/** * @file dgraphs.yap * @author VITOR SANTOS COSTA <vsc@VITORs-MBP.lan> * @date Tue Nov 17 01:23:20 2015 * * @brief Directed Graph Processing Utilities. * * */ :- module( dgraphs, [ dgraph_vertices/2, dgraph_edge/3, dgraph_edges/2, dgraph_add_vertex/3, dgraph_add_vertices/3, dgraph_del_vertex/3, dgraph_del_vertices/3, dgraph_add_edge/4, dgraph_add_edges/3, dgraph_del_edge/4, dgraph_del_edges/3, dgraph_to_ugraph/2, ugraph_to_dgraph/2, dgraph_neighbors/3, dgraph_neighbours/3, dgraph_complement/2, dgraph_transpose/2, dgraph_compose/3, dgraph_transitive_closure/2, dgraph_symmetric_closure/2, dgraph_top_sort/2, dgraph_top_sort/3, dgraph_min_path/5, dgraph_max_path/5, dgraph_min_paths/3, dgraph_isomorphic/4, dgraph_path/3, dgraph_path/4, dgraph_leaves/2, dgraph_reachable/3 ]). /** @defgroup dgraphs Directed Graphs @ingroup library @{ The following graph manipulation routines use the red-black tree library to try to avoid linear-time scans of the graph for all graph operations. Graphs are represented as a red-black tree, where the key is the vertex, and the associated value is a list of vertices reachable from that vertex through an edge (ie, a list of edges). */ /** @pred dgraph_new(+ _Graph_) Create a new directed graph. This operation must be performed before trying to use the graph. */ :- reexport(library(rbtrees), [rb_new/1 as dgraph_new]). :- use_module(library(rbtrees), [rb_new/1, rb_empty/1, rb_lookup/3, rb_apply/4, rb_insert/4, rb_visit/2, rb_keys/2, rb_delete/3, rb_map/3, rb_clone/3, ord_list_to_rbtree/2]). :- use_module(library(ordsets), [ord_insert/3, ord_union/3, ord_subtract/3, ord_del_element/3, ord_memberchk/2]). :- use_module(library(wdgraphs), [dgraph_to_wdgraph/2, wdgraph_min_path/5, wdgraph_max_path/5, wdgraph_min_paths/3]). /** @pred dgraph_add_edge(+ _Graph_, + _N1_, + _N2_, - _NewGraph_) Unify _NewGraph_ with a new graph obtained by adding the edge _N1_- _N2_ to the graph _Graph_. */ dgraph_add_edge(Vs0,V1,V2,Vs2) :- dgraph_new_edge(V1,V2,Vs0,Vs1), dgraph_add_vertex(Vs1,V2,Vs2). /** @pred dgraph_add_edges(+ _Graph_, + _Edges_, - _NewGraph_) Unify _NewGraph_ with a new graph obtained by adding the list of edges _Edges_ to the graph _Graph_. */ dgraph_add_edges(V0, Edges, VF) :- rb_empty(V0), !, sort(Edges,SortedEdges), all_vertices_in_edges(SortedEdges,Vertices), sort(Vertices,SortedVertices), edges2graphl(SortedVertices, SortedEdges, GraphL), ord_list_to_rbtree(GraphL, VF). dgraph_add_edges(G0, Edges, GF) :- sort(Edges,SortedEdges), all_vertices_in_edges(SortedEdges,Vertices), sort(Vertices,SortedVertices), dgraph_add_edges(SortedVertices,SortedEdges, G0, GF). all_vertices_in_edges([],[]). all_vertices_in_edges([V1-V2|Edges],[V1,V2|Vertices]) :- all_vertices_in_edges(Edges,Vertices). edges2graphl([], [], []). edges2graphl([V|Vertices], [VV-V1|SortedEdges], [V-[V1|Children]|GraphL]) :- V == VV, !, get_extra_children(SortedEdges,VV,Children,RemEdges), edges2graphl(Vertices, RemEdges, GraphL). edges2graphl([V|Vertices], SortedEdges, [V-[]|GraphL]) :- edges2graphl(Vertices, SortedEdges, GraphL). dgraph_add_edges([],[]) --> []. dgraph_add_edges([V|Vs],[V0-V1|Es]) --> { V == V0 }, !, { get_extra_children(Es,V,Children,REs) }, dgraph_update_vertex(V,[V1|Children]), dgraph_add_edges(Vs,REs). dgraph_add_edges([V|Vs],Es) --> !, dgraph_update_vertex(V,[]), dgraph_add_edges(Vs,Es). get_extra_children([V-C|Es],VV,[C|Children],REs) :- V == VV, !, get_extra_children(Es,VV,Children,REs). get_extra_children(Es,_,[],Es). dgraph_update_vertex(V,Children, Vs0, Vs) :- rb_apply(Vs0, V, add_edges(Children), Vs), !. dgraph_update_vertex(V,Children, Vs0, Vs) :- rb_insert(Vs0,V,Children,Vs). add_edges(E0,E1,E) :- ord_union(E0,E1,E). dgraph_new_edge(V1,V2,Vs0,Vs) :- rb_apply(Vs0, V1, insert_edge(V2), Vs), !. dgraph_new_edge(V1,V2,Vs0,Vs) :- rb_insert(Vs0,V1,[V2],Vs). insert_edge(V2, Children0, Children) :- ord_insert(Children0,V2,Children). /** @pred dgraph_add_vertices(+ _Graph_, + _Vertices_, - _NewGraph_) Unify _NewGraph_ with a new graph obtained by adding the list of vertices _Vertices_ to the graph _Graph_. */ dgraph_add_vertices(G, [], G). dgraph_add_vertices(G0, [V|Vs], GF) :- dgraph_add_vertex(G0, V, G1), dgraph_add_vertices(G1, Vs, GF). /** @pred dgraph_add_vertex(+ _Graph_, + _Vertex_, - _NewGraph_) Unify _NewGraph_ with a new graph obtained by adding vertex _Vertex_ to the graph _Graph_. */ dgraph_add_vertex(Vs0, V, Vs0) :- rb_lookup(V,_,Vs0), !. dgraph_add_vertex(Vs0, V, Vs) :- rb_insert(Vs0, V, [], Vs). /** @pred dgraph_edges(+ _Graph_, - _Edges_) Unify _Edges_ with all edges appearing in graph _Graph_. */ dgraph_edges(Vs,Edges) :- rb_visit(Vs,L0), cvt2edges(L0,Edges). /** @pred dgraph_vertices(+ _Graph_, - _Vertices_) Unify _Vertices_ with all vertices appearing in graph _Graph_. */ dgraph_vertices(Vs,Vertices) :- rb_keys(Vs,Vertices). cvt2edges([],[]). cvt2edges([V-Children|L0],Edges) :- children2edges(Children,V,Edges,Edges0), cvt2edges(L0,Edges0). children2edges([],_,Edges,Edges). children2edges([Child|L0],V,[V-Child|EdgesF],Edges0) :- children2edges(L0,V,EdgesF,Edges0). /** @pred dgraph_neighbours(+ _Vertex_, + _Graph_, - _Vertices_) Unify _Vertices_ with the list of neighbours of vertex _Vertex_ in _Graph_. */ dgraph_neighbours(V,Vertices,Children) :- rb_lookup(V,Children,Vertices). /** @pred dgraph_neighbors(+ _Vertex_, + _Graph_, - _Vertices_) Unify _Vertices_ with the list of neighbors of vertex _Vertex_ in _Graph_. If the vertice is not in the graph fail. */ dgraph_neighbors(V,Vertices,Children) :- rb_lookup(V,Children,Vertices). add_vertices(Graph, [], Graph). add_vertices(Graph, [V|Vertices], NewGraph) :- rb_insert(Graph, V, [], IntGraph), add_vertices(IntGraph, Vertices, NewGraph). /** @pred dgraph_complement(+ _Graph_, - _NewGraph_) Unify _NewGraph_ with the graph complementary to _Graph_. */ dgraph_complement(Vs0,VsF) :- dgraph_vertices(Vs0,Vertices), rb_map(Vs0,complement(Vertices),VsF). complement(Vs,Children,NewChildren) :- ord_subtract(Vs,Children,NewChildren). /** @pred dgraph_del_edge(+ _Graph_, + _N1_, + _N2_, - _NewGraph_) Succeeds if _NewGraph_ unifies with a new graph obtained by removing the edge _N1_- _N2_ from the graph _Graph_. Notice that no vertices are deleted. */ dgraph_del_edge(Vs0,V1,V2,Vs1) :- rb_apply(Vs0, V1, delete_edge(V2), Vs1). /** @pred dgraph_del_edges(+ _Graph_, + _Edges_, - _NewGraph_) Unify _NewGraph_ with a new graph obtained by removing the list of edges _Edges_ from the graph _Graph_. Notice that no vertices are deleted. */ dgraph_del_edges(G0, Edges, Gf) :- sort(Edges,SortedEdges), continue_del_edges(SortedEdges, G0, Gf). continue_del_edges([]) --> []. continue_del_edges([V-V1|Es]) --> !, { get_extra_children(Es,V,Children,REs) }, contract_vertex(V,[V1|Children]), continue_del_edges(REs). contract_vertex(V,Children, Vs0, Vs) :- rb_apply(Vs0, V, del_edges(Children), Vs). del_edges(ToRemove,E0,E) :- ord_subtract(E0,ToRemove,E). /** @pred dgraph_del_vertex(+ _Graph_, + _Vertex_, - _NewGraph_) Unify _NewGraph_ with a new graph obtained by deleting vertex _Vertex_ and all the edges that start from or go to _Vertex_ to the graph _Graph_. */ dgraph_del_vertex(Vs0, V, Vsf) :- rb_delete(Vs0, V, Vs1), rb_map(Vs1, delete_edge(V), Vsf). delete_edge(Edges0, V, Edges) :- ord_del_element(Edges0, V, Edges). /** @pred dgraph_del_vertices(+ _Graph_, + _Vertices_, - _NewGraph_) Unify _NewGraph_ with a new graph obtained by deleting the list of vertices _Vertices_ and all the edges that start from or go to a vertex in _Vertices_ to the graph _Graph_. */ dgraph_del_vertices(G0, Vs, GF) :- sort(Vs,SortedVs), delete_all(SortedVs, G0, G1), delete_remaining_edges(SortedVs, G1, GF). % it would be nice to be able to delete a set of elements from an RB tree % but I don't how to do it yet. delete_all([]) --> []. delete_all([V|Vs],Vs0,Vsf) :- rb_delete(Vs0, V, Vsi), delete_all(Vs,Vsi,Vsf). delete_remaining_edges(SortedVs,Vs0,Vsf) :- rb_map(Vs0, del_edges(SortedVs), Vsf). /** @pred dgraph_transpose(+ _Graph_, - _Transpose_) Unify _NewGraph_ with a new graph obtained from _Graph_ by replacing all edges of the form _V1-V2_ by edges of the form _V2-V1_. */ dgraph_transpose(Graph, TGraph) :- rb_visit(Graph, Edges), transpose(Edges, Nodes, TEdges, []), dgraph_new(G0), % make sure we have all vertices, even if they are unconnected. dgraph_add_vertices(G0, Nodes, G1), dgraph_add_edges(G1, TEdges, TGraph). transpose([], []) --> []. transpose([V-Edges|MoreVs], [V|Vs]) --> transpose_edges(Edges, V), transpose(MoreVs, Vs). transpose_edges([], _V) --> []. transpose_edges(E.Edges, V) --> [E-V], transpose_edges(Edges, V). dgraph_compose(T1,T2,CT) :- rb_visit(T1,Nodes), compose(Nodes,T2,NewNodes), dgraph_new(CT0), dgraph_add_edges(CT0,NewNodes,CT). compose([],_,[]). compose([V-Children|Nodes],T2,NewNodes) :- compose2(Children,V,T2,NewNodes,NewNodes0), compose(Nodes,T2,NewNodes0). compose2([],_,_,NewNodes,NewNodes). compose2([C|Children],V,T2,NewNodes,NewNodes0) :- rb_lookup(C, GrandChildren, T2), compose3(GrandChildren, V, NewNodes,NewNodesI), compose2(Children,V,T2,NewNodesI,NewNodes0). compose3([], _, NewNodes, NewNodes). compose3([GC|GrandChildren], V, [V-GC|NewNodes], NewNodes0) :- compose3(GrandChildren, V, NewNodes, NewNodes0). /** @pred dgraph_transitive_closure(+ _Graph_, - _Closure_) Unify _Closure_ with the transitive closure of graph _Graph_. */ dgraph_transitive_closure(G,Closure) :- dgraph_edges(G,Edges), continue_closure(Edges,G,Closure). continue_closure([], Closure, Closure) :- !. continue_closure(Edges, G, Closure) :- transit_graph(Edges,G,NewEdges), dgraph_add_edges(G, NewEdges, GN), continue_closure(NewEdges, GN, Closure). transit_graph([],_,[]). transit_graph([V-V1|Edges],G,NewEdges) :- rb_lookup(V1, GrandChildren, G), transit_graph2(GrandChildren, V, G, NewEdges, MoreEdges), transit_graph(Edges, G, MoreEdges). transit_graph2([], _, _, NewEdges, NewEdges). transit_graph2([GC|GrandChildren], V, G, NewEdges, MoreEdges) :- is_edge(V,GC,G), !, transit_graph2(GrandChildren, V, G, NewEdges, MoreEdges). transit_graph2([GC|GrandChildren], V, G, [V-GC|NewEdges], MoreEdges) :- transit_graph2(GrandChildren, V, G, NewEdges, MoreEdges). is_edge(V1,V2,G) :- rb_lookup(V1,Children,G), ord_memberchk(V2, Children). /** @pred dgraph_symmetric_closure(+ _Graph_, - _Closure_) Unify _Closure_ with the symmetric closure of graph _Graph_, that is, if _Closure_ contains an edge _U-V_ it must also contain the edge _V-U_. */ dgraph_symmetric_closure(G,S) :- dgraph_edges(G, Edges), invert_edges(Edges, InvertedEdges), dgraph_add_edges(G, InvertedEdges, S). invert_edges([], []). invert_edges([V1-V2|Edges], [V2-V1|InvertedEdges]) :- invert_edges(Edges, InvertedEdges). /** @pred dgraph_top_sort(+ _Graph_, - _Vertices_) Unify _Vertices_ with the topological sort of graph _Graph_. */ dgraph_top_sort(G, Q) :- dgraph_top_sort(G, Q, []). /** @pred dgraph_top_sort(+ _Graph_, - _Vertices_, ? _Vertices0_) Unify the difference list _Vertices_- _Vertices0_ with the topological sort of graph _Graph_. */ dgraph_top_sort(G, Q, RQ0) :- % O(E) rb_visit(G, Vs), % O(E) invert_and_link(Vs, Links, UnsortedInvertedEdges, AllVs, Q), % O(V) rb_clone(G, LinkedG, Links), % O(Elog(E)) sort(UnsortedInvertedEdges, InvertedEdges), % O(E) dgraph_vertices(G, AllVs), start_queue(AllVs, InvertedEdges, Q, RQ), continue_queue(Q, LinkedG, RQ, RQ0). invert_and_link([], [], [], [], []). invert_and_link([V-Vs|Edges], [V-NVs|ExtraEdges], UnsortedInvertedEdges, [V|AllVs],[_|Q]) :- inv_links(Vs, NVs, V, UnsortedInvertedEdges, UnsortedInvertedEdges0), invert_and_link(Edges, ExtraEdges, UnsortedInvertedEdges0, AllVs, Q). inv_links([],[],_,UnsortedInvertedEdges,UnsortedInvertedEdges). inv_links([V2|Vs],[l(V2,A,B,S,E)|VLnks],V1,[V2-e(A,B,S,E)|UnsortedInvertedEdges],UnsortedInvertedEdges0) :- inv_links(Vs,VLnks,V1,UnsortedInvertedEdges,UnsortedInvertedEdges0). dup([], []). dup([_|AllVs], [_|Q]) :- dup(AllVs, Q). start_queue([], [], RQ, RQ). start_queue([V|AllVs], [VV-e(S,B,S,E)|InvertedEdges], Q, RQ) :- V == VV, !, link_edges(InvertedEdges, VV, B, S, E, RemainingEdges), start_queue(AllVs, RemainingEdges, Q, RQ). start_queue([V|AllVs], InvertedEdges, [V|Q], RQ) :- start_queue(AllVs, InvertedEdges, Q, RQ). link_edges([V-e(A,B,S,E)|InvertedEdges], VV, A, S, E, RemEdges) :- V == VV, !, link_edges(InvertedEdges, VV, B, S, E, RemEdges). link_edges(RemEdges, _, A, _, A, RemEdges). continue_queue([], _, RQ0, RQ0). continue_queue([V|Q], LinkedG, RQ, RQ0) :- rb_lookup(V, Links, LinkedG), close_links(Links, RQ, RQI), % not clear whether I should deleted V from LinkedG continue_queue(Q, LinkedG, RQI, RQ0). close_links([], RQ, RQ). close_links([l(V,A,A,S,E)|Links], RQ, RQ0) :- ( S == E -> RQ = [V| RQ1] ; RQ = RQ1), close_links(Links, RQ1, RQ0). /** @pred ugraph_to_dgraph( + _UGraph_, - _Graph_) Unify _Graph_ with the directed graph obtain from _UGraph_, represented in the form used in the _ugraphs_ unweighted graphs library. */ ugraph_to_dgraph(UG, DG) :- ord_list_to_rbtree(UG, DG). /** @pred dgraph_to_ugraph(+ _Graph_, - _UGraph_) Unify _UGraph_ with the representation used by the _ugraphs_ unweighted graphs library, that is, a list of the form _V-Neighbors_, where _V_ is a node and _Neighbors_ the nodes children. */ dgraph_to_ugraph(DG, UG) :- rb_visit(DG, UG). /** @pred dgraph_edge(+ _N1_, + _N2_, + _Graph_) Edge _N1_- _N2_ is an edge in directed graph _Graph_. */ dgraph_edge(N1, N2, G) :- rb_lookup(N1, Ns, G), ord_memberchk(N2, Ns). /** @pred dgraph_min_path(+ _V1_, + _V1_, + _Graph_, - _Path_, ? _Costt_) Unify the list _Path_ with the minimal cost path between nodes _N1_ and _N2_ in graph _Graph_. Path _Path_ has cost _Cost_. */ dgraph_min_path(V1, V2, Graph, Path, Cost) :- dgraph_to_wdgraph(Graph, WGraph), wdgraph_min_path(V1, V2, WGraph, Path, Cost). /** @pred dgraph_max_path(+ _V1_, + _V1_, + _Graph_, - _Path_, ? _Costt_) Unify the list _Path_ with the maximal cost path between nodes _N1_ and _N2_ in graph _Graph_. Path _Path_ has cost _Cost_. */ dgraph_max_path(V1, V2, Graph, Path, Cost) :- dgraph_to_wdgraph(Graph, WGraph), wdgraph_max_path(V1, V2, WGraph, Path, Cost). /** @pred dgraph_min_paths(+ _V1_, + _Graph_, - _Paths_) Unify the list _Paths_ with the minimal cost paths from node _N1_ to the nodes in graph _Graph_. */ dgraph_min_paths(V1, Graph, Paths) :- dgraph_to_wdgraph(Graph, WGraph), wdgraph_min_paths(V1, WGraph, Paths). /** @pred dgraph_path(+ _Vertex_, + _Vertex1_, + _Graph_, ? _Path_) The path _Path_ is a path starting at vertex _Vertex_ in graph _Graph_ and ending at path _Vertex2_. */ dgraph_path(V1, V2, Graph, Path) :- rb_new(E0), rb_lookup(V1, Children, Graph), dgraph_path_children(Children, V2, E0, Graph, Path). dgraph_path_children([V1|_], V2, _E1, _Graph, []) :- V1 == V2. dgraph_path_children([V1|_], V2, E1, Graph, [V1|Path]) :- V2 \== V1, \+ rb_lookup(V1, _, E0), rb_insert(E0, V2, [], E1), rb_lookup(V1, Children, Graph), dgraph_path_children(Children, V2, E1, Graph, Path). dgraph_path_children([_|Children], V2, E1, Graph, Path) :- dgraph_path_children(Children, V2, E1, Graph, Path). do_path([], _, _, []). do_path([C|Children], G, SoFar, Path) :- do_children([C|Children], G, SoFar, Path). do_children([V|_], G, SoFar, [V|Path]) :- rb_lookup(V, Children, G), ord_subtract(Children, SoFar, Ch), ord_insert(SoFar, V, NextSoFar), do_path(Ch, G, NextSoFar, Path). do_children([_|Children], G, SoFar, Path) :- do_children(Children, G, SoFar, Path). /** @pred dgraph_path(+ _Vertex_, + _Graph_, ? _Path_) The path _Path_ is a path starting at vertex _Vertex_ in graph _Graph_. */ dgraph_path(V, G, [V|P]) :- rb_lookup(V, Children, G), ord_del_element(Children, V, Ch), do_path(Ch, G, [V], P). /** @pred dgraph_isomorphic(+ _Vs_, + _NewVs_, + _G0_, - _GF_) Unify the list _GF_ with the graph isomorphic to _G0_ where vertices in _Vs_ map to vertices in _NewVs_. */ dgraph_isomorphic(Vs, Vs2, G1, G2) :- rb_new(Map0), mapping(Vs,Vs2,Map0,Map), dgraph_edges(G1,Edges), translate_edges(Edges,Map,TEdges), dgraph_new(G20), dgraph_add_vertices(Vs2,G20,G21), dgraph_add_edges(G21,TEdges,G2). mapping([],[],Map,Map). mapping([V1|Vs],[V2|Vs2],Map0,Map) :- rb_insert(Map0,V1,V2,MapI), mapping(Vs,Vs2,MapI,Map). translate_edges([],_,[]). translate_edges([V1-V2|Edges],Map,[NV1-NV2|TEdges]) :- rb_lookup(V1,NV1,Map), rb_lookup(V2,NV2,Map), translate_edges(Edges,Map,TEdges). /** @pred dgraph_reachable(+ _Vertex_, + _Graph_, ? _Edges_) The path _Path_ is a path starting at vertex _Vertex_ in graph _Graph_. */ dgraph_reachable(V, G, Edges) :- rb_lookup(V, Children, G), ord_list_to_rbtree([V-[]],Done0), reachable(Children, Done0, _, G, Edges, []). reachable([], Done, Done, _, Edges, Edges). reachable([V|Vertices], Done0, DoneF, G, EdgesF, Edges0) :- rb_lookup(V,_, Done0), !, reachable(Vertices, Done0, DoneF, G, EdgesF, Edges0). reachable([V|Vertices], Done0, DoneF, G, [V|EdgesF], Edges0) :- rb_lookup(V, Kids, G), rb_insert(Done0, V, [], Done1), reachable(Kids, Done1, DoneI, G, EdgesF, EdgesI), reachable(Vertices, DoneI, DoneF, G, EdgesI, Edges0). /** @pred dgraph_leaves(+ _Graph_, ? _Vertices_) The vertices _Vertices_ have no outgoing edge in graph _Graph_. */ dgraph_leaves(Graph, Vertices) :- rb_visit(Graph, Pairs), vertices_without_children(Pairs, Vertices). vertices_without_children([], []). vertices_without_children((V-[]).Pairs, V.Vertices) :- vertices_without_children(Pairs, Vertices). vertices_without_children(_V-[_|_].Pairs, Vertices) :- vertices_without_children(Pairs, Vertices). %% @}/** @} */