/* SLIPCOVER Copyright (c) 2013, Fabrizio Riguzzi and Elena Bellodi */ :-use_module(library(lists)). :-use_module(library(random)). :-use_module(library(system)). :-dynamic setting/2,last_id/1, rule/5. :- op(500,fx,#). :- op(500,fx,'-#'). :-[revise_lemur]. setting(epsilon_em,0.0001). setting(epsilon_em_fraction,0.00001). setting(eps,0.0001). setting(eps_f,0.00001). /* if the difference in log likelihood in two successive em iteration is smaller than epsilon_em, then EM stops */ setting(epsilon_sem,2). /* number of random restarts of em */ setting(random_restarts_REFnumber,1). setting(random_restarts_number,1). setting(iterREF,-1). setting(iter,-1). setting(examples,atoms). setting(group,1). setting(d,1). setting(verbosity,1). setting(logzero,log(0.000001)). setting(megaex_bottom,1). setting(initial_clauses_per_megaex,1). setting(max_iter,10). setting(max_iter_structure,10000). setting(maxdepth_var,2). setting(beamsize,100). setting(background_clauses,50). %setting(specialization,bottom). setting(specialization,mode). /* allowed values: mode,bottom */ setting(seed,rand(10,1231,30322)). setting(score,ll). /* allowed values: ll aucpr */ sl(File):- setting(seed,Seed), setrand(Seed), generate_file_names(File,FileKB,FileIn,FileBG,FileOut,FileL), reconsult(FileL), load_models(FileKB,DB), assert(database(DB)), statistics(walltime,[_,_]), (file_exists(FileBG)-> set(compiling,on), load(FileBG,_ThBG,RBG), set(compiling,off), generate_clauses(RBG,_RBG1,0,[],ThBG), assert_all(ThBG) ; true ), (file_exists(FileIn)-> set(compiling,on), load(FileIn,_Th1,R1), set(compiling,off) ; (setting(specialization,bottom)-> setting(megaex_bottom,MB), deduct(MB,DB,[],InitialTheory), length(InitialTheory,_LI), remove_duplicates(InitialTheory,R1) ; get_head_atoms(O), generate_top_cl(O,R1) ) ), % write('Initial theory'),nl, % write_rules(R1,user_output), learn_struct(DB,R1,R2,Score2), learn_params(DB,R2,R,Score), statistics(walltime,[_,WT]), WTS is WT/1000, format("~nRefinement score ~f - score after EMBLEM ~f~n",[Score2,Score]), format("Total execution time ~f~n~n",[WTS]), write_rules(R,user_output), listing(setting/2), open(FileOut,write,Stream), format(Stream,'/* SLIPCOVER Final score ~f~n',[Score]), format(Stream,'Execution time ~f~n',[WTS]), tell(Stream), listing(setting/2), format(Stream,'*/~n~n',[]), told, open(FileOut,append,Stream1), write_rules(R,Stream1), close(Stream1). gen_fixed([],[]). gen_fixed([(H,B,BL)|T],[rule(R,H,B,BL)|T1]):- get_next_rule_number(R), gen_fixed(T,T1). learn_struct_only(DB,R1,R,Score):- %+R1:initial theory of the form [rule(NR,[h],[b]],...], -R:final theory of the same form, -CLL format("Clause search~n~n",[]), setting(max_iter,M), setting(depth_bound,DepthB), set(depth_bound,false), findall((H,B,BL),fixed_rule(H,B,BL),LF), length(LF,LLF), gen_fixed(LF,LFR), format("Scoring fixed clauses: ~d clauses~n~n",[LLF]), score_clause_refinements(LFR,1,LLF,DB,[],NB1,[],CL0,[],CLBG0), append(NB1,R1,Beam), cycle_beam(Beam,DB,CL0,[(HCL,S)|TCL],CLBG0,BG,M), set(depth_bound,DepthB), format("Theory search~n~n",[]), setting(max_iter_structure,MS), cycle_structure(TCL,[HCL],S,-inf,DB,R2,Score,MS), format("Best target theory~n~n",[]), write_rules(R2,user_output), length(BG,NBG), format("Background search: ~d clauses~n~n",[NBG]), remove_score(BG,BG2), append(R2,BG2,R). learn_struct(DB,R1,R,Score):- %+R1:initial theory of the form [rule(NR,[h],[b]],...], -R:final theory of the same form, -CLL format("Clause search~n~n",[]), setting(max_iter,M), setting(depth_bound,DepthB), set(depth_bound,false), findall((H,B,BL),fixed_rule(H,B,BL),LF), length(LF,LLF), gen_fixed(LF,LFR), format("Scoring fixed clauses: ~d clauses~n~n",[LLF]), score_clause_refinements(LFR,1,LLF,DB,[],NB1,[],CL0,[],CLBG0), append(NB1,R1,Beam), cycle_beam(Beam,DB,CL0,[(HCL,S)|TCL],CLBG0,BG,M), set(depth_bound,DepthB), format("Theory search~n~n",[]), setting(max_iter_structure,MS), cycle_structure(TCL,[HCL],S,-inf,DB,R2,Score,MS), format("Best target theory~n~n",[]), write_rules(R2,user_output), setting(background_clauses,NBG1), length(BG,NBG), format("Background search: ~d of ~d clauses~n~n",[NBG1,NBG]), pick_first(NBG1,BG,BG1), remove_score(BG,BG2), write_rules(BG2,user_output),nl, append(R2,BG1,R). pick_first(0,_,[]):-!. pick_first(_,[],[]):-!. pick_first(N,[(H,_S)|T],[H|T1]):- N1 is N-1, pick_first(N1,T,T1). remove_score([],[]). remove_score([(H,_S)|T],[H|T1]):- remove_score(T,T1). cycle_structure([],R,S,_SP,_DB,R,S,_I):-!. %empty beam cycle_structure(_CL,R,S,_SP,_DB,R,S,0):-!. %0 iterations cycle_structure([(RH,_CLL)|RT],R0,S0,SP0,DB,R,S,M):- already_scored([RH|R0],R3,Score),!, format("Theory iteration ~d",[M]),nl,nl, write('Already scored, updated refinement'),nl, write_rules(R3,user_output), write('Score '),write(Score),nl,nl,nl, (Score>S0-> R4=R3, S4=Score, SP1=S0 ; R4=R0, S4=S0, SP1=SP0 ), M1 is M-1, cycle_structure(RT,R4,S4,SP1,DB,R,S,M1). cycle_structure([(RH,_Score)|RT],R0,S0,SP0,DB,R,S,M):- format("Theory iteration ~d",[M]),nl,nl, generate_clauses([RH|R0],R2,0,[],Th1), format("Initial theory~n~n",[]), write_rules([RH|R0],user_output), assert_all(Th1), assert_all(R2),!, findall(R-HN,(rule(R,HL,_BL,_Lit),length(HL,HN)),L), keysort(L,LS), get_heads(LS,LSH), length(LSH,NR), init(NR,LSH), retractall(v(_,_,_)), length(DB,NEx), (setting(examples,atoms)-> setting(group,G), derive_bdd_nodes_groupatoms(DB,NEx,G,[],Nodes,0,CLL0,LE,[]),! % 1 BDD per example if G=1 ; derive_bdd_nodes(DB,NEx,[],Nodes,0,CLL0),! % 1 BDD per model ), setting(random_restarts_number,N), format("~nInitial CLL ~f~n~n",[CLL0]), random_restarts(N,Nodes,CLL0,Score,initial,Par,LE), %output:CLL,Par format("Score after EMBLEM = ~f~n",[Score]), retract_all(Th1), retract_all(R2),!, end, update_theory(R2,Par,R3), write('updated Theory'),nl, write_rules(R3,user_output), %definite rules without probabilities in the head are not written (Score>S0-> R4=R3, S4=Score, SP1=S0, write('New best score'),nl ; R4=R0, S4=S0, SP1=SP0 ), store_refinement([RH|R0],R3,Score), M1 is M-1, cycle_structure(RT,R4,S4,SP1,DB,R,S,M1). em(File):- generate_file_names(File,FileKB,FileIn,FileBG,FileOut,FileL), reconsult(FileL), load_models(FileKB,DB), (file_exists(FileBG)-> set(compiling,on), load(FileBG,_ThBG,RBG), set(compiling,off), generate_clauses(RBG,_RBG1,0,[],ThBG), assert_all(ThBG) ; true ), set(compiling,on), load(FileIn,_TH,R0), set(compiling,off), set(verbosity,3), statistics(walltime,[_,_]), learn_params(DB,R0,R,Score), statistics(walltime,[_,CT]), CTS is CT/1000, format("EM: Final score ~f~n",[Score]), format("Execution time ~f~n~n",[CTS]), write_rules(R,user_output), listing(setting/2), open(FileOut,write,Stream), format(Stream,'/* EMBLEM Final score ~f~n',[Score]), format(Stream,'Execution time ~f~n',[CTS]), tell(Stream), listing(setting/2), format(Stream,'*/~n~n',[]), told, open(FileOut,append,Stream1), write_rules(R,Stream1), close(Stream1). learn_params(DB,R0,R,Score):- %Parameter Learning generate_clauses(R0,R1,0,[],Th0), assert_all(Th0), assert_all(R1),!, findall(R-HN,(rule(R,HL,_BL,_Lit),length(HL,HN)),L), keysort(L,LS), get_heads(LS,LSH), length(LSH,NR), init(NR,LSH), retractall(v(_,_,_)), length(DB,NEx), (setting(examples,atoms)-> setting(group,G), derive_bdd_nodes_groupatoms(DB,NEx,G,[],Nodes,0,_CLL0,LE,[]),! ; derive_bdd_nodes(DB,NEx,[],Nodes,0,_CLL0),! ), setting(random_restarts_number,N), random_restarts(N,Nodes,-inf,Score,initial,Par,LE), %computes new parameters Par end, retract_all(Th0), retract_all(R1),!, update_theory_par(R1,Par,R). %replaces in R1 the probabilities Par and outputs R update_theory_par([],_Par,[]). update_theory_par([def_rule(H,B,L)|T0],Par,[def_rule(H,B,L)|T]):-!, update_theory_par(T0,Par,T). update_theory_par([(H:-B)|T0],Par,[(H:-B)|T]):-!, update_theory_par(T0,Par,T). rrr. update_theory_par([rule(N,_H,_B,_L)|T0],Par,T):- member([N,[1.0|_T]],Par),!, rrr, update_theory_par(T0,Par,T). update_theory_par([rule(N,H,B,L)|T0],Par,[rule(N,H1,B,L)|T]):- member([N,P],Par),!, reverse(P,P1), update_head_par(H,P1,H1), update_theory_par(T0,Par,T). update_theory(R,initial,R):-!. update_theory([],_Par,[]). update_theory([def_rule(H,B,L)|T0],Par,[def_rule(H,B,L)|T]):-!, update_theory(T0,Par,T). update_theory([(H:-B)|T0],Par,[(H:-B)|T]):-!, update_theory(T0,Par,T). update_theory([rule(N,H,B,L)|T0],Par,[rule(N,H1,B,L)|T]):- member([N,P],Par),!, reverse(P,P1), update_head_par(H,P1,H1), update_theory(T0,Par,T). update_head_par([],[],[]). update_head_par([H:_P|T0],[HP|TP],[H:HP|T]):- update_head_par(T0,TP,T). cycle_beam([],_DB,CL,CL,CLBG,CLBG,_M):-!. cycle_beam(_Beam,_DB,CL,CL,CLBG,CLBG,0):-!. cycle_beam(Beam,DB,CL0,CL,CLBG0,CLBG,M):- format("Clause iteration ~d",[M]),nl,nl, cycle_clauses(Beam,DB,[],NB,CL0,CL1,CLBG0,CLBG1), M1 is M-1,%decreases the number of max_iter M cycle_beam(NB,DB,CL1,CL,CLBG1,CLBG,M1). cycle_clauses([],_DB,NB,NB,CL,CL,CLBG,CLBG):-!. cycle_clauses([(RH,_ScoreH)|T],DB,NB0,NB,CL0,CL,CLBG0,CLBG):- findall(RS,specialize_rule(RH,RS,_L),LR),!, %-LR:list of lists, each one correponding to a different revised theory; specialize_rule defined in revise.pl length(LR,NR), write('Number of revisions '),write(NR),nl, score_clause_refinements(LR,1,NR,DB,NB0,NB1,CL0,CL1,CLBG0,CLBG1), cycle_clauses(T,DB,NB1,NB,CL1,CL,CLBG1,CLBG). score_clause_refinements([],_N,_NR,_DB,NB,NB,CL,CL,CLBG,CLBG). score_clause_refinements([R1|T],Nrev,NRef,DB,NB0,NB,CL0,CL,CLBG0,CLBG):- %scans the list of revised theories already_scored_clause(R1,R3,Score),!, format('Score ref. ~d of ~d~n',[Nrev,NRef]), write('Already scored, updated refinement'),nl, write_rules([R3],user_output), write('Score '),write(Score),nl,nl,nl, setting(beamsize,BS), insert_in_order(NB0,(R3,Score),BS,NB1), Nrev1 is Nrev+1, score_clause_refinements(T,Nrev1,NRef,DB,NB1,NB,CL0,CL,CLBG0,CLBG). score_clause_refinements([R1|T],Nrev,NRef,DB,NB0,NB,CL0,CL,CLBG0,CLBG):- format('Score ref. ~d of ~d~n',[Nrev,NRef]), write_rules([R1],user_output), generate_clauses_cw([R1],[R2],0,[],Th1), assert_all(Th1), assert_all([R2]),!, findall(RN-HN,(rule(RN,HL,_BL,_Lit),length(HL,HN)),L), keysort(L,LS), get_heads(LS,LSH), length(LSH,NR), init(NR,LSH), retractall(v(_,_,_)), length(DB,NEx), get_output_preds(R1,O), (setting(examples,atoms)-> setting(group,G), derive_bdd_nodes_groupatoms_output_atoms(DB,O,NEx,G,[],Nodes,0,CLL0,LE,[]),! ; derive_bdd_nodes(DB,NEx,[],Nodes,0,CLL0),! ), format("Initial CLL ~f~n",[CLL0]), setting(random_restarts_REFnumber,N), random_restarts_ref(N,Nodes,CLL0,Score,initial,Par,LE), end, update_theory([R2],Par,[R3]), write('Updated refinement'),nl, write_rules([R3],user_output), write('Score (CLL) '),write(Score),nl,nl,nl, retract_all(Th1), retract_all([R2]),!, setting(beamsize,BS), insert_in_order(NB0,(R3,Score),BS,NB1), (target(R3)-> insert_in_order(CL0,(R3,Score),+inf,CL1), length(CL1,LCL1), format("N. of target clauses ~d~n~n",[LCL1]), CLBG1=CLBG0 ; (range_restricted(R3)-> insert_in_order(CLBG0,(R3,Score),+inf,CLBG1), length(CLBG1,LCL1), format("N. of background clauses ~d~n~n",[LCL1]), CL1=CL0 ; format("Not range restricted~n~n",[]), CL1=CL0, CLBG1=CLBG0 ) ), store_clause_refinement(R1,R3,Score), Nrev1 is Nrev+1, score_clause_refinements(T,Nrev1,NRef,DB,NB1,NB,CL1,CL,CLBG1,CLBG). range_restricted(rule(_N,HL,BL,_Lit)):- term_variables(HL,VH), term_variables(BL,VB), sublisteq(VH,VB). sublisteq([],_). sublisteq([H|T],L):- member_eq(H,L), sublisteq(T,L). target(R):- get_output_preds(R,O), member(T,O), output(T),!. get_output_preds(rule(_N,HL,_BL,_Lit),O):- scan_head(HL,[],O). scan_head(['':_],O,O):-!. scan_head([],O,O):-!. scan_head([H:_P|T],O0,O):- functor(H,F,N), (member(F/N,O0)-> O1=O0 ; O1=[F/N|O0] ), scan_head(T,O1,O). store_clause_refinement(Ref,RefP,Score):- elab_clause_ref(Ref,Ref1), recorda(ref_clause,r(Ref1,RefP,Score),_). store_refinement(Ref,RefP,Score):- elab_ref(Ref,Ref1), recorda(ref,r(Ref1,RefP,Score),_). already_scored_clause(R,R1,Score):- elab_ref([R],[rule(H,B)]), recorded(ref_clause,r(rule(H,B1),R1,Score),_), permutation(B,B1). already_scored(R,R1,Score):- elab_ref(R,RR), recorded(ref,r(RR,R1,Score),_). elab_clause_ref(rule(_NR,H,B,_Lits),rule(H1,B1)):- copy_term((H,B),(H1,B1)). elab_ref([],[]). elab_ref([rule(_NR,H,B,_Lits)|T],[rule(H1,B1)|T1]):- copy_term((H,B),(H1,B1)), numbervars((H1,B1),0,_N), elab_ref(T,T1). elab_ref([def_rule(H,B,_Lits)|T],[rule(H1,B1)|T1]):- copy_term((H,B),(H1,B1)), numbervars((H1,B1),0,_N), elab_ref(T,T1). %insertion in the beam insert_in_order([],C,BeamSize,[C]):- BeamSize>0,!. insert_in_order(Beam,_New,0,Beam):-!. insert_in_order([(Th1,Heuristic1)|RestBeamIn],(Th,Heuristic),BeamSize,BeamOut):- Heuristic>Heuristic1,!, % larger heuristic, insert here NewBeam=[(Th,Heuristic),(Th1,Heuristic1)|RestBeamIn], length(NewBeam,L), (L>BeamSize-> nth(L,NewBeam,_Last,BeamOut) ; BeamOut=NewBeam ). insert_in_order([(Th1,Heuristic1)|RestBeamIn],(Th,Heuristic),BeamSize, [(Th1,Heuristic1)|RestBeamOut]):- BeamSize1 is BeamSize -1, insert_in_order(RestBeamIn,(Th,Heuristic),BeamSize1, RestBeamOut). remove_int_atom_list([],[]). remove_int_atom_list([A|T],[A1|T1]):- A=..[F,_|Arg], A1=..[F|Arg], remove_int_atom_list(T,T1). remove_int_atom(A,A1):- A=..[F,_|T], A1=..[F|T]. get_heads([],[]). get_heads([_-H|T],[H|TN]):- get_heads(T,TN). derive_bdd_nodes([],_E,Nodes,Nodes,CLL,CLL). derive_bdd_nodes([H|T],E,Nodes0,Nodes,CLL0,CLL):- get_output_atoms(O), generate_goal(O,H,[],GL), (prob(H,P)-> CardEx is P*E ; CardEx is 1.0 ), init_bdd, one(One), get_node_list(GL,One,BDD,CardEx), ret_prob(BDD,HP), (HP=:=0.0-> setting(logzero,LZ), CLL1 is CLL0+LZ*CardEx ; CLL1 is CLL0+log(HP)*CardEx ), end_bdd, append(Nodes0,[[BDD,CardEx]],Nodes1), derive_bdd_nodes(T,E,Nodes1,Nodes,CLL1,CLL). get_node_list([],BDD,BDD,_CE). get_node_list([H|T],BDD0,BDD,CE):- get_node(H,BDD1), and(BDD0,BDD1,BDD2), get_node_list(T,BDD2,BDD,CE). derive_bdd_nodes_groupatoms_output_atoms([],_O,_E,_G,Nodes,Nodes,CLL,CLL,LE,LE). derive_bdd_nodes_groupatoms_output_atoms([H|T],O,E,G,Nodes0,Nodes,CLL0,CLL,LE0,LE):- generate_goal(O,H,[],GL), length(GL,NA), (prob(H,P)-> CardEx is P*E/NA ; CardEx is 1.0 ), get_node_list_groupatoms(GL,BDDs,CardEx,G,CLL0,CLL1,LE0,LE1), append(Nodes0,BDDs,Nodes1), derive_bdd_nodes_groupatoms_output_atoms(T,O,E,G,Nodes1,Nodes,CLL1,CLL,LE1,LE). derive_bdd_nodes_groupatoms([],_E,_G,Nodes,Nodes,CLL,CLL,LE,LE). derive_bdd_nodes_groupatoms([H|T],E,G,Nodes0,Nodes,CLL0,CLL,LE0,LE):- get_output_atoms(O), generate_goal(O,H,[],GL), length(GL,NA), (prob(H,P)-> CardEx is P*E/NA ; CardEx is 1.0 ), get_node_list_groupatoms(GL,BDDs,CardEx,G,CLL0,CLL1,LE0,LE1), append(Nodes0,BDDs,Nodes1), derive_bdd_nodes_groupatoms(T,E,G,Nodes1,Nodes,CLL1,CLL,LE1,LE). get_node_list_groupatoms([],[],_CE,_Gmax,CLL,CLL,LE,LE). get_node_list_groupatoms([H|T],[[BDD,CE1]|BDDT],CE,Gmax,CLL0,CLL,LE0,LE):- init_bdd, one(One), get_bdd_group([H|T],T1,Gmax,G,One,BDD,CE,LE0,LE1), %output:BDD,CLL CE1 is CE*(Gmax-G), ret_prob(BDD,HP), end_bdd, (HP =:=0.0-> setting(logzero,LZ), CLL2 is CLL0+LZ*CE1 ; CLL2 is CLL0+log(HP)*CE1 ), get_node_list_groupatoms(T1,BDDT,CE,Gmax,CLL2,CLL,LE1,LE). get_bdd_group([],[],G,G,BDD,BDD,_CE,LE,LE):-!. get_bdd_group(T,T,0,0,BDD,BDD,_CE,LE,LE):- !. get_bdd_group([H|T],T1,Gmax,G1,BDD0,BDD,CE,[H|LE0],LE):- % write(H),flush_output, get_node(H,BDD1), %creates the BDD for atom H and(BDD0,BDD1,BDD2), G is Gmax-1, get_bdd_group(T,T1,G,G1,BDD2,BDD,CE,LE0,LE). /* EM start */ random_restarts(0,_Nodes,Score,Score,Par,Par,_LE):-!. random_restarts(N,Nodes,Score0,Score,Par0,Par,LE):- setting(verbosity,Ver), (Ver>2-> setting(random_restarts_number,NMax), Num is NMax-N+1, format("Restart number ~d~n~n",[Num]), flush_output ; true ), randomize, setting(epsilon_em,EA), setting(epsilon_em_fraction,ER), length(Nodes,L), setting(iter,Iter), em(Nodes,EA,ER,L,Iter,CLL,Par1,ExP), score(LE,ExP,CLL,ScoreR), setting(verbosity,Ver), (Ver>2-> format("Random_restart: Score ~f~n",[ScoreR]) ; true ), N1 is N-1, (ScoreR>Score0-> random_restarts(N1,Nodes,ScoreR,Score,Par1,Par,LE) ; random_restarts(N1,Nodes,Score0,Score,Par0,Par,LE) ). random_restarts_ref(0,_Nodes,Score,Score,Par,Par,_LE):-!. random_restarts_ref(N,Nodes,Score0,Score,Par0,Par,LE):- setting(verbosity,Ver), (Ver>2-> setting(random_restarts_REFnumber,NMax), Num is NMax-N+1, format("Restart number ~d~n~n",[Num]), flush_output ; true ), setting(epsilon_em,EA), setting(epsilon_em_fraction,ER), length(Nodes,L), setting(iterREF,Iter), em(Nodes,EA,ER,L,Iter,CLLR,Par1,ExP), score(LE,ExP,CLLR,ScoreR), setting(verbosity,Ver), (Ver>2-> format("Random_restart: Score ~f~n",[ScoreR]) ; true ), N1 is N-1, (ScoreR>Score0-> random_restarts_ref(N1,Nodes,ScoreR,Score,Par1,Par,LE) ; random_restarts_ref(N1,Nodes,Score0,Score,Par0,Par,LE) ). score(_LE,_ExP,CLL,CLL):- setting(score,ll),!. score(LE,ExP,_CLL,Score):- compute_prob(LE,ExP,LPU,0,Pos,0,Neg), keysort(LPU,LPO), reverse(LPO,LP), compute_aucpr(LP,Pos,Neg,Score). compute_prob([],[],[],Pos,Pos,Neg,Neg). compute_prob([\+ HE|TE],[HP|TP],[P- (\+ HE)|T],Pos0,Pos,Neg0,Neg):-!, P is 1-HP, Neg1 is Neg0+1, compute_prob(TE,TP,T,Pos0,Pos,Neg1,Neg). compute_prob([ HE|TE],[HP|TP],[HP- HE|T],Pos0,Pos,Neg0,Neg):- Pos1 is Pos0+1, compute_prob(TE,TP,T,Pos1,Pos,Neg0,Neg). compute_aucpr(L,Pos,Neg,A):- L=[P_0-E|TL], (E= (\+ _ )-> FP=1, TP=0, FN=Pos, TN is Neg -1 ; FP=0, TP=1, FN is Pos -1, TN=Neg ), compute_curve_points(TL,P_0,TP,FP,FN,TN,Points), Points=[R0-P0|_TPoints], (R0=:=0,P0=:=0-> Flag=true ; Flag=false ), area(Points,Flag,Pos,0,0,0,A). compute_curve_points([],_P0,TP,FP,_FN,_TN,[1.0-Prec]):-!, Prec is TP/(TP+FP). compute_curve_points([P- (\+ _)|T],P0,TP,FP,FN,TN,Pr):-!, (P<P0-> Prec is TP/(TP+FP), Rec is TP/(TP+FN), Pr=[Rec-Prec|Pr1], P1=P ; Pr=Pr1, P1=P0 ), FP1 is FP+1, TN1 is TN-1, compute_curve_points(T,P1,TP,FP1,FN,TN1,Pr1). compute_curve_points([P- _|T],P0,TP,FP,FN,TN,Pr):-!, (P<P0-> Prec is TP/(TP+FP), Rec is TP/(TP+FN), Pr=[Rec-Prec|Pr1], P1=P ; Pr=Pr1, P1=P0 ), TP1 is TP+1, FN1 is FN-1, compute_curve_points(T,P1,TP1,FP,FN1,TN,Pr1). area([],_Flag,_Pos,_TPA,_FPA,A,A). area([R0-P0|T],Flag,Pos,TPA,FPA,A0,A):- TPB is R0*Pos, (TPB=:=0-> A1=A0, FPB=0 ; R_1 is TPA/Pos, (TPA=:=0-> (Flag=false-> P_1=P0 ; P_1=0.0 ) ; P_1 is TPA/(TPA+FPA) ), FPB is TPB*(1-P0)/P0, N is TPB-TPA+0.5, interpolate(1,N,Pos,R_1,P_1,TPA,FPA,TPB,FPB,A0,A1) ), area(T,Flag,Pos,TPB,FPB,A1,A). interpolate(I,N,_Pos,_R0,_P0,_TPA,_FPA,_TPB,_FPB,A,A):-I>N,!. interpolate(I,N,Pos,R0,P0,TPA,FPA,TPB,FPB,A0,A):- R is (TPA+I)/Pos, P is (TPA+I)/(TPA+I+FPA+(FPB-FPA)/(TPB-TPA)*I), A1 is A0+(R-R0)*(P+P0)/2, I1 is I+1, interpolate(I1,N,Pos,R,P,TPA,FPA,TPB,FPB,A1,A). randomize([],[]):-!. randomize([rule(N,V,NH,HL,BL,LogF)|T],[rule(N,V,NH,HL1,BL,LogF)|T1]):- length(HL,L), Int is 1.0/L, randomize_head(Int,HL,0,HL1), randomize(T,T1). randomize_head(_Int,['':_],P,['':PNull1]):-!, PNull is 1.0-P, (PNull>=0.0-> PNull1 =PNull ; PNull1=0.0 ). randomize_head(Int,[H:_|T],P,[H:PH1|NT]):- PMax is 1.0-P, random(0,PMax,PH1), P1 is P+PH1, randomize_head(Int,T,P1,NT). update_head([],[],_N,[]):-!. update_head([H:_P|T],[PU|TP],N,[H:P|T1]):- P is PU/N, update_head(T,TP,N,T1). /* EM end */ /* utilities */ generate_file_names(File,FileKB,FileIn,FileBG,FileOut,FileL):- generate_file_name(File,".kb",FileKB), generate_file_name(File,".cpl",FileIn), generate_file_name(File,".rules",FileOut), generate_file_name(File,".bg",FileBG), generate_file_name(File,".l",FileL). generate_file_name(File,Ext,FileExt):- name(File,FileString), append(FileString,Ext,FileStringExt), name(FileExt,FileStringExt). load_models(File,ModulesList):- %carica le interpretazioni, 1 alla volta open(File,read,Stream), read_models(Stream,ModulesList), close(Stream). read_models(Stream,[Name1|Names]):- read(Stream,begin(model(Name))),!, (number(Name)-> name(Name,NameStr), append("i",NameStr,Name1Str), name(Name1,Name1Str) ; Name1=Name ), read_all_atoms(Stream,Name1), read_models(Stream,Names). read_models(_S,[]). read_all_atoms(Stream,Name):- read(Stream,At), At \=end(model(_Name)),!, (At=neg(Atom)-> Atom=..[Pred|Args], Atom1=..[Pred,Name|Args], assertz(neg(Atom1)) ; (At=prob(Pr)-> assertz(prob(Name,Pr)) ; At=..[Pred|Args], Atom1=..[Pred,Name|Args], assertz(Atom1) ) ), read_all_atoms(Stream,Name). read_all_atoms(_S,_N). write_param(initial,S):-!, format("~nInitial parameters~n",[]), findall(rule(R,H,B,Lit),rule(R,H,B,Lit),LDis), findall(rule(d,[H:1.0],B,Lit),def_rule(H,B,Lit),LDef), append(LDis,LDef,L), write_model(L,S). write_param(L,S):- reverse(L,L1), write_par(L1,S). write_par([],S):- findall(rule(d,[H:1.0],B,Lit),def_rule(H,B,Lit),L), write_model(L,S). write_par([[N,P]|T],S):- rule(N,HL0,BL), reverse(P,PR), new_par(PR,HL0,HL), copy_term((HL,BL),(HL1,BL1)), numbervars((HL1,BL1),0,_M), write_disj_clause(S,(HL1:-BL1)), write_par(T,S). write_rules([],_S). write_rules([rule(_N,HL,BL,Lit)|T],S):- copy_term((HL,BL,Lit),(HL1,BL1,Lit1)), numbervars((HL1,BL1,Lit1),0,_M), write_disj_clause(S,(HL1:-BL1)), % write(Lit1),nl, write_rules(T,S). new_par([],[],[]). new_par([HP|TP],[Head:_|TO],[Head:HP|TN]):- new_par(TP,TO,TN). write_model([],_Stream):-!. write_model([rule(_N,HL,BL)|Rest],Stream):- copy_term((HL,BL),(HL1,BL1)), numbervars((HL1,BL1),0,_M), write_disj_clause(Stream,(HL1:-BL1)), write_model(Rest,Stream). write_disj_clause(S,(H:-[])):-!, write_head(S,H), format(S,".~n~n",[]). write_disj_clause(S,(H:-B)):- write_head(S,H), write(S,' :-'), nl(S), write_body(S,B). write_head(S,[A:1.0|_Rest]):-!, % write(_Rest),nl, format(S,"~p:1.0",[A]). write_head(S,[A:P,'':_P]):-!, format(S,"~p:~g",[A,P]). write_head(S,[A:P]):-!, format(S,"~p:~g",[A,P]). write_head(S,[A:P|Rest]):- format(S,"~p:~g ; ",[A,P]), write_head(S,Rest). write_body(S,[]):- format(S,"\ttrue.~n~n",[]). write_body(S,[A]):-!, format(S,"\t~p.~n~n",[A]). write_body(S,[A|T]):- format(S,"\t~p,~n",[A]), write_body(S,T). list2or([],true):-!. list2or([X],X):- X\=;(_,_),!. list2or([H|T],(H ; Ta)):-!, list2or(T,Ta). list2and([],true):-!. list2and([X],X):- X\=(_,_),!. list2and([H|T],(H,Ta)):-!, list2and(T,Ta). deduct(0,_DB,Th,Th):-!. deduct(NM,DB,InTheory0,InTheory):- get_head_atoms(O), sample(1,DB,[M],DB1), generate_head(O,M,[],HL), generate_body(HL,InTheory1), append(InTheory0,InTheory1,InTheory2), NM1 is NM-1, deduct(NM1,DB1,InTheory2,InTheory). get_head_atoms(O):- findall(A,modeh(_,A),O0), findall((A,B,D),modeh(_,A,B,D),O1), append(O0,O1,O). get_head_atoms(LH,LH0):- setof(P/Ar,head_predicate(P/Ar),LP), scan_pred_list(LP,LH,LH0). scan_pred_list([],[],[]). scan_pred_list([P/Ar|T],[(P/Ar,LHP)|LH],[(P/Ar,[])|T1]):- output(P/Ar),!, findall(A,C^(modeh(C,A),functor(A,P,Ar)),LHS), findall((A,B,Cons,D),(C,At)^(modeh(C,A,B,Cons,D),member(At,A),functor(At,P,Ar)),LHC), append(LHS,LHC,LHP), scan_pred_list(T,LH,T1). scan_pred_list([P/Ar|T],[(P/Ar,LHP)|LH],[(P/Ar,[])|T1]):- findall(A,C^(modeh(C,A),functor(A,P,Ar)),LHS), findall((A,B,Cons,D),(C,At,At1,P1,Ar1)^( modeh(C,A,B,Cons,D),member(At,A),functor(At,P,Ar), member(At1,A),functor(At1,P1,Ar1),\+ output(P1/Ar1)),LHC), append(LHS,LHC,LHP), scan_pred_list(T,LH,T1). head_predicate(P/Ar):- modeh(_C,A), functor(A,P,Ar). head_predicate(P/Ar):- modeh(_C,A,_B,_Cons,_D), member(At,A), functor(At,P,Ar). generate_top_cl([],[]):-!. generate_top_cl([(P/A,LMH)|T],[(P/A,LR)|TR]):- generate_top_cl_pred(LMH,LR), generate_top_cl(T,TR). generate_top_cl_pred([],[]):-!. generate_top_cl_pred([A|T],[(rule(R,[A1:0.5,'':0.5],[],true),-inf)|TR]):- A=..[F|ArgM], keep_const(ArgM,Arg), A1=..[F|Arg], get_next_rule_number(R), generate_top_cl_pred(T,TR). generate_head(0,_DB,_LMH,LH,LH):-!. generate_head(NM,DB,LMH,LH0,LH):- sample(1,DB,[M],DB1), generate_head_ex(LMH,M,LH0,LH1), NM1 is NM-1, generate_head(NM1,DB1,LMH,LH1,LH). generate_head_ex([],_M,[],[]). generate_head_ex([(P/A,L)|T],M,[(P/A,LH)|LHT],[(P/A,LH1)|LHT1]):- generate_head_pred(L,M,[],LHP), append(LH,LHP,LH1), generate_head_ex(T,M,LHT,LHT1). generate_head_pred([],_M,HL,HL):-!. generate_head_pred([(A,G,Cons,D)|T],M,H0,H1):-!, generate_head_goal(G,M,Goals), findall((A,Goals,D),(member(Goal,Goals),call(Goal),call(Cons),ground(Goals)),L), setting(initial_clauses_per_megaex,IC), %IC: represents how many samples are extracted from the list L of example sample(IC,L,L1), %+IC,L, -L1 append(H0,L1,H2), generate_head_pred(T,M,H2,H1). generate_head_pred([A|T],M,H0,H1):- functor(A,F,N), functor(F1,F,N), F1=..[F|Arg], Pred1=..[F,M|Arg], A=..[F|ArgM], keep_const(ArgM,Arg), findall((A,Pred1),call(Pred1),L), setting(initial_clauses_per_megaex,IC), %IC: represents how many samples are extracted from the list L of example sample(IC,L,L1), %+IC,L, -L1 append(H0,L1,H2), generate_head_pred(T,M,H2,H1). generate_head_goal([],_M,[]). generate_head_goal([H|T],M,[H1|T1]):- H=..[F|Arg], H1=..[F,M|Arg], generate_head_goal(T,M,T1). keep_const([],[]). keep_const([- _|T],[_|T1]):-!, keep_const(T,T1). keep_const([+ _|T],[_|T1]):-!, keep_const(T,T1). keep_const([-# _|T],[_|T1]):-!, keep_const(T,T1). keep_const([H|T],[H|T1]):- keep_const(T,T1). sample(0,List,[],List):-!. sample(N,List,List,[]):- length(List,L), L=<N,!. sample(N,List,[El|List1],Li):- length(List,L), random(0,L,Pos), nth0(Pos,List,El,Rest), N1 is N-1, sample(N1,Rest,List1,Li). sample(0,_List,[]):-!. sample(N,List,List):- length(List,L), L=<N,!. sample(N,List,[El|List1]):- length(List,L), random(0,L,Pos), nth0(Pos,List,El,Rest), N1 is N-1, sample(N1,Rest,List1). get_args([],[],[],A,A,AT,AT,_). get_args([HM|TM],[H|TH],[(H,HM)|TP],A0,A,AT0,AT,M):- HM=..[F|ArgsTypes], H=..[F,M|Args], append(A0,Args,A1), append(AT0,ArgsTypes,AT1), get_args(TM,TH,TP,A1,A,AT1,AT,M). /* Generation of the bottom clauses */ gen_head([],P,['':P]). gen_head([H|T],P,[H:P|TH]):- gen_head(T,P,TH). get_modeb([],B,B). get_modeb([F/AA|T],B0,B):- findall((R,B),(modeb(R,B),functor(B,F,AA)),BL), append(B0,BL,B1), get_modeb(T,B1,B). generate_body([],[]). generate_body([(P/A,LH)|T],[(P/A,LR)|TR]):- generate_body_pred(LH,LR), generate_body(T,TR). generate_body_pred([],[]):-!. generate_body_pred([(A,H,Det)|T],[(rule(R,HP,[],BodyList),-inf)|CL0]):-!, get_modeb(Det,[],BL), get_args(A,H,Pairs,[],Args,[],ArgsTypes,M), setting(d,D), cycle_modeb(ArgsTypes,Args,[],[],BL,a,[],BLout0,D,M), remove_duplicates(BLout0,BLout), variabilize((Pairs:-BLout),CLV), %+(Head):-Bodylist; -CLV:(Head):-Bodylist with variables _num in place of constants CLV=(Head1:-BodyList1), remove_int_atom_list(Head1,Head), remove_int_atom_list(BodyList1,BodyList), get_next_rule_number(R), length(Head,LH), Prob is 1/(LH+1), gen_head(Head,Prob,HP), copy_term((HP,BodyList),(HeadV,BodyListV)), numbervars((HeadV,BodyListV),0,_V), format("Bottom clause: example ~p~nClause~n",[H]), write_disj_clause(user_output,(HeadV:-BodyListV)), generate_body_pred(T,CL0). generate_body_pred([(A,H)|T],[(rule(R,[Head:0.5,'':0.5],[],BodyList),-inf)|CL0]):- functor(A,F,AA), findall((R,B),(modeb(R,B),functor(B,FB,AB),determination(F/AA,FB/AB)),BL), A=..[F|ArgsTypes], H=..[F,M|Args], setting(d,D), cycle_modeb(ArgsTypes,Args,[],[],BL,a,[],BLout0,D,M), remove_duplicates(BLout0,BLout), variabilize(([(H,A)]:-BLout),CLV), %+(Head):-Bodylist; -CLV:(Head):-Bodylist with variables _num in place of constants CLV=([Head1]:-BodyList1), remove_int_atom(Head1,Head), remove_int_atom_list(BodyList1,BodyList), get_next_rule_number(R), copy_term((Head,BodyList),(HeadV,BodyListV)), numbervars((HeadV,BodyListV),0,_V), format("Bottom clause: example ~p~nClause~n~p:0.5 :-~n",[H,HeadV]), write_body(user_output,BodyListV), generate_body_pred(T,CL0). variabilize((H:-B),(H1:-B1)):- variabilize_list(H,H1,[],AS,M), variabilize_list(B,B1,AS,_AS,M). variabilize_list([],[],A,A,_M). variabilize_list([(H,Mode)|T],[H1|T1],A0,A,M):- builtin(H),!, H=..[F|Args], Mode=..[F|ArgTypes], variabilize_args(Args,ArgTypes, Args1,A0,A1), H1=..[F,M|Args1], variabilize_list(T,T1,A1,A,M). variabilize_list([(H,Mode)|T],[H1|T1],A0,A,M):- H=..[F,_M|Args], Mode=..[F|ArgTypes], variabilize_args(Args,ArgTypes, Args1,A0,A1), H1=..[F,M|Args1], variabilize_list(T,T1,A1,A,M). variabilize_args([],[],[],A,A). variabilize_args([C|T],[C|TT],[C|TV],A0,A):-!, variabilize_args(T,TT,TV,A0,A). variabilize_args([C|T],[# _Ty|TT],[C|TV],A0,A):-!, variabilize_args(T,TT,TV,A0,A). variabilize_args([C|T],[-# _Ty|TT],[C|TV],A0,A):-!, variabilize_args(T,TT,TV,A0,A). variabilize_args([C|T],[_Ty|TT],[V|TV],A0,A):- member(C/V,A0),!, variabilize_args(T,TT,TV,A0,A). variabilize_args([C|T],[_Ty|TT],[V|TV],A0,A):- variabilize_args(T,TT,TV,[C/V|A0],A). cycle_modeb(ArgsTypes,Args,ArgsTypes,Args,_BL,L,L,L,_,_M):-!. cycle_modeb(_ArgsTypes,_Args,_ArgsTypes1,_Args1,_BL,_L,L,L,0,_M):-!. cycle_modeb(ArgsTypes,Args,_ArgsTypes0,_Args0,BL,_L0,L1,L,D,M):- find_atoms(BL,ArgsTypes,Args,ArgsTypes1,Args1,L1,L2,M), D1 is D-1, cycle_modeb(ArgsTypes1,Args1,ArgsTypes,Args,BL,L1,L2,L,D1,M). find_atoms([],ArgsTypes,Args,ArgsTypes,Args,L,L,_M). find_atoms([(R,H)|T],ArgsTypes0,Args0,ArgsTypes,Args,L0,L1,M):- H=..[F|ArgsT], findall((A,H),instantiate_query(ArgsT,ArgsTypes0,Args0,F,M,A),L), call_atoms(L,[],At), remove_duplicates(At,At1), (R = '*' -> R1= +inf ; R1=R ), sample(R1,At1,At2), extract_output_args(At2,ArgsT,ArgsTypes0,Args0,ArgsTypes1,Args1), append(L0,At2,L2), find_atoms(T,ArgsTypes1,Args1,ArgsTypes,Args,L2,L1,M). call_atoms([],A,A). call_atoms([(H,M)|T],A0,A):- findall((H,M),H,L), append(A0,L,A1), call_atoms(T,A1,A). extract_output_args([],_ArgsT,ArgsTypes,Args,ArgsTypes,Args). extract_output_args([(H,_At)|T],ArgsT,ArgsTypes0,Args0,ArgsTypes,Args):- builtin(H),!, H=..[_F|ArgsH], add_const(ArgsH,ArgsT,ArgsTypes0,Args0,ArgsTypes1,Args1), extract_output_args(T,ArgsT,ArgsTypes1,Args1,ArgsTypes,Args). extract_output_args([(H,_At)|T],ArgsT,ArgsTypes0,Args0,ArgsTypes,Args):- H=..[_F,_M|ArgsH], add_const(ArgsH,ArgsT,ArgsTypes0,Args0,ArgsTypes1,Args1), extract_output_args(T,ArgsT,ArgsTypes1,Args1,ArgsTypes,Args). add_const([],[],ArgsTypes,Args,ArgsTypes,Args). add_const([_A|T],[+_T|TT],ArgsTypes0,Args0,ArgsTypes,Args):-!, add_const(T,TT,ArgsTypes0,Args0,ArgsTypes,Args). add_const([A|T],[-Type|TT],ArgsTypes0,Args0,ArgsTypes,Args):-!, (already_present(ArgsTypes0,Args0,A,Type)-> ArgsTypes1=ArgsTypes0, Args1=Args0 ; ArgsTypes1=[+Type|ArgsTypes0], Args1=[A|Args0] ), add_const(T,TT,ArgsTypes1,Args1,ArgsTypes,Args). add_const([A|T],[-# Type|TT],ArgsTypes0,Args0,ArgsTypes,Args):-!, (already_present(ArgsTypes0,Args0,A,Type)-> ArgsTypes1=ArgsTypes0, Args1=Args0 ; ArgsTypes1=[+Type|ArgsTypes0], Args1=[A|Args0] ), add_const(T,TT,ArgsTypes1,Args1,ArgsTypes,Args). add_const([_A|T],[# _|TT],ArgsTypes0,Args0,ArgsTypes,Args):-!, add_const(T,TT,ArgsTypes0,Args0,ArgsTypes,Args). add_const([A|T],[A|TT],ArgsTypes0,Args0,ArgsTypes,Args):- add_const(T,TT,ArgsTypes0,Args0,ArgsTypes,Args). already_present([+T|_TT],[C|_TC],C,T):-!. already_present([_|TT],[_|TC],C,T):- already_present(TT,TC,C,T). instantiate_query(ArgsT,ArgsTypes,Args,F,M,A):- instantiate_input(ArgsT,ArgsTypes,Args,ArgsB), A1=..[F|ArgsB], (builtin(A1)-> A=A1 ; A=..[F,M|ArgsB] ). instantiate_input([],_AT,_A,[]). instantiate_input([-_Type|T],AT,A,[_V|TA]):-!, instantiate_input(T,AT,A,TA). instantiate_input([+Type|T],AT,A,[H|TA]):-!, find_val(AT,A,+Type,H), instantiate_input(T,AT,A,TA). instantiate_input([# Type|T],AT,A,[H|TA]):-!, find_val(AT,A,+Type,H), instantiate_input(T,AT,A,TA). instantiate_input([-# _Type|T],AT,A,[_V|TA]):-!, instantiate_input(T,AT,A,TA). instantiate_input([C|T],AT,A,[C|TA]):- instantiate_input(T,AT,A,TA). find_val([T|_TT],[A|_TA],T,A). find_val([_T|TT],[_A|TA],T,A):- find_val(TT,TA,T,A). get_output_atoms(O):- findall((A/Ar),output((A/Ar)),O). generate_goal([],_H,G,G):-!. generate_goal([P/A|T],H,G0,G1):- functor(Pred,P,A), Pred=..[P|Rest], Pred1=..[P,H|Rest], findall(Pred1,call(Pred1),L), findall(\+ Pred1,call(neg(Pred1)),LN), append(G0,L,G2), append(G2,LN,G3), generate_goal(T,H,G3,G1). :-[inference_lemur].