%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % ProbLog program describing a probabilistic graph % (running example from ProbLog presentations) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% :- use_module('../problog'). %%%% % background knowledge %%%% % definition of acyclic path using list of visited nodes path(X,Y) :- path(X,Y,[X],_). path(X,X,A,A). path(X,Y,A,R) :- X\==Y, edge(X,Z), absent(Z,A), path(Z,Y,[Z|A],R). % using directed edges in both directions edge(X,Y) :- dir_edge(Y,X). edge(X,Y) :- dir_edge(X,Y). % checking whether node hasn't been visited before absent(_,[]). absent(X,[Y|Z]):-X \= Y, absent(X,Z). %%%% % probabilistic facts %%%% 0.9::dir_edge(1,2). 0.8::dir_edge(2,3). 0.6::dir_edge(3,4). 0.7::dir_edge(1,6). 0.5::dir_edge(2,6). 0.4::dir_edge(6,5). 0.7::dir_edge(5,3). 0.2::dir_edge(5,4). %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % example queries about path(1,4) % %%% explanation probability (and facts involved) % ?- problog_max(path(1,4),Prob,FactsUsed). % FactsUsed = [dir_edge(1,2),dir_edge(2,3),dir_edge(3,4)], % Prob = 0.432 ? % yes %%% success probability % ?- problog_exact(path(1,4),Prob,Status). % 8 proofs % Prob = 0.53864, % Status = ok ? % yes %%% lower bound using 4 best proofs % ?- problog_kbest(path(1,4),4,Prob,Status). % 4 proofs % Prob = 0.517344, % Status = ok ? % yes %%% approximation using monte carlo, to reach 95%-confidence interval width 0.01 % ?- problog_montecarlo(path(1,4),0.01,Prob). % Prob = 0.537525 ? % yes %%% upper and lower bound using iterative deepening, final interval width 0.01 % ?- problog_delta(path(1,4),0.01,Bound_low,Bound_up,Status). % Bound_low = 0.5354096, % Bound_up = 0.53864, % Status = ok ? % yes %%% upper and lower bound obtained cutting the sld tree at probability 0.1 for each branch % ?- problog_threshold(path(1,4),0.1,Bound_low,Bound_up,Status). % 4 proofs % Bound_low = 0.517344, % Bound_up = 0.563728, % Status = ok ? % yes %%% lower bound obtained cutting the sld tree at probability 0.2 for each branch % ?- problog_low(path(1,4),0.2,Bound_low,Status). % 1 proofs % Bound_low = 0.432, % Status = ok ? % yes % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%