/*********************************** Variable Elimination in Prolog How to do it Three steps: build the graph: - for all variables, find out all tables they connect to; multiply their size order by size *********************************/ :- module(vel, [vel/3, check_if_vel_done/1]). :- attribute size/1, posterior/4, all_diffs/1. :- use_module(library(ordsets), [ord_union/3]). :- use_module(library('clpbn/xbif'), [clpbn2xbif/3]). :- use_module(library('clpbn/graphviz'), [clpbn2gviz/4]). :- use_module(library('clpbn/utils'), [ clpbn_not_var_member/2, check_for_hidden_vars/3]). :- use_module(library(lists), [ append/3, member/2 ]). check_if_vel_done(Var) :- get_atts(Var, [size(_)]), !. vel(LVs,Vs0,AllDiffs) :- check_for_hidden_vars(Vs0, Vs0, Vs1), sort(Vs1,Vs), find_all_clpbn_vars(Vs, LV0, LVi, Tables0), find_all_table_deps(Tables0, LV0), (clpbn:output(xbif(XBifStream)) -> clpbn2xbif(XBifStream,vel,Vs) ; true), (clpbn:output(gviz(XBifStream)) -> clpbn2gviz(XBifStream,vel,Vs,LVs) ; true), process(LVi, LVs, tab(Dist,_,_)), Dist =.. [_|Ps0], normalise(Ps0,Ps), bind_vals(LVs,Ps,AllDiffs). find_all_clpbn_vars([], [], [], []) :- !. find_all_clpbn_vars([V|Vs], [Var|LV], ProcessedVars, [table(I,Table,Deps,Sizes)|Tables]) :- var_with_deps(V, Table, Deps, Sizes, Ev, Vals), !, Var = var(V,I,Sz,Vals,Ev,_,_), get_dist_size(V,Sz), % variables with evidence should not be processed. (var(Ev) -> ProcessedVars = [Var|ProcessedVars0] ; ProcessedVars = ProcessedVars0 ), find_all_clpbn_vars(Vs, LV, ProcessedVars0, Tables). var_with_deps(V, Table, Deps, Sizes, Ev, Vals) :- clpbn:get_atts(V, [dist(Vals,OTable,VDeps)]), ( clpbn:get_atts(V, [evidence(Ev)]) -> true ; true), reorder_table([V|VDeps],Sizes0,OTable,Deps0,Table0), simplify_evidence(Deps0, Table0, Deps0, Sizes0, Table, Deps, Sizes). get_sizes([], []). get_sizes([V|Deps], [Sz|Sizes]) :- get_dist_size(V,Sz), get_sizes(Deps, Sizes). reorder_table(Vs0, Sizes, T0, Vs, TF) :- get_sizes(Vs0, Szs), numb_vars(Vs0, Szs, _, VPs0, VLs0), keysort(VLs0, VLs), compute_new_factors(VLs, _, Vs, Sizes), get_factors(VLs0,Fs), length(T0,L), functor(TF,t,L), copy_to_new_array(T0, 0, VPs0, Fs, TF). numb_vars([], [], 1, [], []). numb_vars([V|Vs], [L|Ls], A0, [Ai|VPs], [V-(L,_)|VLs]) :- numb_vars(Vs, Ls, Ai, VPs, VLs), A0 is Ai*L. compute_new_factors([], 1, [], []). compute_new_factors([V-(L,F)|VLs], NF, [V|Vs], [L|Szs]) :- compute_new_factors(VLs, F, Vs, Szs), NF is F*L. get_factors([],[]). get_factors([_-(_,F)|VLs0],[F|Fs]) :- get_factors(VLs0,Fs). copy_to_new_array([], _, _, _, _). copy_to_new_array([P|Ps], I, F0s, Fs, S) :- convert_factor(F0s, Fs, I, N), I1 is I+1, N1 is N+1, arg(N1,S,P), copy_to_new_array(Ps, I1, F0s, Fs, S). convert_factor([], [], _, 0). convert_factor([F0|F0s], [F|Fs], I, OUT) :- X is I//F0, NI is I mod F0, NEXT is F*X, convert_factor(F0s, Fs, NI, OUT1), OUT is OUT1+NEXT. find_all_table_deps(Tables0, LV) :- find_dep_graph(Tables0, DepGraph0), sort(DepGraph0, DepGraph), add_table_deps_to_variables(LV, DepGraph). find_dep_graph([], []). find_dep_graph([table(I,Tab,Deps,Sizes)|Tables], DepGraph) :- add_table_deps(Deps, I, Deps, Tab, Sizes, DepGraph0, DepGraph), find_dep_graph(Tables, DepGraph0). add_table_deps([], _, _, _, _, DepGraph, DepGraph). add_table_deps([V|Deps], I, Deps0, Table, Sizes, DepGraph0, [V-tab(Table,Deps0,Sizes)|DepGraph]) :- add_table_deps(Deps, I, Deps0, Table, Sizes, DepGraph0, DepGraph). add_table_deps_to_variables([], []). add_table_deps_to_variables([var(V,_,_,_,_,Deps,K)|LV], DepGraph) :- steal_deps_for_variable(DepGraph, V, NDepGraph, Deps), compute_size(Deps,[],K), add_table_deps_to_variables(LV, NDepGraph). steal_deps_for_variable([V-Info|DepGraph], V0, NDepGraph, [Info|Deps]) :- V == V0, !, steal_deps_for_variable(DepGraph, V0, NDepGraph, Deps). steal_deps_for_variable(DepGraph, _, DepGraph, []). compute_size([],Vs,K) :- % use sizes now length(Vs,K). % multiply_sizes(Vs,1,K). compute_size([tab(_,Vs,_)|Tabs],Vs0,K) :- ord_union(Vs,Vs0,VsI), compute_size(Tabs,VsI,K). multiply_sizes([],K,K). multiply_sizes([V|Vs],K0,K) :- get_dist_size(V, Sz), KI is K0*Sz, multiply_sizes(Vs,KI,K). process(LV0, InputVs, Out) :- find_best(LV0, V0, 10000, V, WorkTables, LVI, InputVs), V \== V0, !, multiply_tables(WorkTables, Table), propagate_evidence(V, Evs), project(V,Table,NewTable,Evs), include(LVI,NewTable,V,LV2), process(LV2, InputVs, Out). process(LV0, _, Out) :- fetch_tables(LV0, WorkTables), multiply_tables(WorkTables, Out). find_best([], V, _, V, _, [], _). find_best([var(V,I,Sz,Vals,Ev,Deps,K)|LV], _, Threshold, VF, NWorktables, LVF, Inputs) :- K < Threshold, clpbn_not_var_member(Inputs, V), !, find_best(LV, V, K, VF, WorkTables,LV0, Inputs), (V == VF -> LVF = LV0, Deps = NWorktables ; LVF = [var(V,I,Sz,Vals,Ev,Deps,K)|LV0], WorkTables = NWorktables ). find_best([V|LV], V0, Threshold, VF, WorkTables, [V|LVF], Inputs) :- find_best(LV, V0, Threshold, VF, WorkTables, LVF, Inputs). multiply_tables([Table], Table) :- !. multiply_tables([tab(Tab1,Deps1,Szs1), tab(Tab2,Deps2,Sz2)| Tables], Out) :- multiply_table(Tab1, Deps1, Szs1, Tab2, Deps2, Sz2, NTab, NDeps, NSz), multiply_tables([tab(NTab,NDeps,NSz)| Tables], Out). simplify_evidence([], Table, Deps, Sizes, Table, Deps, Sizes). simplify_evidence([V|VDeps], Table0, Deps0, Sizes0, Table, Deps, Sizes) :- clpbn:get_atts(V, [evidence(Ev)]), clpbn:get_atts(V, [dist(Out,_,_)]), generate_szs_with_evidence(Out,Ev,Evs), project(V,tab(Table0,Deps0,Sizes0),tab(NewTable,Deps1,Sizes1),Evs), simplify_evidence(VDeps, NewTable, Deps1, Sizes1, Table, Deps, Sizes). simplify_evidence([_|VDeps], Table0, Deps0, Sizes0, Table, Deps, Sizes) :- simplify_evidence(VDeps, Table0, Deps0, Sizes0, Table, Deps, Sizes). propagate_evidence(V, Evs) :- clpbn:get_atts(V, [evidence(Ev),dist(Out,_,_)]), !, generate_szs_with_evidence(Out,Ev,Evs). propagate_evidence(_, _). generate_szs_with_evidence([],_,[]). generate_szs_with_evidence([Ev|Out],Ev,[ok|Evs]) :- !, generate_szs_with_evidence(Out,Ev,Evs). generate_szs_with_evidence([_|Out],Ev,[not_ok|Evs]) :- generate_szs_with_evidence(Out,Ev,Evs). fetch_tables([], []). fetch_tables([var(_,_,_,_,_,Deps,_)|LV0], Tables) :- append(Deps,Tables0,Tables), fetch_tables(LV0, Tables0). multiply_table(Tab1, Deps1, Szs1, Tab2, Deps2, Szs2, NTab, NDeps, NSzs) :- deps_union(Deps1,Szs1,Fs10,Deps2,Szs2,Fs20,NDeps,NSzs), factors(NSzs, Fs, Total), factors(Fs10, Fs1, _), factors(Fs20, Fs2, _), elements(0, Total, Fs, Fs1, Fs2, Tab1, Tab2, LTab), NTab =.. [t|LTab]. deps_union([],[],[],[],[],[],[],[]) :- !. deps_union([],[],Fs1,[V2|Deps2],[Sz|Szs2],[Sz|Szs2],[V2|Deps2],[Sz|Szs2]) :- !, mk_zeros([Sz|Szs2],Fs1). deps_union([V1|Deps1],[Sz|Szs1],[Sz|Szs1],[],[],Fs2,[V1|Deps1],[Sz|Szs1]) :- !, mk_zeros([Sz|Szs1],Fs2). deps_union([V1|Deps1],[Sz|Szs1],[Sz|Fs1],[V2|Deps2],[Sz|Szs2],[Sz|Fs2],[V1|NDeps],[Sz|NSzs]) :- V1 == V2, !, deps_union(Deps1,Szs1,Fs1,Deps2,Szs2,Fs2,NDeps,NSzs). deps_union([V1|Deps1],[Sz1|Szs1],[Sz1|Fs1],[V2|Deps2],Szs2,[0|Fs2],[V1|NDeps],[Sz1|NSzs]) :- V1 @< V2, !, deps_union(Deps1,Szs1,Fs1,[V2|Deps2],Szs2,Fs2,NDeps,NSzs). deps_union([V1|Deps1],Szs1,[0|Fs1],[V2|Deps2],[Sz|Szs2],[Sz|Fs2],[V2|NDeps],[Sz|NSzs]) :- deps_union([V1|Deps1],Szs1,Fs1,Deps2,Szs2,Fs2,NDeps,NSzs). mk_zeros([],[]). mk_zeros([_|Szs],[0|Fs]) :- mk_zeros(Szs,Fs). factors([], [], 1). factors([0|Ls], [0|NLs], Prod) :- !, factors(Ls, NLs, Prod). factors([N|Ls], [Prod0|NLs], Prod) :- factors(Ls, NLs, Prod0), Prod is Prod0*N. elements(Total, Total, _, _, _, _, _, []) :- !. elements(I, Total, Fs, Fs1, Fs2, Tab1, Tab2, [El|Els]) :- element(Fs, I, 1, Fs1, 1, Fs2, Tab1, Tab2, El), I1 is I+1, elements(I1, Total, Fs, Fs1, Fs2, Tab1, Tab2, Els). element([], _, P1, [], P2, [], Tab1, Tab2, El) :- arg(P1, Tab1, El1), arg(P2, Tab2, El2), El is El1*El2. element([F|Fs], I, P1, [F1|Fs1], P2, [F2|Fs2], Tab1, Tab2, El) :- FF is I // F, NP1 is P1+F1*FF, NP2 is P2+F2*FF, NI is I mod F, element(Fs, NI, NP1, Fs1, NP2, Fs2, Tab1, Tab2, El). % project(V,tab(Table,Deps,Szs),tab(NewTable,NDeps,NSzs),Evs) :- functor(Table,_,Max), find_projection_factor(Deps, V, NDeps, Szs, NSzs, F, Sz), OLoop is Max//(Sz*F), project_outer_loop(0,OLoop,F,Sz,Table,Evs,NTabl), NewTable =.. [t|NTabl]. find_projection_factor([V|Deps], V1, Deps, [Sz|Szs], Szs, F, Sz) :- V == V1, !, mult(Szs, 1, F). find_projection_factor([V|Deps], V1, [V|NDeps], [Sz|Szs], [Sz|NSzs], F, NSz) :- find_projection_factor(Deps, V1, NDeps, Szs, NSzs, F, NSz). mult([], F, F). mult([Sz|Szs], Sz0, F) :- SzI is Sz0*Sz, mult(Szs, SzI, F). project_outer_loop(OLoop,OLoop,_,_,_,_,[]) :- !. project_outer_loop(I,OLoop,F,Sz,Table,Evs,NTabl) :- Base is I*Sz*F, project_mid_loop(0,F,Base,Sz,Table,Evs,NTabl,NTabl0), I1 is I+1, project_outer_loop(I1,OLoop,F,Sz,Table,Evs,NTabl0). project_mid_loop(F,F,_,_,_,_,NTabl,NTabl) :- !. project_mid_loop(I,F,Base,Sz,Table,Evs,[Ent|NTablF],NTabl0) :- I1 is I+1, NBase is I+Base, project_inner_loop(0,Sz,Evs,NBase,F,Table,0.0,Ent), project_mid_loop(I1,F,Base,Sz,Table,Evs,NTablF,NTabl0). project_inner_loop(Sz,Sz,[],_,_,_,Ent,Ent) :- !. project_inner_loop(I,Sz,[ok|Evs],NBase,F,Table,Ent0,Ent) :- !, I1 is I+1, Pos is NBase+I*F+1, arg(Pos,Table,E1), Ent1 is E1+Ent0, project_inner_loop(I1,Sz,Evs,NBase,F,Table,Ent1,Ent). project_inner_loop(I,Sz,[_|Evs],NBase,F,Table,Ent0,Ent) :- !, I1 is I+1, project_inner_loop(I1,Sz,Evs,NBase,F,Table,Ent0,Ent). include([],_,_,[]). include([var(V,P,VSz,D,Ev,Tabs,Est)|LV],tab(T,Vs,Sz),V1,[var(V,P,VSz,D,Ev,Tabs,Est)|NLV]) :- clpbn_not_var_member(Vs,V), !, include(LV,tab(T,Vs,Sz),V1,NLV). include([var(V,P,VSz,D,Ev,Tabs,_)|LV],Table,NV,[var(V,P,VSz,D,Ev,NTabs,NEst)|NLV]) :- update_tables(Tabs,NTabs,Table,NV,[],NEst), include(LV,Table,NV,NLV). update_tables([],[Table],Table,_,AVs,NS) :- Table = tab(_,Vs,_), ord_union(Vs,AVs,TVs), length(TVs,NS). update_tables([tab(Tab0,Vs,Sz)|Tabs],[tab(Tab0,Vs,Sz)|NTabs],Table,V,AVs0,NS) :- clpbn_not_var_member(Vs,V), !, ord_union(Vs,AVs0,AVsI), update_tables(Tabs,NTabs,Table,V,AVsI,NS). update_tables([_|Tabs],NTabs,Table,V,AVs0,NS) :- update_tables(Tabs,NTabs,Table,V,AVs0,NS). bind_vals([],_,_) :- !. % simple case, we want a distribution on a single variable. %bind_vals([V],Ps) :- !, % clpbn:get_atts(V, [dist(Vals,_,_)]), % put_atts(V, posterior([V], Vals, Ps)). % complex case, we want a joint distribution, do it on a leader. % should split on cliques ? bind_vals(Vs,Ps,AllDiffs) :- get_all_combs(Vs, Vals), Vs = [V|_], put_atts(V, posterior(Vs, Vals, Ps,AllDiffs)). get_all_combs(Vs, Vals) :- get_all_doms(Vs,Ds), findall(L,ms(Ds,L),Vals). get_all_doms([], []). get_all_doms([V|Vs], [D|Ds]) :- clpbn:get_atts(V, [dist(D,_,_)]), get_all_doms(Vs, Ds). ms([], []). ms([H|L], [El|Els]) :- member(El,H), ms(L, Els). normalise(Ps0,Ps) :- add_all(Ps0,0.0,Sum), divide_by_sum(Ps0,Sum,Ps). add_all([],Sum,Sum). add_all([P|Ps0],Sum0,Sum) :- SumI is Sum0+P, add_all(Ps0,SumI,Sum). divide_by_sum([],_,[]). divide_by_sum([P|Ps0],Sum,[PN|Ps]) :- PN is P/Sum, divide_by_sum(Ps0,Sum,Ps). % % what is actually output % attribute_goal(V, G) :- get_atts(V, [posterior(Vs,Vals,Ps,AllDiffs)]), massage_out(Vs, Vals, Ps, G, AllDiffs). massage_out(Vs, [D], [P], p(CEqs)=P, AllDiffs) :- !, gen_eqs(Vs,D,Eqs), add_alldiffs(AllDiffs,Eqs,CEqs). massage_out(Vs, [D|Ds], [P|Ps], (p(CEqs)=P,G) , AllDiffs) :- gen_eqs(Vs,D,Eqs), add_alldiffs(AllDiffs,Eqs,CEqs), massage_out(Vs, Ds, Ps, G, AllDiffs). gen_eqs([V], [D], (V=D)) :- !. gen_eqs([V], D, (V=D)) :- !. gen_eqs([V|Vs], [D|Ds], ((V=D),Eqs)) :- gen_eqs(Vs,Ds,Eqs). add_alldiffs([],Eqs,Eqs). add_alldiffs(AllDiffs,Eqs,(Eqs/alldiff(AllDiffs))). get_dist_size(V,Sz) :- get_atts(V, [size(Sz)]), !. get_dist_size(V,Sz) :- clpbn:get_atts(V, [dist(Vals,_,_)]), !, length(Vals,Sz), put_atts(V, [size(Sz)]).