#include #include #include #include #include "BeliefProp.h" #include "Indexer.h" #include "Horus.h" namespace horus { BpLink::BpLink (FacNode* fn, VarNode* vn) { fac_ = fn; var_ = vn; v1_.resize (vn->range(), log_aware::log (1.0 / vn->range())); v2_.resize (vn->range(), log_aware::log (1.0 / vn->range())); currMsg_ = &v1_; nextMsg_ = &v2_; residual_ = 0.0; } void BpLink::clearResidual (void) { residual_ = 0.0; } void BpLink::updateResidual (void) { residual_ = log_aware::getMaxNorm (v1_, v2_); } void BpLink::updateMessage (void) { swap (currMsg_, nextMsg_); } std::string BpLink::toString (void) const { std::stringstream ss; ss << fac_->getLabel(); ss << " -- " ; ss << var_->label(); return ss.str(); } double BeliefProp::accuracy_ = 0.0001; unsigned BeliefProp::maxIter_ = 1000; MsgSchedule BeliefProp::schedule_ = MsgSchedule::SEQ_FIXED; BeliefProp::BeliefProp (const FactorGraph& fg) : GroundSolver (fg) { runned_ = false; } BeliefProp::~BeliefProp (void) { for (size_t i = 0; i < varsI_.size(); i++) { delete varsI_[i]; } for (size_t i = 0; i < facsI_.size(); i++) { delete facsI_[i]; } for (size_t i = 0; i < links_.size(); i++) { delete links_[i]; } } Params BeliefProp::solveQuery (VarIds queryVids) { assert (queryVids.empty() == false); return queryVids.size() == 1 ? getPosterioriOf (queryVids[0]) : getJointDistributionOf (queryVids); } void BeliefProp::printSolverFlags (void) const { std::stringstream ss; ss << "belief propagation [" ; ss << "bp_msg_schedule=" ; switch (schedule_) { case MsgSchedule::SEQ_FIXED: ss << "seq_fixed"; break; case MsgSchedule::SEQ_RANDOM: ss << "seq_random"; break; case MsgSchedule::PARALLEL: ss << "parallel"; break; case MsgSchedule::MAX_RESIDUAL: ss << "max_residual"; break; } ss << ",bp_max_iter=" << util::toString (maxIter_); ss << ",bp_accuracy=" << util::toString (accuracy_); ss << ",log_domain=" << util::toString (globals::logDomain); ss << "]" ; std::cout << ss.str() << std::endl; } Params BeliefProp::getPosterioriOf (VarId vid) { if (runned_ == false) { runSolver(); } assert (fg.getVarNode (vid)); VarNode* var = fg.getVarNode (vid); Params probs; if (var->hasEvidence()) { probs.resize (var->range(), log_aware::noEvidence()); probs[var->getEvidence()] = log_aware::withEvidence(); } else { probs.resize (var->range(), log_aware::multIdenty()); const BpLinks& links = ninf(var)->getLinks(); if (globals::logDomain) { for (size_t i = 0; i < links.size(); i++) { probs += links[i]->message(); } log_aware::normalize (probs); util::exp (probs); } else { for (size_t i = 0; i < links.size(); i++) { probs *= links[i]->message(); } log_aware::normalize (probs); } } return probs; } Params BeliefProp::getJointDistributionOf (const VarIds& jointVarIds) { if (runned_ == false) { runSolver(); } VarNode* vn = fg.getVarNode (jointVarIds[0]); const FacNodes& facNodes = vn->neighbors(); size_t idx = facNodes.size(); for (size_t i = 0; i < facNodes.size(); i++) { if (facNodes[i]->factor().contains (jointVarIds)) { idx = i; break; } } if (idx == facNodes.size()) { return getJointByConditioning (jointVarIds); } return getFactorJoint (facNodes[idx], jointVarIds); } Params BeliefProp::getFactorJoint ( FacNode* fn, const VarIds& jointVarIds) { if (runned_ == false) { runSolver(); } Factor res (fn->factor()); const BpLinks& links = ninf(fn)->getLinks(); for (size_t i = 0; i < links.size(); i++) { Factor msg ({links[i]->varNode()->varId()}, {links[i]->varNode()->range()}, getVarToFactorMsg (links[i])); res.multiply (msg); } res.sumOutAllExcept (jointVarIds); res.reorderArguments (jointVarIds); res.normalize(); Params jointDist = res.params(); if (globals::logDomain) { util::exp (jointDist); } return jointDist; } void BeliefProp::calculateAndUpdateMessage (BpLink* link, bool calcResidual) { if (globals::verbosity > 2) { std::cout << "calculating & updating " << link->toString(); std::cout << std::endl; } calcFactorToVarMsg (link); if (calcResidual) { link->updateResidual(); } link->updateMessage(); } void BeliefProp::calculateMessage (BpLink* link, bool calcResidual) { if (globals::verbosity > 2) { std::cout << "calculating " << link->toString(); std::cout << std::endl; } calcFactorToVarMsg (link); if (calcResidual) { link->updateResidual(); } } void BeliefProp::updateMessage (BpLink* link) { link->updateMessage(); if (globals::verbosity > 2) { std::cout << "updating " << link->toString(); std::cout << std::endl; } } void BeliefProp::runSolver (void) { initializeSolver(); nIters_ = 0; while (!converged() && nIters_ < maxIter_) { nIters_ ++; if (globals::verbosity > 1) { util::printHeader (std::string ("Iteration ") + util::toString (nIters_)); } switch (schedule_) { case MsgSchedule::SEQ_RANDOM: std::random_shuffle (links_.begin(), links_.end()); // no break case MsgSchedule::SEQ_FIXED: for (size_t i = 0; i < links_.size(); i++) { calculateAndUpdateMessage (links_[i]); } break; case MsgSchedule::PARALLEL: for (size_t i = 0; i < links_.size(); i++) { calculateMessage (links_[i]); } for (size_t i = 0; i < links_.size(); i++) { updateMessage(links_[i]); } break; case MsgSchedule::MAX_RESIDUAL: maxResidualSchedule(); break; } } if (globals::verbosity > 0) { if (nIters_ < maxIter_) { std::cout << "Belief propagation converged in " ; std::cout << nIters_ << " iterations" << std::endl; } else { std::cout << "The maximum number of iterations was hit, terminating..." ; std::cout << std::endl; } std::cout << std::endl; } runned_ = true; } void BeliefProp::createLinks (void) { const FacNodes& facNodes = fg.facNodes(); for (size_t i = 0; i < facNodes.size(); i++) { const VarNodes& neighbors = facNodes[i]->neighbors(); for (size_t j = 0; j < neighbors.size(); j++) { links_.push_back (new BpLink (facNodes[i], neighbors[j])); } } } void BeliefProp::maxResidualSchedule (void) { if (nIters_ == 1) { for (size_t i = 0; i < links_.size(); i++) { calculateMessage (links_[i]); SortedOrder::iterator it = sortedOrder_.insert (links_[i]); linkMap_.insert (make_pair (links_[i], it)); } return; } for (size_t c = 0; c < links_.size(); c++) { if (globals::verbosity > 1) { std::cout << "current residuals:" << std::endl; for (SortedOrder::iterator it = sortedOrder_.begin(); it != sortedOrder_.end(); ++it) { std::cout << " " << std::setw (30) << std::left; std::cout << (*it)->toString(); std::cout << "residual = " << (*it)->residual(); std::cout << std::endl; } } SortedOrder::iterator it = sortedOrder_.begin(); BpLink* link = *it; if (link->residual() < accuracy_) { return; } updateMessage (link); link->clearResidual(); sortedOrder_.erase (it); linkMap_.find (link)->second = sortedOrder_.insert (link); // update the messages that depend on message source --> destin const FacNodes& factorNeighbors = link->varNode()->neighbors(); for (size_t i = 0; i < factorNeighbors.size(); i++) { if (factorNeighbors[i] != link->facNode()) { const BpLinks& links = ninf(factorNeighbors[i])->getLinks(); for (size_t j = 0; j < links.size(); j++) { if (links[j]->varNode() != link->varNode()) { calculateMessage (links[j]); BpLinkMap::iterator iter = linkMap_.find (links[j]); sortedOrder_.erase (iter->second); iter->second = sortedOrder_.insert (links[j]); } } } } if (globals::verbosity > 1) { util::printDashedLine(); } } } void BeliefProp::calcFactorToVarMsg (BpLink* link) { FacNode* src = link->facNode(); const VarNode* dst = link->varNode(); const BpLinks& links = ninf(src)->getLinks(); // calculate the product of messages that were sent // to factor `src', except from var `dst' unsigned reps = 1; unsigned msgSize = util::sizeExpected (src->factor().ranges()); Params msgProduct (msgSize, log_aware::multIdenty()); if (globals::logDomain) { for (size_t i = links.size(); i-- > 0; ) { if (links[i]->varNode() != dst) { if (constants::SHOW_BP_CALCS) { std::cout << " message from " << links[i]->varNode()->label(); std::cout << ": " ; } util::apply_n_times (msgProduct, getVarToFactorMsg (links[i]), reps, std::plus()); if (constants::SHOW_BP_CALCS) { std::cout << std::endl; } } reps *= links[i]->varNode()->range(); } } else { for (size_t i = links.size(); i-- > 0; ) { if (links[i]->varNode() != dst) { if (constants::SHOW_BP_CALCS) { std::cout << " message from " << links[i]->varNode()->label(); std::cout << ": " ; } util::apply_n_times (msgProduct, getVarToFactorMsg (links[i]), reps, std::multiplies()); if (constants::SHOW_BP_CALCS) { std::cout << std::endl; } } reps *= links[i]->varNode()->range(); } } Factor result (src->factor().arguments(), src->factor().ranges(), msgProduct); result.multiply (src->factor()); if (constants::SHOW_BP_CALCS) { std::cout << " message product: " << msgProduct << std::endl; std::cout << " original factor: " << src->factor().params(); std::cout << std::endl; std::cout << " factor product: " << result.params() << std::endl; } result.sumOutAllExcept (dst->varId()); if (constants::SHOW_BP_CALCS) { std::cout << " marginalized: " << result.params() << std::endl; } link->nextMessage() = result.params(); log_aware::normalize (link->nextMessage()); if (constants::SHOW_BP_CALCS) { std::cout << " curr msg: " << link->message() << std::endl; std::cout << " next msg: " << link->nextMessage() << std::endl; } } Params BeliefProp::getVarToFactorMsg (const BpLink* link) const { const VarNode* src = link->varNode(); Params msg; if (src->hasEvidence()) { msg.resize (src->range(), log_aware::noEvidence()); msg[src->getEvidence()] = log_aware::withEvidence(); } else { msg.resize (src->range(), log_aware::one()); } if (constants::SHOW_BP_CALCS) { std::cout << msg; } BpLinks::const_iterator it; const BpLinks& links = ninf (src)->getLinks(); if (globals::logDomain) { for (it = links.begin(); it != links.end(); ++it) { if (*it != link) { msg += (*it)->message(); } if (constants::SHOW_BP_CALCS) { std::cout << " x " << (*it)->message(); } } } else { for (it = links.begin(); it != links.end(); ++it) { if (*it != link) { msg *= (*it)->message(); } if (constants::SHOW_BP_CALCS) { std::cout << " x " << (*it)->message(); } } } if (constants::SHOW_BP_CALCS) { std::cout << " = " << msg; } return msg; } Params BeliefProp::getJointByConditioning (const VarIds& jointVarIds) const { return GroundSolver::getJointByConditioning ( GroundSolverType::BP, fg, jointVarIds); } void BeliefProp::initializeSolver (void) { const VarNodes& varNodes = fg.varNodes(); varsI_.reserve (varNodes.size()); for (size_t i = 0; i < varNodes.size(); i++) { varsI_.push_back (new SPNodeInfo()); } const FacNodes& facNodes = fg.facNodes(); facsI_.reserve (facNodes.size()); for (size_t i = 0; i < facNodes.size(); i++) { facsI_.push_back (new SPNodeInfo()); } createLinks(); for (size_t i = 0; i < links_.size(); i++) { FacNode* src = links_[i]->facNode(); VarNode* dst = links_[i]->varNode(); ninf (dst)->addBpLink (links_[i]); ninf (src)->addBpLink (links_[i]); } } bool BeliefProp::converged (void) { if (links_.empty()) { return true; } if (nIters_ == 0) { return false; } if (globals::verbosity > 2) { std::cout << std::endl; } if (nIters_ == 1) { if (globals::verbosity > 1) { std::cout << "no residuals" << std::endl << std::endl; } return false; } bool converged = true; if (schedule_ == MsgSchedule::MAX_RESIDUAL) { double maxResidual = (*(sortedOrder_.begin()))->residual(); if (maxResidual > accuracy_) { converged = false; } else { converged = true; } } else { for (size_t i = 0; i < links_.size(); i++) { double residual = links_[i]->residual(); if (globals::verbosity > 1) { std::cout << links_[i]->toString() + " residual = " << residual; std::cout << std::endl; } if (residual > accuracy_) { converged = false; if (globals::verbosity < 2) { break; } } } if (globals::verbosity > 1) { std::cout << std::endl; } } return converged; } void BeliefProp::printLinkInformation (void) const { using std::cout; using std::endl; for (size_t i = 0; i < links_.size(); i++) { BpLink* l = links_[i]; cout << l->toString() << ":" << endl; cout << " curr msg = " ; cout << l->message() << endl; cout << " next msg = " ; cout << l->nextMessage() << endl; cout << " residual = " << l->residual() << endl; } } } // namespace horus