/************************************************************************* * * * YAP Prolog * * * * Yap Prolog was developed at NCCUP - Universidade do Porto * * * * Copyright L.Damas, V.S.Costa and Universidade do Porto 1985-1997 * * * ************************************************************************** * * * File: arrays.c * * Last rev: * * mods: * * comments: Array Manipulation Routines * * * *************************************************************************/ #include "Yap.h" #include "Yatom.h" #include "Heap.h" #include "eval.h" #include "heapgc.h" #if HAVE_ERRNO_H #include #else extern int errno; #endif #if HAVE_STRING_H #include #endif #if __simplescalar__ #ifdef HAVE_MMAP #undef HAVE_MMAP #endif #endif STATIC_PROTO(Int p_compile_array_refs, (void)); STATIC_PROTO(Int p_array_refs_compiled, (void)); STATIC_PROTO(Int p_sync_mmapped_arrays, (void)); /* * * This file works together with pl/arrays.yap and arrays.h. * * YAP now supports a very simple notion of arrays. Arrays may be * allocated dynamically or statically: * * o anonymous arrays are created during execution and allocated * in the heap. They have the lifetime of any other other heap * object. Any term can be an argument to a dynamic array. * * Dynamic arrays are named as a free variable and are * initialised with free variables. * * o named arrays are created during execution but allocated * in the code space. They have the lifetime of an heap * object. Any term can be an argument to a dynamic array. * * Named arrays are named with atoms and are initialised with * free variables. * * o static arrays are allocated in the heap. Their space is * never recovered unless explictly said so by the * program. Arguments to these arrays must have fixed size, * and can only be atomic (at least for now). * * Static arrays can be named through an atom. They are * initialised with []. * * Users create arrays by a declaration X array Arity. If X is an atom * A, then this it is a static array and A's the array name, otherwise * X refers to a dynamic array. * * As in C, arrays start counting from 0. * * Users access arrays by a token X[I] or a[I], this token can appear * anywhere within the computation, so a[2] = X[3*4] means that the * second element of global array a should unify with the 12th element * of array X. The mechanism used to implement this is the same * mechanism used to implement suspension variables. * * Representation: * * Dynamic Arrays are represented as a compound term of arity N, where * N is the size of the array. Even so, I will not include array bound * checking for now. * * |--------------------------------------------------------------| * | $ARRAY/N|.... * |______________________________________________________________ * * * Unbound Var is used as a place to point to. * * Static Arrays are represented as a special property for an atom, * with field size and * * A term of the form X[I] is represented as a Reference pointing to * the compound term: * * '$array_arg'(X,I) * * Dereferecing will automatically find X[I]. * * The only exception is the compiler, which uses a different * dereferencing routine. The clause cl(a[2], Y[X], Y) will be * compiled as: * * cl(A, B, Y) :- '$access_array'(a, A, 2), '$access_array'(Y, B, X). * * There are three operations to access arrays: * * X[I] = A, This is normal unification. * * X[I] := A, This is multiassignment, and therefore * backtrackable. * * X[I] ::= A, This is non-backtrackable multiassignment, ans most * useful for static arrays. * * The LHS of := and of ::= must be an array element! * */ STATIC_PROTO(Term AccessNamedArray, (Atom, Int)); STATIC_PROTO(void InitNamedArray, (ArrayEntry *, Int)); STATIC_PROTO(void CreateNamedArray, (PropEntry *, Int, AtomEntry *)); STATIC_PROTO(void ResizeStaticArray, (StaticArrayEntry *, Int)); #if HAVE_MMAP STATIC_PROTO(Int CloseMmappedArray, (StaticArrayEntry *, void *)); STATIC_PROTO(void ResizeMmappedArray, (StaticArrayEntry *, Int, void *)); #endif STATIC_PROTO(Int p_create_array, (void)); STATIC_PROTO(Int p_create_mmapped_array, (void)); STATIC_PROTO(void replace_array_references_complex, (CELL *, CELL *, CELL *, Term)); STATIC_PROTO(Term replace_array_references, (Term)); STATIC_PROTO(Int p_array_references, (void)); STATIC_PROTO(Int p_create_static_array, (void)); STATIC_PROTO(Int p_resize_static_array, (void)); STATIC_PROTO(Int p_close_static_array, (void)); STATIC_PROTO(Int p_access_array, (void)); STATIC_PROTO(Int p_assign_static, (void)); static Term AccessNamedArray(Atom a, Int indx) { AtomEntry *ae = RepAtom(a); ArrayEntry *pp; READ_LOCK(ae->ARWLock); pp = RepArrayProp(ae->PropsOfAE); while (!EndOfPAEntr(pp) && pp->KindOfPE != ArrayProperty) pp = RepArrayProp(pp->NextOfPE); READ_UNLOCK(ae->ARWLock); if (!EndOfPAEntr(pp)) { if (ArrayIsDynamic(pp)) { Term out; READ_LOCK(pp->ArRWLock); if (IsVarTerm(pp->ValueOfVE)) { READ_UNLOCK(pp->ArRWLock); return(FALSE); } out = RepAppl(pp->ValueOfVE)[indx+1]; READ_UNLOCK(pp->ArRWLock); return(out); } else { StaticArrayEntry *ptr = (StaticArrayEntry *)pp; READ_LOCK(ptr->ArRWLock); if (-(pp->ArrayEArity) <= indx || indx < 0) { /* Error(DOMAIN_ERROR_ARRAY_OVERFLOW, MkIntegerTerm(indx), "access_array");*/ READ_UNLOCK(ptr->ArRWLock); P = (yamop *)FAILCODE; return(TermNil); } switch (ptr->ArrayType) { case array_of_ints: { Term out; out = MkIntegerTerm(ptr->ValueOfVE.ints[indx]); READ_UNLOCK(ptr->ArRWLock); return (out); } case array_of_doubles: { Term out; out = MkEvalFl(ptr->ValueOfVE.floats[indx]); READ_UNLOCK(ptr->ArRWLock); return (out); } case array_of_ptrs: { Term out; out = MkIntegerTerm((Int)(ptr->ValueOfVE.ptrs[indx])); READ_UNLOCK(ptr->ArRWLock); return (out); } case array_of_atoms: { Term out; out = ptr->ValueOfVE.atoms[indx]; READ_UNLOCK(ptr->ArRWLock); if (out == 0L) out = TermNil; else return(out); } /* just return the atom */ case array_of_chars: { Term out; out = MkIntegerTerm((Int)(ptr->ValueOfVE.chars[indx])); READ_UNLOCK(ptr->ArRWLock); return (out); } case array_of_uchars: { Term out; out = MkIntegerTerm((Int)(ptr->ValueOfVE.uchars[indx])); READ_UNLOCK(ptr->ArRWLock); return (out); } case array_of_dbrefs: { /* The object is now in use */ Term TRef = ptr->ValueOfVE.dbrefs[indx]; READ_UNLOCK(ptr->ArRWLock); if (TRef != 0L) { DBRef ref = DBRefOfTerm(TRef); #if defined(YAPOR) || defined(THREADS) LOCK(ref->lock); INC_DBREF_COUNT(ref); TRAIL_REF(ref); /* So that fail will erase it */ UNLOCK(ref->lock); #else if (!(ref->Flags & InUseMask)) { ref->Flags |= InUseMask; TRAIL_REF(ref); /* So that fail will erase it */ } #endif } else { P = (yamop *)FAILCODE; TRef = TermNil; } return (TRef); } case array_of_terms: { /* The object is now in use */ DBRef ref = ptr->ValueOfVE.terms[indx]; Term TRef; READ_UNLOCK(ptr->ArRWLock); if (ref != NULL) { TRef = FetchTermFromDB(ref,3); } else { P = (yamop *)FAILCODE; TRef = TermNil; } return (TRef); } default: READ_UNLOCK(ptr->ArRWLock); return(TermNil); } } } else { Error(EXISTENCE_ERROR_ARRAY,MkAtomTerm(a),"named array"); return (TermNil); } } static Int p_access_array(void) { Term t = Deref(ARG1); Term ti = Deref(ARG2); Term tf; UInt indx; if (IsNonVarTerm(ti)) { union arith_ret v; if (IsIntTerm(ti)) indx = IntOfTerm(ti); else if (Eval(ti, &v) == long_int_e) indx = v.Int; else { Error(TYPE_ERROR_INTEGER,ti,"access_array"); return (FALSE); } } else { Error(INSTANTIATION_ERROR,ti,"access_array"); return (TermNil); } if (IsNonVarTerm(t)) { if (IsApplTerm(t)) { if (indx >= ArityOfFunctor(FunctorOfTerm(t))) { /* Error(DOMAIN_ERROR_ARRAY_OVERFLOW, MkIntegerTerm(indx), "access_array");*/ P = (yamop *)FAILCODE; return(FALSE); } tf = (RepAppl(t))[indx + 1]; } else if (IsAtomTerm(t)) { tf = AccessNamedArray(AtomOfTerm(t), indx); } else { Error(TYPE_ERROR_ARRAY,t,"access_array"); return(FALSE); } } else { Error(INSTANTIATION_ERROR,t,"access_array"); return(FALSE); } return (unify(tf, ARG3)); } static Int p_array_arg(void) { register Term ti = Deref(ARG3), t; register Int indx; if (IsNonVarTerm(ti)) { union arith_ret v; if (IsIntTerm(ti)) indx = IntOfTerm(ti); else if (Eval(ti, &v) == long_int_e) indx = v.Int; else { Error(TYPE_ERROR_INTEGER,ti,"array_arg"); return (FALSE); } } else { Error(INSTANTIATION_ERROR,ti,"array_arg"); return (FALSE); } t = Deref(ARG2); if (IsNonVarTerm(t)) { if (IsApplTerm(t)) { return (unify(((RepAppl(t))[indx + 1]), ARG1)); } else if (IsAtomTerm(t)) { Term tf = AccessNamedArray(AtomOfTerm(t), indx); return (unify(tf, ARG1)); } else Error(TYPE_ERROR_ARRAY,t,"array_arg"); } else Error(INSTANTIATION_ERROR,t,"array_arg"); return (FALSE); } static void InitNamedArray(ArrayEntry * p, Int dim) { Term *tp; WRITE_LOCK(p->ArRWLock); /* Leave a pointer so that we can reclaim array space when * we backtrack or when we abort */ /* place terms in reverse order */ Bind_Global(&(p->ValueOfVE),AbsAppl(H)); tp = H; tp[0] = (CELL)MkFunctor(AtomArray, dim); tp++; p->ArrayEArity = dim; /* Initialise the array as a set of variables */ H = tp+dim; for (; tp < H; tp++) { RESET_VARIABLE(tp); } WRITE_UNLOCK(p->ArRWLock); } /* we assume the atom ae is already locked */ static void CreateNamedArray(PropEntry * pp, Int dim, AtomEntry *ae) { ArrayEntry *p; p = (ArrayEntry *) AllocAtomSpace(sizeof(*p)); p->KindOfPE = ArrayProperty; p->NextOfPE = ae->PropsOfAE; INIT_RWLOCK(p->ArRWLock); ae->PropsOfAE = AbsArrayProp(p); InitNamedArray(p, dim); } static void AllocateStaticArraySpace(StaticArrayEntry *p, static_array_types atype, Int array_size) { Int asize = 0; switch (atype) { case array_of_doubles: asize = array_size*sizeof(Float); break; case array_of_ints: asize = array_size*sizeof(Int); break; case array_of_chars: asize = array_size*sizeof(char); break; case array_of_uchars: asize = array_size*sizeof(unsigned char); break; case array_of_ptrs: asize = array_size*sizeof(AtomEntry *); break; case array_of_dbrefs: case array_of_atoms: asize = array_size*sizeof(Term); break; case array_of_terms: asize = array_size*sizeof(DBRef); break; } while ((p->ValueOfVE.floats = (Float *) AllocAtomSpace(asize) ) == NULL) { YAPLeaveCriticalSection(); if (!growheap(FALSE)) { Error(SYSTEM_ERROR, TermNil, "YAP failed to reserve space in growheap"); return; } YAPEnterCriticalSection(); } } /* ae and p are assumed to be locked, if they exist */ static void CreateStaticArray(AtomEntry *ae, Int dim, static_array_types type, CODEADDR start_addr, StaticArrayEntry *p) { if (EndOfPAEntr(p)) { p = (StaticArrayEntry *) AllocAtomSpace(sizeof(*p)); p->KindOfPE = ArrayProperty; p->NextOfPE = ae->PropsOfAE; INIT_RWLOCK(p->ArRWLock); WRITE_LOCK(p->ArRWLock); } p->ArrayEArity = -dim; p->ArrayType = type; ae->PropsOfAE = AbsArrayProp((ArrayEntry *)p); WRITE_UNLOCK(ae->ARWLock); if (start_addr == NULL) { int i; AllocateStaticArraySpace(p, type, dim); switch(type) { case array_of_ints: for (i = 0; i < dim; i++) p->ValueOfVE.ints[i] = 0; break; case array_of_chars: for (i = 0; i < dim; i++) p->ValueOfVE.chars[i] = '\0'; break; case array_of_uchars: for (i = 0; i < dim; i++) p->ValueOfVE.uchars[i] = '\0'; break; case array_of_doubles: for (i = 0; i < dim; i++) p->ValueOfVE.floats[i] = 0.0; break; case array_of_ptrs: for (i = 0; i < dim; i++) p->ValueOfVE.ptrs[i] = NULL; break; case array_of_atoms: case array_of_dbrefs: for (i = 0; i < dim; i++) p->ValueOfVE.atoms[i] = 0L; break; case array_of_terms: for (i = 0; i < dim; i++) p->ValueOfVE.terms[i] = NULL; break; } } else { /* external array */ p->ValueOfVE.chars = (char *)start_addr; } WRITE_UNLOCK(p->ArRWLock); } static void ResizeStaticArray(StaticArrayEntry *pp, Int dim) { statarray_elements old_v = pp->ValueOfVE; static_array_types type = pp->ArrayType; Int old_dim = - pp->ArrayEArity; Int mindim = (dim < old_dim ? dim : old_dim), i; WRITE_LOCK(pp->ArRWLock); /* change official size */ if (pp->ArrayEArity >= 0) return; pp->ArrayEArity = -dim; #if HAVE_MMAP if (pp->ValueOfVE.chars < (char *)HeapBase || pp->ValueOfVE.chars > (char *)HeapTop) { ResizeMmappedArray(pp, dim, (void *)(pp->ValueOfVE.chars)); return; } #endif AllocateStaticArraySpace(pp, type, dim); switch(type) { case array_of_ints: for (i = 0; i ValueOfVE.ints[i] = old_v.ints[i]; for (i = mindim; iValueOfVE.ints[i] = 0; break; case array_of_chars: for (i = 0; i ValueOfVE.chars[i] = old_v.chars[i]; for (i = mindim; iValueOfVE.chars[i] = '\0'; break; case array_of_uchars: for (i = 0; i ValueOfVE.uchars[i] = old_v.uchars[i]; for (i = mindim; iValueOfVE.uchars[i] = '\0'; break; case array_of_doubles: for (i = 0; i ValueOfVE.floats[i] = old_v.floats[i]; for (i = mindim; iValueOfVE.floats[i] = 0.0; break; case array_of_ptrs: for (i = 0; i ValueOfVE.ptrs[i] = old_v.ptrs[i]; for (i = mindim; iValueOfVE.ptrs[i] = NULL; break; case array_of_atoms: for (i = 0; i ValueOfVE.atoms[i] = old_v.atoms[i]; for (i = mindim; iValueOfVE.atoms[i] = TermNil; break; case array_of_dbrefs: for (i = 0; i ValueOfVE.dbrefs[i] = old_v.dbrefs[i]; for (i = mindim; iValueOfVE.dbrefs[i] = 0L; break; case array_of_terms: for (i = 0; i ValueOfVE.terms[i] = old_v.terms[i]; for (i = mindim; iValueOfVE.terms[i] = NULL; break; } WRITE_UNLOCK(pp->ArRWLock); } CELL * ClearNamedArray(CELL *pt0) { /* given a key to an array, just take it off-line */ PropEntry *pp; AtomEntry *ae = (AtomEntry *)RepAppl(pt0[-1]); READ_LOCK(ae->ARWLock); pp = RepProp(ae->PropsOfAE); while (!EndOfPAEntr(pp) && pp->KindOfPE != ArrayProperty) { pp = RepProp(pp->NextOfPE); } READ_UNLOCK(ae->ARWLock); WRITE_LOCK(((ArrayEntry *)pp)->ArRWLock); if (!EndOfPAEntr(pp)) { ((ArrayEntry *) pp)->ArrayEArity = 0; /* tell backtracking to skip two cells */ WRITE_UNLOCK(((ArrayEntry *)pp)->ArRWLock); return(pt0-2); } else { WRITE_UNLOCK(((ArrayEntry *)pp)->ArRWLock); Error(EXISTENCE_ERROR_ARRAY,TermNil,"clear array"); return(pt0); /* just make GCC happy */ } } /* create an array (?Name, + Size) */ static Int p_create_array(void) { Term ti; Term t; Int size; restart: ti = Deref(ARG2); t = Deref(ARG1); { union arith_ret v; if (IsIntTerm(ti)) size = IntOfTerm(ti); else if (Eval(ti, &v) == long_int_e) size = v.Int; else { Error(TYPE_ERROR_INTEGER,ti,"create_array"); return (FALSE); } } if (IsVarTerm(t)) { /* Create an anonymous array */ Functor farray; farray = MkFunctor(AtomArray, size); if (H+1+size > ASP-1024) { if (!gc(2, ENV, P)) { Error(SYSTEM_ERROR,TermNil,"YAP could not grow stack in array/2"); return(FALSE); } else { if (H+1+size > ASP-1024) { growstack( sizeof(CELL) * (size+1-(H-ASP-1024))); } } goto restart; } t = AbsAppl(H); *H++ = (CELL) farray; for (; size >= 0; size--) { RESET_VARIABLE(H); H++; } return (unify(t, ARG1)); } else if (IsAtomTerm(t)) { /* Create a named array */ AtomEntry *ae = RepAtom(AtomOfTerm(t)); PropEntry *pp; WRITE_LOCK(ae->ARWLock); pp = RepProp(ae->PropsOfAE); while (!EndOfPAEntr(pp) && pp->KindOfPE != ArrayProperty) pp = RepProp(pp->NextOfPE); if (EndOfPAEntr(pp)) { if (H+1+size > ASP-1024) { WRITE_UNLOCK(ae->ARWLock); if (!gc(2, ENV, P)) { Error(SYSTEM_ERROR,TermNil,"YAP could not grow stack in array/2"); return(FALSE); } else goto restart; } CreateNamedArray(pp, size, ae); WRITE_UNLOCK(ae->ARWLock); return (TRUE); } else { ArrayEntry *app = (ArrayEntry *) pp; WRITE_UNLOCK(ae->ARWLock); if (!IsVarTerm(app->ValueOfVE) || !IsUnboundVar(app->ValueOfVE)) Error(PERMISSION_ERROR_CREATE_ARRAY,t,"create_array", ae->StrOfAE); else { if (H+1+size > ASP-1024) { if (!gc(2, ENV, P)) { Error(SYSTEM_ERROR,TermNil,"YAP could not grow stack in array/2"); return(FALSE); } else goto restart; } InitNamedArray(app, size); return (TRUE); } } } return (FALSE); } /* create an array (+Name, + Size, +Props) */ static Int p_create_static_array(void) { Term ti = Deref(ARG2); Term t = Deref(ARG1); Term tprops = Deref(ARG3); Int size; static_array_types props; if (IsVarTerm(ti)) { Error(INSTANTIATION_ERROR,ti,"create static array"); return (FALSE); } else if (IsIntTerm(ti)) size = IntOfTerm(ti); else { union arith_ret v; if (Eval(ti, &v) == long_int_e) { size = v.Int; } else { Error(TYPE_ERROR_INTEGER,ti,"create static array"); return (FALSE); } } if (IsVarTerm(tprops)) { Error(INSTANTIATION_ERROR,tprops,"create static array"); return (FALSE); } else if (IsAtomTerm(tprops)) { char *atname = RepAtom(AtomOfTerm(tprops))->StrOfAE; if (!strcmp(atname, "int")) props = array_of_ints; else if (!strcmp(atname, "dbref")) props = array_of_dbrefs; else if (!strcmp(atname, "float")) props = array_of_doubles; else if (!strcmp(atname, "ptr")) props = array_of_ptrs; else if (!strcmp(atname, "atom")) props = array_of_atoms; else if (!strcmp(atname, "byte")) props = array_of_chars; else if (!strcmp(atname, "unsigned_byte")) props = array_of_uchars; else if (!strcmp(atname, "term")) props = array_of_terms; else { Error(DOMAIN_ERROR_ARRAY_TYPE,tprops,"create static array"); return(FALSE); } } else { Error(TYPE_ERROR_ATOM,tprops,"create static array"); return (FALSE); } if (IsVarTerm(t)) { Error(INSTANTIATION_ERROR,t,"create static array"); return (FALSE); } else if (IsAtomTerm(t)) { /* Create a named array */ AtomEntry *ae = RepAtom(AtomOfTerm(t)); StaticArrayEntry *pp; WRITE_LOCK(ae->ARWLock); pp = RepStaticArrayProp(ae->PropsOfAE); while (!EndOfPAEntr(pp) && pp->KindOfPE != ArrayProperty) pp = RepStaticArrayProp(pp->NextOfPE); if (EndOfPAEntr(pp) || pp->ValueOfVE.ints == NULL) { CreateStaticArray(ae, size, props, NULL, pp); return (TRUE); } else { WRITE_UNLOCK(ae->ARWLock); Error(PERMISSION_ERROR_CREATE_ARRAY,t,"create static array"); return(FALSE); } } else { Error(TYPE_ERROR_ATOM,t,"create static array"); return (FALSE); } } /* has a static array associated (+Name) */ static Int p_has_static_array(void) { Term t = Deref(ARG1); if (IsVarTerm(t)) { return (FALSE); } else if (IsAtomTerm(t)) { /* Create a named array */ AtomEntry *ae = RepAtom(AtomOfTerm(t)); StaticArrayEntry *pp; READ_LOCK(ae->ARWLock); pp = RepStaticArrayProp(ae->PropsOfAE); while (!EndOfPAEntr(pp) && pp->KindOfPE != ArrayProperty) pp = RepStaticArrayProp(pp->NextOfPE); if (EndOfPAEntr(pp) || pp->ValueOfVE.ints == NULL) { READ_UNLOCK(ae->ARWLock); return (FALSE); } else { READ_UNLOCK(ae->ARWLock); return(TRUE); } } else { return (FALSE); } } /* resize a static array (+Name, + Size, +Props) */ /* does not work for mmap arrays yet */ static Int p_resize_static_array(void) { Term ti = Deref(ARG3); Term t = Deref(ARG1); Int size; if (IsVarTerm(ti)) { Error(INSTANTIATION_ERROR,ti,"resize a static array"); return (FALSE); } else if (IsIntTerm(ti)) size = IntOfTerm(ti); else { union arith_ret v; if (Eval(ti, &v) == long_int_e) { size = v.Int; } else { Error(TYPE_ERROR_INTEGER,ti,"resize a static array"); return (FALSE); } } if (IsVarTerm(t)) { Error(INSTANTIATION_ERROR,t,"resize a static array"); return (FALSE); } else if (IsAtomTerm(t)) { /* resize a named array */ Atom a = AtomOfTerm(t); StaticArrayEntry *pp = RepStaticArrayProp(RepAtom(a)->PropsOfAE); while (!EndOfPAEntr(pp) && pp->KindOfPE != ArrayProperty) pp = RepStaticArrayProp(pp->NextOfPE); if (EndOfPAEntr(pp) || pp->ValueOfVE.ints == NULL) { Error(PERMISSION_ERROR_RESIZE_ARRAY,t,"resize a static array"); return(FALSE); } else { Int osize = - pp->ArrayEArity; ResizeStaticArray(pp, size); return(unify(ARG2,MkIntegerTerm(osize))); } } else { Error(TYPE_ERROR_ATOM,t,"resize a static array"); return (FALSE); } } /* Close a named array (+Name) */ static Int p_close_static_array(void) { /* does not work for mmap arrays yet */ Term t = Deref(ARG1); if (IsVarTerm(t)) { Error(INSTANTIATION_ERROR,t,"close static array"); return (FALSE); } else if (IsAtomTerm(t)) { /* Create a named array */ AtomEntry *ae = RepAtom(AtomOfTerm(t)); PropEntry *pp; READ_LOCK(ae->ARWLock); pp = RepProp(ae->PropsOfAE); while (!EndOfPAEntr(pp) && pp->KindOfPE != ArrayProperty) pp = RepProp(pp->NextOfPE); READ_UNLOCK(ae->ARWLock); if (EndOfPAEntr(pp)) { return (FALSE); } else { StaticArrayEntry *ptr = (StaticArrayEntry *)pp; if (ptr->ValueOfVE.ints != NULL) { #if HAVE_MMAP if (ptr->ValueOfVE.chars < (char *)HeapBase || ptr->ValueOfVE.chars > (char *)HeapTop) { return(CloseMmappedArray(ptr, (void *)ptr->ValueOfVE.chars)); } #endif FreeAtomSpace((char *)(ptr->ValueOfVE.ints)); ptr->ValueOfVE.ints = NULL; ptr->ArrayEArity = 0; return(TRUE); } else { return(FALSE); } } } else { Error(TYPE_ERROR_ATOM,t,"close static array"); return (FALSE); } } #if HAVE_MMAP #if HAVE_UNISTD_H #include #endif #if HAVE_SYS_MMAN_H #include #endif #if HAVE_SYS_STAT_H #include #endif #if HAVE_FCNTL_H #include #endif STATIC_PROTO(void ResizeMmappedArray, (StaticArrayEntry *,Int ,void *)); /* keep a list of mmaped blocks to synch on exit */ typedef struct MMAP_ARRAY_BLOCK { Atom name; void *start; size_t size; Int items; int fd; struct MMAP_ARRAY_BLOCK *next; } mmap_array_block; static mmap_array_block *mmap_arrays = NULL; static Int CloseMmappedArray(StaticArrayEntry *pp, void *area) { mmap_array_block *ptr = mmap_arrays, *optr = mmap_arrays; while (ptr != NULL && ptr->start != area) { ptr = ptr->next; optr = ptr; } if (ptr == NULL) { Error(SYSTEM_ERROR,ARG1,"close_mmapped_array (array chain incoherent)", strerror(errno)); return(FALSE); } if (munmap(ptr->start, ptr->size) == -1) { Error(SYSTEM_ERROR,ARG1,"close_mmapped_array (munmap: %s)", strerror(errno)); return(FALSE); } optr->next = ptr->next; pp->ValueOfVE.ints = NULL; pp->ArrayEArity = 0; if (close(ptr->fd) < 0) { Error(SYSTEM_ERROR,ARG1,"close_mmapped_array (close: %s)", strerror(errno)); return(FALSE); } FreeAtomSpace((char *)ptr); return(TRUE); } static void ResizeMmappedArray(StaticArrayEntry *pp, Int dim, void *area) { mmap_array_block *ptr = mmap_arrays; size_t total_size; while (ptr != NULL && ptr->start != area) { ptr = ptr->next; } if (ptr == NULL) return; /* This is a very stupid algorithm to change size for an array. First, we unmap it, then we actually change the size for the file, and last we initialise again */ if (munmap(ptr->start, ptr->size) == -1) { Error(SYSTEM_ERROR,ARG1,"resize_mmapped_array (munmap: %s)", strerror(errno)); return; } total_size = (ptr->size / ptr->items)*dim; if (ftruncate(ptr->fd, total_size) < 0) { Error(SYSTEM_ERROR,ARG1,"resize_mmapped_array (ftruncate: %s)", strerror(errno)); return; } if (lseek(ptr->fd, total_size-1, SEEK_SET) < 0) { Error(SYSTEM_ERROR,ARG1,"resize_mmapped_array (lseek: %s)", strerror(errno)); return; } if (write(ptr->fd, "", 1) < 0) { Error(SYSTEM_ERROR,ARG1,"resize_mmapped_array (write: %s)", strerror(errno)); return; } if ((ptr->start = (void *)mmap(0, (size_t) total_size, PROT_READ | PROT_WRITE, MAP_SHARED, ptr->fd, 0)) == (void *) - 1) { Error(SYSTEM_ERROR,ARG1,"resize_mmapped_array (mmap: %s)", strerror(errno)); return; } ptr->size = total_size; ptr->items = dim; pp->ValueOfVE.chars = ptr->start; } #endif /* create an array (+Name, + Size, +Props) */ static Int p_create_mmapped_array(void) { #ifdef HAVE_MMAP Term ti = Deref(ARG2); Term t = Deref(ARG1); Term tprops = Deref(ARG3); Term tfile = Deref(ARG4); Int size; static_array_types props; size_t total_size; CODEADDR array_addr; int fd; if (IsVarTerm(ti)) { Error(INSTANTIATION_ERROR,ti,"create_mmapped_array"); return (FALSE); } else if (IsIntTerm(ti)) size = IntOfTerm(ti); else { union arith_ret v; if (Eval(ti, &v) == long_int_e) { size = v.Int; } else { Error(TYPE_ERROR_INTEGER,ti,"create_mmapped_array"); return (FALSE); } } if (IsVarTerm(tprops)) { Error(INSTANTIATION_ERROR,tprops,"create_mmapped_array"); return (FALSE); } else if (IsAtomTerm(tprops)) { char *atname = RepAtom(AtomOfTerm(tprops))->StrOfAE; if (!strcmp(atname, "int")) { props = array_of_ints; total_size = size*sizeof(Int); } else if (!strcmp(atname, "dbref")) { props = array_of_dbrefs; total_size = size*sizeof(Int); } else if (!strcmp(atname, "float")) { props = array_of_doubles; total_size = size*sizeof(Float); } else if (!strcmp(atname, "ptr")) { props = array_of_ptrs; total_size = size*sizeof(AtomEntry *); } else if (!strcmp(atname, "atom")) { props = array_of_atoms; total_size = size*sizeof(Term); } else if (!strcmp(atname, "byte")) { props = array_of_chars; total_size = size*sizeof(char); } else if (!strcmp(atname, "unsigned_byte")) { props = array_of_uchars; total_size = size*sizeof(unsigned char); } else { Error(DOMAIN_ERROR_ARRAY_TYPE,tprops,"create_mmapped_array"); return(FALSE); } } else { Error(TYPE_ERROR_ATOM,tprops,"create_mmapped_array"); return (FALSE); } if (IsVarTerm(tfile)) { Error(INSTANTIATION_ERROR,tfile,"create_mmapped_array"); return (FALSE); } else if (IsAtomTerm(tfile)) { char *filename = RepAtom(AtomOfTerm(tfile))->StrOfAE; fd = open(filename, O_RDWR|O_CREAT, S_IRUSR|S_IWUSR); if (fd == -1) { Error(SYSTEM_ERROR,ARG1,"create_mmapped_array (open: %s)", strerror(errno)); return(FALSE); } if (lseek(fd, total_size-1, SEEK_SET) < 0) Error(SYSTEM_ERROR,tfile,"create_mmapped_array (lseek: %s)", strerror(errno)); if (write(fd, "", 1) < 0) Error(SYSTEM_ERROR,tfile,"create_mmapped_array (write: %s)", strerror(errno)); /* if (ftruncate(fd, total_size) < 0) Error(SYSTEM_ERROR,tfile,"create_mmapped_array"); */ if ((array_addr = (CODEADDR)mmap(0, (size_t) total_size, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0)) == (CODEADDR) - 1) Error(SYSTEM_ERROR,tfile,"create_mmapped_array (mmap: %s)", strerror(errno)); } else { Error(TYPE_ERROR_ATOM,tfile,"create_mmapped_array"); return (FALSE); } if (IsVarTerm(t)) { Error(INSTANTIATION_ERROR,t,"create_mmapped_array"); return (FALSE); } else if (IsAtomTerm(t)) { /* Create a named array */ AtomEntry *ae = RepAtom(AtomOfTerm(t)); StaticArrayEntry *pp; WRITE_LOCK(ae->ARWLock); pp = RepStaticArrayProp(ae->PropsOfAE); while (!EndOfPAEntr(pp) && pp->KindOfPE != ArrayProperty) pp = RepStaticArrayProp(pp->NextOfPE); if (!EndOfPAEntr(pp)) { WRITE_LOCK(pp->ArRWLock); } if (EndOfPAEntr(pp) || pp->ValueOfVE.ints == NULL) { mmap_array_block *ptr; CreateStaticArray(ae, size, props, array_addr, pp); ptr = (mmap_array_block *)AllocAtomSpace(sizeof(mmap_array_block)); ptr->name = AbsAtom(ae); ptr->size = total_size; ptr->items = size; ptr->start = (void *)array_addr; ptr->fd = fd; ptr->next = mmap_arrays; mmap_arrays = ptr; return(TRUE); } else { WRITE_UNLOCK(pp->ArRWLock); WRITE_UNLOCK(ae->ARWLock); Error(DOMAIN_ERROR_ARRAY_TYPE,t,"create_mmapped_array", ae->StrOfAE); return(FALSE); } } else { Error(TYPE_ERROR_ATOM,t,"create_mmapped_array"); return (FALSE); } #else Error(SYSTEM_ERROR,ARG1,"create_mmapped_array (mmap)"); return (FALSE); #endif } /* This routine verifies whether a complex has variables. */ static void replace_array_references_complex(register CELL *pt0, register CELL *pt0_end, register CELL *ptn, Term Var) { register CELL **to_visit = (CELL **) PreAllocCodeSpace(); CELL **to_visit_base = to_visit; loop: while (pt0 < pt0_end) { register CELL d0; ++pt0; d0 = Derefa(pt0); if (IsVarTerm(d0)) { *ptn++ = d0; } else if (IsPairTerm(d0)) { /* store the terms to visit */ *ptn++ = AbsPair(H); #ifdef RATIONAL_TREES to_visit[0] = pt0; to_visit[1] = pt0_end; to_visit[2] = ptn; to_visit[3] = (CELL *)*pt0; to_visit += 4; *pt0 = TermNil; #else if (pt0 < pt0_end) { to_visit[0] = pt0; to_visit[1] = pt0_end; to_visit[2] = ptn; to_visit += 3; } #endif pt0 = RepPair(d0) - 1; pt0_end = RepPair(d0) + 1; /* write the head and tail of the list */ ptn = H; H += 2; } else if (IsApplTerm(d0)) { register Functor f; f = FunctorOfTerm(d0); /* store the terms to visit */ if (IsExtensionFunctor(f)) { { *ptn++ = d0; continue; } } *ptn++ = AbsAppl(H); /* store the terms to visit */ #ifdef RATIONAL_TREES to_visit[0] = pt0; to_visit[1] = pt0_end; to_visit[2] = ptn; to_visit[3] = (CELL *)*pt0; to_visit += 4; *pt0 = TermNil; #else if (pt0 < pt0_end) { to_visit[0] = pt0; to_visit[1] = pt0_end; to_visit[2] = ptn; to_visit += 3; } #endif pt0 = RepAppl(d0); d0 = ArityOfFunctor(f); pt0_end = pt0 + d0; /* start writing the compound term */ ptn = H; *ptn++ = (CELL) f; H += d0 + 1; } else { /* AtomOrInt */ *ptn++ = d0; } /* just continue the loop */ } /* Do we still have compound terms to visit */ if (to_visit > (CELL **) to_visit_base) { #ifdef RATIONAL_TREES to_visit -= 4; pt0 = to_visit[0]; pt0_end = to_visit[1]; ptn = to_visit[2]; *pt0 = (CELL)to_visit[3]; #else to_visit -= 3; pt0 = to_visit[0]; pt0_end = to_visit[1]; ptn = to_visit[2]; #endif goto loop; } Bind_Global(PtrOfTerm(Var), TermNil); ReleasePreAllocCodeSpace((ADDR)to_visit); } /* * * Given a term t0, build a new term tf of the form ta+tb, where ta is * obtained by replacing the array references in t0 by empty * variables, and tb is a list of array references and corresponding * variables. */ static Term replace_array_references(Term t0) { Term t; t = Deref(t0); do { if (IsVarTerm(t)) { /* we found a variable */ return (MkPairTerm(t, TermNil)); } else if (IsAtomOrIntTerm(t)) { return (MkPairTerm(t, TermNil)); } else if (IsPairTerm(t)) { Term VList = MkVarTerm(); CELL *h0 = H; H += 2; replace_array_references_complex(RepPair(t) - 1, RepPair(t) + 1, h0, VList); return (MkPairTerm(AbsPair(h0), VList)); } else { Term VList = MkVarTerm(); CELL *h0 = H; Functor f = FunctorOfTerm(t); *H++ = (CELL) (f); H += ArityOfFunctor(f); replace_array_references_complex(RepAppl(t), RepAppl(t) + ArityOfFunctor(FunctorOfTerm(t)), h0 + 1, VList); return (MkPairTerm(AbsAppl(h0), VList)); } } while (TRUE); /* make lcc happy */ return(FALSE); } static Int p_array_references(void) { Term t = replace_array_references(ARG1); Term t1 = HeadOfTerm(t); Term t2 = TailOfTerm(t); return (unify(t1, ARG2) && unify(t2, ARG3)); } static Int p_assign_static(void) { Term t1, t2, t3; StaticArrayEntry *ptr; Int indx; t2 = Deref(ARG2); if (IsNonVarTerm(t2)) { if (IsIntTerm(t2)) indx = IntOfTerm(t2); else { union arith_ret v; if (Eval(t2, &v) == long_int_e) { indx = v.Int; } else { Error(TYPE_ERROR_INTEGER,t2,"update_array"); return (FALSE); } } } else { Error(INSTANTIATION_ERROR,t2,"update_array"); return (FALSE); } t3 = Deref(ARG3); t1 = Deref(ARG1); if (IsVarTerm(t1)) { Error(INSTANTIATION_ERROR,t1,"update_array"); return(FALSE); } if (!IsAtomTerm(t1)) { if (IsApplTerm(t1)) { CELL *ptr; Functor f = FunctorOfTerm(t1); /* store the terms to visit */ if (IsExtensionFunctor(f)) { Error(TYPE_ERROR_ARRAY,t1,"update_array"); return(FALSE); } if (indx > 0 && (UInt)indx > ArityOfFunctor(f)) { Error(DOMAIN_ERROR_ARRAY_OVERFLOW,t2,"update_array"); return(FALSE); } ptr = RepAppl(t1)+indx+1; #ifdef MULTI_ASSIGNMENT_VARIABLES MaBind(ptr, t3); return(TRUE); #else Error(SYSTEM_ERROR,t2,"update_array"); return(FALSE); #endif } else { Error(TYPE_ERROR_ATOM,t1,"update_array"); return(FALSE); } } { AtomEntry *ae = RepAtom(AtomOfTerm(t1)); READ_LOCK(ae->ARWLock); ptr = RepStaticArrayProp(ae->PropsOfAE); while (!EndOfPAEntr(ptr) && ptr->KindOfPE != ArrayProperty) ptr = RepStaticArrayProp(ptr->NextOfPE); READ_UNLOCK(ae->ARWLock); } if (EndOfPAEntr(ptr)) { Error(EXISTENCE_ERROR_ARRAY,t1,"assign_static %s", RepAtom(AtomOfTerm(t1))->StrOfAE); return(FALSE); } WRITE_LOCK(ptr->ArRWLock); if (ArrayIsDynamic((ArrayEntry *)ptr)) { ArrayEntry *pp = (ArrayEntry *)ptr; CELL *pt; if (indx < 0 || indx >= pp->ArrayEArity) { Error(DOMAIN_ERROR_ARRAY_OVERFLOW,t2,"assign_static"); READ_UNLOCK(((ArrayEntry *)ptr)->ArRWLock); return(FALSE); } pt = RepAppl(pp->ValueOfVE) + indx + 1; WRITE_UNLOCK(((ArrayEntry *)ptr)->ArRWLock); #ifdef MULTI_ASSIGNMENT_VARIABLES /* the evil deed is to be done now */ MaBind(pt, t3); return(TRUE); #else Error(SYSTEM_ERROR,t2,"update_array"); return(FALSE); #endif } /* a static array */ if (IsVarTerm(t3)) { WRITE_UNLOCK(ptr->ArRWLock); Error(INSTANTIATION_ERROR,t3,"assign_static"); return (FALSE); } if (indx < 0 || indx >= - ptr->ArrayEArity) { WRITE_UNLOCK(ptr->ArRWLock); Error(DOMAIN_ERROR_ARRAY_OVERFLOW,t2,"assign_static"); } switch (ptr->ArrayType) { case array_of_ints: { Int i; union arith_ret v; if (IsIntTerm(t3)) i = IntOfTerm(t3); else if (Eval(t3, &v) == long_int_e) i = v.Int; else { WRITE_UNLOCK(ptr->ArRWLock); Error(TYPE_ERROR_INTEGER,t3,"assign_static"); return (FALSE); } ptr->ValueOfVE.ints[indx]= i; } break; case array_of_chars: { Int i; union arith_ret v; if (IsIntTerm(t3)) i = IntOfTerm(t3); else if (Eval(t3, &v) == long_int_e) i = v.Int; else { Error(TYPE_ERROR_INTEGER,t3,"assign_static"); return (FALSE); } if (i > 127 || i < -128) { WRITE_UNLOCK(ptr->ArRWLock); Error(TYPE_ERROR_BYTE,t3,"assign_static"); return (FALSE); } ptr->ValueOfVE.chars[indx]= i; } break; case array_of_uchars: { Int i; union arith_ret v; if (IsIntTerm(t3)) i = IntOfTerm(t3); else if (Eval(t3, &v) == long_int_e) i = v.Int; else { WRITE_UNLOCK(ptr->ArRWLock); Error(TYPE_ERROR_INTEGER,t3,"assign_static"); return (FALSE); } if (i > 255 || i < 0) { WRITE_UNLOCK(ptr->ArRWLock); Error(TYPE_ERROR_UBYTE,t3,"assign_static"); return (FALSE); } ptr->ValueOfVE.chars[indx]= i; } break; case array_of_doubles: { Float f; union arith_ret v; if (IsFloatTerm(t3)) f = FloatOfTerm(t3); else if (Eval(t3, &v) == double_e) f = v.dbl; else { WRITE_UNLOCK(ptr->ArRWLock); Error(TYPE_ERROR_FLOAT,t3,"assign_static"); return (FALSE); } ptr->ValueOfVE.floats[indx]= f; } break; case array_of_ptrs: { Int r; if (IsIntegerTerm(t3)) r = IntegerOfTerm(t3); else { WRITE_UNLOCK(ptr->ArRWLock); Error(TYPE_ERROR_PTR,t3,"assign_static"); return (FALSE); } ptr->ValueOfVE.ptrs[indx]= (AtomEntry *)r; } break; case array_of_atoms: { if (!IsAtomTerm(t3)) { WRITE_UNLOCK(ptr->ArRWLock); Error(TYPE_ERROR_ATOM,t3,"assign_static"); return (FALSE); } ptr->ValueOfVE.atoms[indx]= t3; } break; case array_of_dbrefs: { Term t0 = ptr->ValueOfVE.dbrefs[indx]; if (!IsDBRefTerm(t3)) { WRITE_UNLOCK(ptr->ArRWLock); Error(TYPE_ERROR_DBREF,t3,"assign_static"); return (FALSE); } ptr->ValueOfVE.dbrefs[indx]= t3; if (t0 != 0L) DBRefOfTerm(t0)->NOfRefsTo--; DBRefOfTerm(t3)->NOfRefsTo++; } break; case array_of_terms: { DBRef ref = ptr->ValueOfVE.terms[indx]; if (ref != NULL) { ReleaseTermFromDB(ref); } ptr->ValueOfVE.terms[indx] = StoreTermInDB(t3,3); } break; } WRITE_UNLOCK(ptr->ArRWLock); return(TRUE); } int compile_arrays = FALSE; static Int p_compile_array_refs(void) { compile_arrays = TRUE; return (TRUE); } static Int p_array_refs_compiled(void) { return (compile_arrays); } static Int p_sync_mmapped_arrays(void) { #ifdef HAVE_MMAP mmap_array_block *ptr = mmap_arrays; while (ptr != NULL) { msync(ptr->start, ptr->size, MS_SYNC); ptr = ptr->next; } #endif return(TRUE); } void InitArrayPreds(void) { InitCPred("$create_array", 2, p_create_array, SyncPredFlag); InitCPred("$array_references", 3, p_array_references, SafePredFlag); InitCPred("$array_arg", 3, p_array_arg, SafePredFlag); InitCPred("static_array", 3, p_create_static_array, SafePredFlag|SyncPredFlag); InitCPred("resize_static_array", 3, p_resize_static_array, SafePredFlag|SyncPredFlag); InitCPred("mmapped_array", 4, p_create_mmapped_array, SafePredFlag|SyncPredFlag); InitCPred("update_array", 3, p_assign_static, SafePredFlag); InitCPred("array_element", 3, p_access_array, 0); InitCPred("close_static_array", 1, p_close_static_array, SafePredFlag); InitCPred("$sync_mmapped_arrays", 0, p_sync_mmapped_arrays, SafePredFlag); InitCPred("$compile_array_refs", 0, p_compile_array_refs, SafePredFlag); InitCPred("$array_refs_compiled", 0, p_array_refs_compiled, SafePredFlag); InitCPred("$has_static_array", 1, p_has_static_array, TestPredFlag|SafePredFlag); }