/* $Id$ Part of SWI-Prolog Author: Jan Wielemaker E-mail: J.Wielemaker@vu.nl WWW: http://www.swi-prolog.org Copyright (C): 1985-2011, University of Amsterdam VU University Amsterdam This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA As a special exception, if you link this library with other files, compiled with a Free Software compiler, to produce an executable, this library does not by itself cause the resulting executable to be covered by the GNU General Public License. This exception does not however invalidate any other reasons why the executable file might be covered by the GNU General Public License. */ :- module(prolog_clause, [ clause_info/4, % +ClauseRef, -File, -TermPos, -VarNames predicate_name/2, % +Head, -Name clause_name/2 % +ClauseRef, -Name ]). :- use_module(library(lists), [append/3]). :- use_module(library(occurs), [sub_term/2]). :- use_module(library(debug)). :- use_module(library(listing)). :- use_module(library(prolog_source)). :- public % called from library(trace/clause) unify_term/2, make_varnames/5, do_make_varnames/3. :- multifile make_varnames_hook/5. /** Get detailed source-information about a clause This module started life as part of the GUI tracer. As it is generally useful for debugging purposes it has moved to the general Prolog library. The tracer library library(trace/clause) adds caching and dealing with dynamic predicates using listing to XPCE objects to this. Note that clause_info/4 as below can be slow. */ %% clause_info(+ClauseRef, -File, -TermPos, -VarNames) % % Fetches source information for the given clause. File is the % file from which the clause was loaded. TermPos describes the % source layout in a format compatible to the subterm_positions % option of read_term/2. VarNames provides access to the variable % allocation in a stack-frame. See make_varnames/5 for details. clause_info(ClauseRef, File, TermPos, NameOffset) :- ( debugging(clause_info) -> clause_name(ClauseRef, Name), debug(clause_info, 'clause_info(~w) (~w)... ', [ClauseRef, Name]) ; true ), clause_property(ClauseRef, file(File)), '$clause'(Head, Body, ClauseRef, VarOffset), ( Body == true -> DecompiledClause = Head ; DecompiledClause = (Head :- Body) ), File \== user, % loaded using ?- [user]. clause_property(ClauseRef, line_count(LineNo)), ( module_property(Module, file(File)) -> true ; strip_module(user:Head, Module, _) ), debug(clause_info, 'from ~w:~d ... ', [File, LineNo]), read_term_at_line(File, LineNo, Module, Clause, TermPos0, VarNames), debug(clause_info, 'read ...', []), unify_clause(Clause, DecompiledClause, Module, TermPos0, TermPos), debug(clause_info, 'unified ...', []), make_varnames(Clause, DecompiledClause, VarOffset, VarNames, NameOffset), debug(clause_info, 'got names~n', []), !. %% unify_term(+T1, +T2) % % Unify the two terms, where T2 is created by writing the term and % reading it back in, but be aware that rounding problems may % cause floating point numbers not to unify. Also, if the initial % term has a string object, it is written as "..." and read as a % code-list. We compensate for that. % % NOTE: Called directly from library(trace/clause) for the GUI % tracer. unify_term(X, X) :- !. unify_term(X1, X2) :- compound(X1), compound(X2), functor(X1, F, Arity), functor(X2, F, Arity), !, unify_args(0, Arity, X1, X2). unify_term(X, Y) :- float(X), float(Y), !. unify_term(X, Y) :- string(X), is_list(Y), string_to_list(X, Y), !. unify_term(_, Y) :- Y == '...', !. % elipses left by max_depth unify_term(_:X, Y) :- unify_term(X, Y), !. unify_term(X, _:Y) :- unify_term(X, Y), !. unify_term(X, Y) :- format('[INTERNAL ERROR: Diff:~n'), portray_clause(X), format('~N*** <->~n'), portray_clause(Y), break. unify_args(N, N, _, _) :- !. unify_args(I, Arity, T1, T2) :- A is I + 1, arg(A, T1, A1), arg(A, T2, A2), unify_term(A1, A2), unify_args(A, Arity, T1, T2). %% read_term_at_line(+File, +Line, +Module, %% -Clause, -TermPos, -VarNames) is semidet. % % Read a term from File at Line. read_term_at_line(File, Line, Module, Clause, TermPos, VarNames) :- catch(open(File, read, In), _, fail), call_cleanup( read_source_term_at_location( In, Clause, [ line(Line), module(Module), subterm_positions(TermPos), variable_names(VarNames) ]), close(In)). %% make_varnames(+ReadClause, +DecompiledClause, %% +Offsets, +Names, -Term) is det. % % Create a Term varnames(...) where each argument contains the name % of the variable at that offset. If the read Clause is a DCG rule, % name the two last arguments and % % This predicate calles the multifile predicate % make_varnames_hook/5 with the same arguments to allow for user % extensions. Extending this predicate is needed if a compiler % adds additional arguments to the clause head that must be made % visible in the GUI tracer. % % @param Offsets List of Offset=Var % @param Names List of Name=Var make_varnames(ReadClause, DecompiledClause, Offsets, Names, Term) :- make_varnames_hook(ReadClause, DecompiledClause, Offsets, Names, Term), !. make_varnames((Head --> _Body), _, Offsets, Names, Bindings) :- !, functor(Head, _, Arity), In is Arity, memberchk(In=IVar, Offsets), Names1 = [''=IVar|Names], Out is Arity + 1, memberchk(Out=OVar, Offsets), Names2 = [''=OVar|Names1], make_varnames(xx, xx, Offsets, Names2, Bindings). make_varnames(_, _, Offsets, Names, Bindings) :- length(Offsets, L), functor(Bindings, varnames, L), do_make_varnames(Offsets, Names, Bindings). do_make_varnames([], _, _). do_make_varnames([N=Var|TO], Names, Bindings) :- ( find_varname(Var, Names, Name) -> true ; Name = '_' ), AN is N + 1, arg(AN, Bindings, Name), do_make_varnames(TO, Names, Bindings). find_varname(Var, [Name = TheVar|_], Name) :- Var == TheVar, !. find_varname(Var, [_|T], Name) :- find_varname(Var, T, Name). %% unify_clause(+Read, +Decompiled, +Module, +ReadTermPos, %% -RecompiledTermPos). % % What you read isn't always what goes into the database. The task % of this predicate is to establish the relation between the term % read from the file and the result from decompiling the clause. % % This predicate calls the multifile predicate unify_clause_hook/5 % with the same arguments to support user extensions. % % @tbd This really must be more flexible, dealing with much % more complex source-translations, falling back to a % heuristic method locating as much as possible. :- multifile unify_clause_hook/5. unify_clause(Read, Read, _, TermPos, TermPos) :- !. % XPCE send-methods unify_clause(Read, Decompiled, Module, TermPoso, TermPos) :- unify_clause_hook(Read, Decompiled, Module, TermPoso, TermPos), !. unify_clause(:->(Head, Body), (PlHead :- PlBody), _, TermPos0, TermPos) :- !, pce_method_clause(Head, Body, PlHead, PlBody, TermPos0, TermPos). % XPCE get-methods unify_clause(:<-(Head, Body), (PlHead :- PlBody), _, TermPos0, TermPos) :- !, pce_method_clause(Head, Body, PlHead, PlBody, TermPos0, TermPos). % Unit test clauses unify_clause((TH :- Body), (_:'unit body'(_, _) :- !, Body), _, TP0, TP) :- ( TH = test(_,_) ; TH = test(_) ), !, TP0 = term_position(F,T,FF,FT,[HP,BP]), TP = term_position(F,T,FF,FT,[HP,term_position(0,0,0,0,[FF-FT,BP])]). % module:head :- body unify_clause((Head :- Read), (Head :- _M:Compiled), Module, TermPos0, TermPos) :- unify_clause((Head :- Read), (Head :- Compiled), Module, TermPos0, TermPos1), TermPos1 = term_position(TA,TZ,FA,FZ,[PH,PB]), TermPos = term_position(TA,TZ,FA,FZ, [ PH, term_position(0,0,0,0,[0-0,PB]) ]). unify_clause(Read, Compiled1, Module, TermPos0, TermPos) :- Read = (_ --> List, _), is_list(List), ci_expand(Read, Compiled2, Module), Compiled2 = (DH :- _), functor(DH, _, Arity), DArg is Arity - 1, arg(DArg, DH, List), nonvar(List), TermPos0 = term_position(F,T,FF,FT,[ HP, term_position(_,_,_,_,[_,BP]) ]), !, TermPos1 = term_position(F,T,FF,FT,[ HP, BP ]), match_module(Compiled2, Compiled1, TermPos1, TermPos). % general term-expansion unify_clause(Read, Compiled1, Module, TermPos0, TermPos) :- ci_expand(Read, Compiled2, Module), match_module(Compiled2, Compiled1, TermPos0, TermPos). % I don't know ... unify_clause(_, _, _, _, _) :- debug(clause_info, 'Could not unify clause', []), fail. unify_clause_head(H1, H2) :- strip_module(H1, _, H), strip_module(H2, _, H). ci_expand(Read, Compiled, Module) :- catch(setup_call_cleanup('$set_source_module'(Old, Module), expand_term(Read, Compiled), '$set_source_module'(_, Old)), E, expand_failed(E, Read)). match_module((H1 :- B1), (H2 :- B2), Pos0, Pos) :- !, unify_clause_head(H1, H2), unify_body(B1, B2, Pos0, Pos). match_module(H1, H2, Pos, Pos) :- % deal with facts unify_clause_head(H1, H2). %% expand_failed(+Exception, +Term) % % When debugging, indicate that expansion of the term failed. expand_failed(E, Read) :- debugging(clause_info), message_to_string(E, Msg), debug(clause_info, 'Term-expand ~p failed: ~w', [Read, Msg]), fail. %% unify_body(+Read, +Decompiled, +Pos0, -Pos) % % Deal with translations implied by the compiler. For example, % compiling (a,b),c yields the same code as compiling a,b,c. % % Pos0 and Pos still include the term-position of the head. unify_body(B, B, Pos, Pos) :- does_not_dcg_after_binding(B, Pos), !. unify_body(R, D, term_position(F,T,FF,FT,[HP,BP0]), term_position(F,T,FF,FT,[HP,BP])) :- ubody(R, D, BP0, BP). %% does_not_dcg_after_binding(+ReadBody, +ReadPos) is semidet. % % True if ReadPos/ReadPos does not contain DCG delayed % unifications. % % @tbd We should pass that we are in a DCG; if we are not there % is no reason for this test. does_not_dcg_after_binding(B, Pos) :- acyclic_term(B), % X = call(X) \+ sub_term(brace_term_position(_,_,_), Pos), \+ (sub_term((Cut,_=_), B), Cut == !), !. /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Some remarks. a --> { x, y, z }. This is translated into "(x,y),z), X=Y" by the DCG translator, after which the compiler creates "a(X,Y) :- x, y, z, X=Y". - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ %% ubody(+Read, +Decompiled, +TermPosRead, -TermPosForDecompiled) % % @param Read Clause read _after_ expand_term/2 % @param Decompiled Decompiled clause % @param TermPosRead Sub-term positions of source ubody(B, B, P, P) :- does_not_dcg_after_binding(B, P), !. ubody(X, call(X), % X = call(X) From-To, term_position(From, To, From, To, [From-To])) :- !. ubody(B0, B, brace_term_position(F,T,A0), Pos) :- B0 = (_,_=_), !, T1 is T - 1, ubody(B0, B, term_position(F,T, F,T, [A0,T1-T]), Pos). ubody(B0, B, brace_term_position(F,T,A0), term_position(F,T,F,T,[A])) :- !, ubody(B0, B, A0, A). ubody(C0, C, P0, P) :- nonvar(C0), nonvar(C), C0 = (_,_), C = (_,_), !, conj(C0, P0, GL, PL), mkconj(C, P, GL, PL). ubody(X0, X, term_position(F,T,FF,TT,PA0), term_position(F,T,FF,TT,PA)) :- meta(X0), !, X0 =.. [_|A0], X =.. [_|A], ubody_list(A0, A, PA0, PA). % 5.7.X optimizations ubody(_=_, true, % singleton = Any term_position(F,T,_FF,_TT,_PA), F-T) :- !. ubody(_==_, fail, % singleton/firstvar == Any term_position(F,T,_FF,_TT,_PA), F-T) :- !. ubody(A1=B1, B2=A2, % Term = Var --> Var = Term term_position(F,T,FF,TT,[PA1,PA2]), term_position(F,T,FF,TT,[PA2,PA1])) :- (A1==B1) =@= (B2==A2), !, A1 = A2, B1=B2. ubody(A1==B1, B2==A2, % const == Var --> Var == const term_position(F,T,FF,TT,[PA1,PA2]), term_position(F,T,FF,TT,[PA2,PA1])) :- (A1==B1) =@= (B2==A2), !, A1 = A2, B1=B2. ubody(A is B - C, A is B + C2, Pos, Pos) :- integer(C), C2 =:= -C, !. ubody_list([], [], [], []). ubody_list([G0|T0], [G|T], [PA0|PAT0], [PA|PAT]) :- ubody(G0, G, PA0, PA), ubody_list(T0, T, PAT0, PAT). conj(Goal, Pos, GoalList, PosList) :- conj(Goal, Pos, GoalList, [], PosList, []). conj((A,B), term_position(_,_,_,_,[PA,PB]), GL, TG, PL, TP) :- !, conj(A, PA, GL, TGA, PL, TPA), conj(B, PB, TGA, TG, TPA, TP). conj((A,B), brace_term_position(_,T,PA), GL, TG, PL, TP) :- B = (_=_), !, conj(A, PA, GL, TGA, PL, TPA), T1 is T - 1, conj(B, T1-T, TGA, TG, TPA, TP). conj((!,(S=SR)), F-T, [!,S=SR|TG], TG, [F-T,F1-T1|TP], TP) :- F1 is F+1, T1 is T+1. conj(A, P, [A|TG], TG, [P|TP], TP). mkconj(Goal, Pos, GoalList, PosList) :- mkconj(Goal, Pos, GoalList, [], PosList, []). mkconj(Conj, term_position(0,0,0,0,[PA,PB]), GL, TG, PL, TP) :- nonvar(Conj), Conj = (A,B), !, mkconj(A, PA, GL, TGA, PL, TPA), mkconj(B, PB, TGA, TG, TPA, TP). mkconj(A0, P0, [A|TG], TG, [P|TP], TP) :- ubody(A, A0, P, P0). /******************************* * PCE STUFF (SHOULD MOVE) * *******************************/ /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - (Receiver, ... Arg ...) :-> Body mapped to: send_implementation(Id, (...Arg...), Receiver) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ pce_method_clause(Head, Body, _:PlHead, PlBody, TermPos0, TermPos) :- !, pce_method_clause(Head, Body, PlBody, PlHead, TermPos0, TermPos). pce_method_clause(Head, Body, send_implementation(_Id, Msg, Receiver), PlBody, TermPos0, TermPos) :- !, debug(clause_info, 'send method ...', []), arg(1, Head, Receiver), functor(Head, _, Arity), pce_method_head_arguments(2, Arity, Head, Msg), debug(clause_info, 'head ...', []), pce_method_body(Body, PlBody, TermPos0, TermPos). pce_method_clause(Head, Body, get_implementation(_Id, Msg, Receiver, Result), PlBody, TermPos0, TermPos) :- !, debug(clause_info, 'get method ...', []), arg(1, Head, Receiver), debug(clause_info, 'receiver ...', []), functor(Head, _, Arity), arg(Arity, Head, PceResult), debug(clause_info, '~w?~n', [PceResult = Result]), pce_unify_head_arg(PceResult, Result), Ar is Arity - 1, pce_method_head_arguments(2, Ar, Head, Msg), debug(clause_info, 'head ...', []), pce_method_body(Body, PlBody, TermPos0, TermPos). pce_method_head_arguments(N, Arity, Head, Msg) :- N =< Arity, !, arg(N, Head, PceArg), PLN is N - 1, arg(PLN, Msg, PlArg), pce_unify_head_arg(PceArg, PlArg), debug(clause_info, '~w~n', [PceArg = PlArg]), NextArg is N+1, pce_method_head_arguments(NextArg, Arity, Head, Msg). pce_method_head_arguments(_, _, _, _). pce_unify_head_arg(V, A) :- var(V), !, V = A. pce_unify_head_arg(A:_=_, A) :- !. pce_unify_head_arg(A:_, A). % pce_method_body(+SrcBody, +DbBody, +TermPos0, -TermPos % % Unify the body of an XPCE method. Goal-expansion makes this % rather tricky, especially as we cannot call XPCE's expansion % on an isolated method. % % TermPos0 is the term-position term of the whole clause! % % Further, please note that the body of the method-clauses reside % in another module than pce_principal, and therefore the body % starts with an I_CONTEXT call. This implies we need a % hypothetical term-position for the module-qualifier. pce_method_body(A0, A, TermPos0, TermPos) :- TermPos0 = term_position(F, T, FF, FT, [ HeadPos, BodyPos0 ]), TermPos = term_position(F, T, FF, FT, [ HeadPos, term_position(0,0,0,0, [0-0,BodyPos]) ]), pce_method_body2(A0, A, BodyPos0, BodyPos). pce_method_body2(::(_,A0), A, TermPos0, TermPos) :- !, TermPos0 = term_position(_, _, _, _, [_Cmt,BodyPos0]), TermPos = BodyPos, expand_goal(A0, A, BodyPos0, BodyPos). pce_method_body2(A0, A, TermPos0, TermPos) :- A0 =.. [Func,B0,C0], control_op(Func), !, A =.. [Func,B,C], TermPos0 = term_position(F, T, FF, FT, [ BP0, CP0 ]), TermPos = term_position(F, T, FF, FT, [ BP, CP ]), pce_method_body2(B0, B, BP0, BP), expand_goal(C0, C, CP0, CP). pce_method_body2(A0, A, TermPos0, TermPos) :- expand_goal(A0, A, TermPos0, TermPos). control_op(','). control_op((;)). control_op((->)). control_op((*->)). /******************************* * EXPAND_GOAL SUPPORT * *******************************/ /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - With the introduction of expand_goal, it is increasingly hard to relate the clause from the database to the actual source. For one thing, we do not know the compilation module of the clause (unless we want to decompile it). Goal expansion can translate goals into control-constructs, multiple clauses, or delete a subgoal. To keep track of the source-locations, we have to redo the analysis of the clause as defined in init.pl - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ expand_goal(G, call(G), P, term_position(0,0,0,0,[P])) :- var(G), !. expand_goal(G, G, P, P) :- var(G), !. expand_goal(M0, M, P0, P) :- meta(M0), !, P0 = term_position(F,T,FF,FT,PL0), P = term_position(F,T,FF,FT,PL), functor(M0, Functor, Arity), functor(M, Functor, Arity), expand_meta_args(PL0, PL, 1, M0, M). expand_goal(A, B, P0, P) :- goal_expansion(A, B0, P0, P1), !, expand_goal(B0, B, P1, P). expand_goal(A, A, P, P). expand_meta_args([], [], _, _, _). expand_meta_args([P0|T0], [P|T], I, M0, M) :- arg(I, M0, A0), arg(I, M, A), expand_goal(A0, A, P0, P), NI is I + 1, expand_meta_args(T0, T, NI, M0, M). meta((_ , _)). meta((_ ; _)). meta((_ -> _)). meta((_ *-> _)). meta((\+ _)). meta((not(_))). meta((call(_))). meta((once(_))). meta((ignore(_))). meta((forall(_, _))). goal_expansion(send(R, Msg), send_class(R, _, SuperMsg), P, P) :- compound(Msg), Msg =.. [send_super, Selector | Args], !, SuperMsg =.. [Selector|Args]. goal_expansion(get(R, Msg, A), get_class(R, _, SuperMsg, A), P, P) :- compound(Msg), Msg =.. [get_super, Selector | Args], !, SuperMsg =.. [Selector|Args]. goal_expansion(send_super(R, Msg), send_class(R, _, Msg), P, P). goal_expansion(get_super(R, Msg, V), get_class(R, _, Msg, V), P, P). goal_expansion(SendSuperN, send_class(R, _, Msg), P, P) :- compound(SendSuperN), SendSuperN =.. [send_super, R, Sel | Args], Msg =.. [Sel|Args]. goal_expansion(SendN, send(R, Msg), P, P) :- compound(SendN), SendN =.. [send, R, Sel | Args], atom(Sel), Args \== [], Msg =.. [Sel|Args]. goal_expansion(GetSuperN, get_class(R, _, Msg, Answer), P, P) :- compound(GetSuperN), GetSuperN =.. [get_super, R, Sel | AllArgs], append(Args, [Answer], AllArgs), Msg =.. [Sel|Args]. goal_expansion(GetN, get(R, Msg, Answer), P, P) :- compound(GetN), GetN =.. [get, R, Sel | AllArgs], append(Args, [Answer], AllArgs), atom(Sel), Args \== [], Msg =.. [Sel|Args]. goal_expansion(G0, G, P, P) :- user:goal_expansion(G0, G), % TBD: we need the module! G0 \== G. % \=@=? /******************************* * PRINTABLE NAMES * *******************************/ :- module_transparent predicate_name/2. :- multifile user:prolog_predicate_name/2, user:prolog_clause_name/2. hidden_module(user). hidden_module(system). hidden_module(pce_principal). % should be config hidden_module(Module) :- % SWI-Prolog specific import_module(Module, system). thaffix(1, st) :- !. thaffix(2, nd) :- !. thaffix(_, th). %% predicate_name(:Head, -PredName:string) is det. % % Describe a predicate as [Module:]Name/Arity. predicate_name(Predicate, PName) :- strip_module(Predicate, Module, Head), ( user:prolog_predicate_name(Module:Head, PName) -> true ; functor(Head, Name, Arity), ( hidden_module(Module) -> format(string(PName), '~q/~d', [Name, Arity]) ; format(string(PName), '~q:~q/~d', [Module, Name, Arity]) ) ). %% clause_name(+Ref, -Name) % % Provide a suitable description of the indicated clause. clause_name(Ref, Name) :- user:prolog_clause_name(Ref, Name), !. clause_name(Ref, Name) :- nth_clause(Head, N, Ref), !, predicate_name(Head, PredName), thaffix(N, Th), format(string(Name), '~d-~w clause of ~w', [N, Th, PredName]). clause_name(_, '').