs/2, matrix_op/4, matrix_sum/2, matrix_to_list/2]). :- meta_predicate run_all(:). run_all([]). run_all([G|Gs]) :- call(G), run_all(Gs). run_all(M:Gs) :- run_all(Gs,M). run_all([],_). run_all([G|Gs],M) :- call(M:G), run_all(Gs,M). clpbn_vars(Vs,BVars) :- get_clpbn_vars(Vs,CVs), keysort(CVs,KVs), merge_vars(KVs,BVars). get_clpbn_vars([],[]). get_clpbn_vars([V|GVars],[K-V|CLPBNGVars]) :- clpbn:get_atts(V, [key(K)]), !, get_clpbn_vars(GVars,CLPBNGVars). get_clpbn_vars([_|GVars],CLPBNGVars) :- get_clpbn_vars(GVars,CLPBNGVars). merge_vars([],[]). merge_vars([K-V|KVs],[V|BVars]) :- get_var_has_same_key(KVs,K,V,KVs0), merge_vars(KVs0,BVars). get_var_has_same_key([K-V|KVs],K,V,KVs0) :- !, get_var_has_same_key(KVs,K,V,KVs0). get_var_has_same_key(KVs,_,_,KVs). normalise_counts(MAT,NMAT) :- matrix_agg_lines(MAT, +, Sum), matrix_op_to_lines(MAT, Sum, /, NMAT). compute_likelihood(Table0, NewTable, DeltaLik) :- matrix_to_logs(NewTable, Logs), matrix_to_list(Table0,L1), matrix_to_list(Logs,L2), sum_prods(L1,L2,0,DeltaLik). sum_prods([],[],DeltaLik,DeltaLik). sum_prods([0.0|L1],[_|L2],DeltaLik0,DeltaLik) :- !, sum_prods(L1,L2,DeltaLik0,DeltaLik). sum_prods([Count|L1],[Log|L2],DeltaLik0,DeltaLik) :- !, DeltaLik1 is DeltaLik0+Count*Log, sum_prods(L1,L2,DeltaLik1,DeltaLik).