% % The world famous EM algorithm, in a nutshell % :- module(clpbn_em, [em/5]). :- use_module(library(lists), [append/3]). :- use_module(library(clpbn), [clpbn_init_solver/5, clpbn_run_solver/4, clpbn_flag/2]). :- use_module(library('clpbn/dists'), [get_dist_domain_size/2, empty_dist/2, dist_new_table/2, get_dist_key/2, randomise_all_dists/0, uniformise_all_dists/0]). :- use_module(library('clpbn/connected'), [clpbn_subgraphs/2]). :- use_module(library('clpbn/learning/learn_utils'), [run_all/1, clpbn_vars/2, normalise_counts/2, compute_likelihood/3, soften_sample/2]). :- use_module(library(lists), [member/2]). :- use_module(library(matrix), [matrix_add/3, matrix_to_list/2]). :- use_module(library(rbtrees), [rb_new/1, rb_insert/4, rb_lookup/3]). :- use_module(library('clpbn/utils'), [ check_for_hidden_vars/3, sort_vars_by_key/3]). :- meta_predicate em(:,+,+,-,-), init_em(:,-). em(Items, MaxError, MaxIts, Tables, Likelihood) :- init_em(Items, State), em_loop(0, 0.0, State, MaxError, MaxIts, Likelihood, Tables), assert(em_found(Tables, Likelihood)), fail. % get rid of new random variables the easy way :) em(_, _, _, Tables, Likelihood) :- retract(em_found(Tables, Likelihood)). % This gets you an initial configuration. If there is a lot of evidence % tables may be filled in close to optimal, otherwise they may be % close to uniform. % it also gets you a run for random variables % state collects all Info we need for the EM algorithm % it includes the list of variables without evidence, % the list of distributions for which we want to compute parameters, % and more detailed info on distributions, namely with a list of all instances for the distribution. init_em(Items, state( AllDists, AllDistInstances, MargVars, SolverVars)) :- run_all(Items), % randomise_all_dists, uniformise_all_dists, attributes:all_attvars(AllVars0), sort_vars_by_key(AllVars0,AllVars1,[]), % remove variables that do not have to do with this query. check_for_hidden_vars(AllVars1, AllVars1, AllVars), different_dists(AllVars, AllDists, AllDistInstances, MargVars), clpbn_flag(em_solver, Solver), clpbn_init_solver(Solver, MargVars, AllVars, _, SolverVars). % loop for as long as you want. em_loop(Its, Likelihood0, State, MaxError, MaxIts, LikelihoodF, FTables) :- estimate(State, LPs), maximise(State, Tables, LPs, Likelihood), writeln(Likelihood:Its:Likelihood0:Tables), ( ( abs((Likelihood - Likelihood0)/Likelihood) < MaxError ; Its == MaxIts ) -> ltables(Tables, FTables), LikelihoodF = Likelihood ; Its1 is Its+1, em_loop(Its1, Likelihood, State, MaxError, MaxIts, LikelihoodF, FTables) ). ltables([], []). ltables([Id-T|Tables], [Key-LTable|FTables]) :- matrix_to_list(T,LTable), get_dist_key(Id, Key), ltables(Tables, FTables). % collect the different dists we are going to learn next. different_dists(AllVars, AllDists, AllInfo, MargVars) :- all_dists(AllVars, Dists0), sort(Dists0, Dists1), group(Dists1, AllDists, AllInfo, MargVars0, []), sort(MargVars0, MargVars). all_dists([], []). all_dists([V|AllVars], [i(Id, [V|Parents], Cases, Hiddens)|Dists]) :- clpbn:get_atts(V, [dist(Id,Parents)]), generate_hidden_cases([V|Parents], CompactCases, Hiddens), uncompact_cases(CompactCases, Cases), all_dists(AllVars, Dists). generate_hidden_cases([], [], []). generate_hidden_cases([V|Parents], [P|Cases], Hiddens) :- clpbn:get_atts(V, [evidence(P)]), !, generate_hidden_cases(Parents, Cases, Hiddens). generate_hidden_cases([V|Parents], [Cases|MoreCases], [V|Hiddens]) :- clpbn:get_atts(V, [dist(Id,_)]), get_dist_domain_size(Id, Sz), gen_cases(0, Sz, Cases), generate_hidden_cases(Parents, MoreCases, Hiddens). gen_cases(Sz, Sz, []) :- !. gen_cases(I, Sz, [I|Cases]) :- I1 is I+1, gen_cases(I1, Sz, Cases). uncompact_cases(CompactCases, Cases) :- findall(Case, is_case(CompactCases, Case), Cases). is_case([], []). is_case([A|CompactCases], [A|Case]) :- integer(A), !, is_case(CompactCases, Case). is_case([L|CompactCases], [C|Case]) :- member(C, L), is_case(CompactCases, Case). group([], [], []) --> []. group([i(Id,Ps,Cs,[])|Dists1], [Id|Ids], [Id-[i(Id,Ps,Cs,[])|Extra]|AllInfo]) --> !, same_id(Dists1, Id, Extra, Rest), group(Rest, Ids, AllInfo). group([i(Id,Ps,Cs,Hs)|Dists1], [Id|Ids], [Id-[i(Id,Ps,Cs,Hs)|Extra]|AllInfo]) --> [Hs], same_id(Dists1, Id, Extra, Rest), group(Rest, Ids, AllInfo). same_id([i(Id,Vs,Cases,[])|Dists1], Id, [i(Id, Vs, Cases, [])|Extra], Rest) --> !, same_id(Dists1, Id, Extra, Rest). same_id([i(Id,Vs,Cases,Hs)|Dists1], Id, [i(Id, Vs, Cases, Hs)|Extra], Rest) --> !, [Hs], same_id(Dists1, Id, Extra, Rest). same_id(Dists, _, [], Dists) --> []. compact_mvars([], []). compact_mvars([X1,X2|MargVars], CMVars) :- X1 == X2, !, compact_mvars([X2|MargVars], CMVars). compact_mvars([X|MargVars], [X|CMVars]) :- !, compact_mvars(MargVars, CMVars). estimate(state(_, _, Margs, SolverState), LPs) :- clpbn_flag(em_solver, Solver), clpbn_run_solver(Solver, Margs, LPs, SolverState). maximise(state(_,DistInstances,MargVars,_), Tables, LPs, Likelihood) :- rb_new(MDistTable0), create_mdist_table(MargVars, LPs, MDistTable0, MDistTable), compute_parameters(DistInstances, Tables, MDistTable, 0.0, Likelihood, LPs:MargVars). create_mdist_table([],[],MDistTable,MDistTable). create_mdist_table([Vs|MargVars],[Ps|LPs],MDistTable0,MDistTable) :- rb_insert(MDistTable0, Vs, Ps, MDistTableI), create_mdist_table(MargVars, LPs, MDistTableI ,MDistTable). compute_parameters([], [], _, Lik, Lik, _). compute_parameters([Id-Samples|Dists], [Id-NewTable|Tables], MDistTable, Lik0, Lik, LPs:MargVars) :- empty_dist(Id, Table0), add_samples(Samples, Table0, MDistTable), soften_sample(Table0, SoftenedTable), matrix:matrix_sum(Table0,TotM),writeln(Id-TotM), normalise_counts(SoftenedTable, NewTable), compute_likelihood(Table0, NewTable, DeltaLik), dist_new_table(Id, NewTable), NewLik is Lik0+DeltaLik, compute_parameters(Dists, Tables, MDistTable, NewLik, Lik, LPs:MargVars). add_samples([], _, _). add_samples([i(_,_,[Case],[])|Samples], Table, MDistTable) :- !, matrix_add(Table,Case,1.0), add_samples(Samples, Table, MDistTable). add_samples([i(_,_,Cases,Hiddens)|Samples], Table, MDistTable) :- rb_lookup(Hiddens, Ps, MDistTable), run_sample(Cases, Ps, Table), add_samples(Samples, Table, MDistTable). run_sample([], [], _). run_sample([C|Cases], [P|Ps], Table) :- matrix_add(Table, C, P), run_sample(Cases, Ps, Table).