#include #include #include #include #include "BpSolver.h" #include "FactorGraph.h" #include "Factor.h" #include "Indexer.h" #include "Horus.h" BpSolver::BpSolver (const FactorGraph& fg) : Solver (fg) { fg_ = &fg; runned_ = false; } BpSolver::~BpSolver (void) { for (size_t i = 0; i < varsI_.size(); i++) { delete varsI_[i]; } for (size_t i = 0; i < facsI_.size(); i++) { delete facsI_[i]; } for (size_t i = 0; i < links_.size(); i++) { delete links_[i]; } } Params BpSolver::solveQuery (VarIds queryVids) { assert (queryVids.empty() == false); if (queryVids.size() == 1) { return getPosterioriOf (queryVids[0]); } else { return getJointDistributionOf (queryVids); } } void BpSolver::printSolverFlags (void) const { stringstream ss; ss << "belief propagation [" ; ss << "schedule=" ; typedef BpOptions::Schedule Sch; switch (BpOptions::schedule) { case Sch::SEQ_FIXED: ss << "seq_fixed"; break; case Sch::SEQ_RANDOM: ss << "seq_random"; break; case Sch::PARALLEL: ss << "parallel"; break; case Sch::MAX_RESIDUAL: ss << "max_residual"; break; } ss << ",max_iter=" << Util::toString (BpOptions::maxIter); ss << ",accuracy=" << Util::toString (BpOptions::accuracy); ss << ",log_domain=" << Util::toString (Globals::logDomain); ss << "]" ; cout << ss.str() << endl; } Params BpSolver::getPosterioriOf (VarId vid) { if (runned_ == false) { runSolver(); } assert (fg_->getVarNode (vid)); VarNode* var = fg_->getVarNode (vid); Params probs; if (var->hasEvidence()) { probs.resize (var->range(), LogAware::noEvidence()); probs[var->getEvidence()] = LogAware::withEvidence(); } else { probs.resize (var->range(), LogAware::multIdenty()); const SpLinkSet& links = ninf(var)->getLinks(); if (Globals::logDomain) { for (size_t i = 0; i < links.size(); i++) { probs += links[i]->getMessage(); } LogAware::normalize (probs); Util::exp (probs); } else { for (size_t i = 0; i < links.size(); i++) { probs *= links[i]->getMessage(); } LogAware::normalize (probs); } } return probs; } Params BpSolver::getJointDistributionOf (const VarIds& jointVarIds) { if (runned_ == false) { runSolver(); } VarNode* vn = fg_->getVarNode (jointVarIds[0]); const FacNodes& facNodes = vn->neighbors(); size_t idx = facNodes.size(); for (size_t i = 0; i < facNodes.size(); i++) { if (facNodes[i]->factor().contains (jointVarIds)) { idx = i; break; } } if (idx == facNodes.size()) { return getJointByConditioning (jointVarIds); } else { Factor res (facNodes[idx]->factor()); const SpLinkSet& links = ninf(facNodes[idx])->getLinks(); for (size_t i = 0; i < links.size(); i++) { Factor msg ({links[i]->getVariable()->varId()}, {links[i]->getVariable()->range()}, getVar2FactorMsg (links[i])); res.multiply (msg); } res.sumOutAllExcept (jointVarIds); res.reorderArguments (jointVarIds); res.normalize(); Params jointDist = res.params(); if (Globals::logDomain) { Util::exp (jointDist); } return jointDist; } } void BpSolver::runSolver (void) { initializeSolver(); nIters_ = 0; while (!converged() && nIters_ < BpOptions::maxIter) { nIters_ ++; if (Globals::verbosity > 1) { Util::printHeader (string ("Iteration ") + Util::toString (nIters_)); } switch (BpOptions::schedule) { case BpOptions::Schedule::SEQ_RANDOM: random_shuffle (links_.begin(), links_.end()); // no break case BpOptions::Schedule::SEQ_FIXED: for (size_t i = 0; i < links_.size(); i++) { calculateAndUpdateMessage (links_[i]); } break; case BpOptions::Schedule::PARALLEL: for (size_t i = 0; i < links_.size(); i++) { calculateMessage (links_[i]); } for (size_t i = 0; i < links_.size(); i++) { updateMessage(links_[i]); } break; case BpOptions::Schedule::MAX_RESIDUAL: maxResidualSchedule(); break; } } if (Globals::verbosity > 0) { if (nIters_ < BpOptions::maxIter) { cout << "Sum-Product converged in " ; cout << nIters_ << " iterations" << endl; } else { cout << "The maximum number of iterations was hit, terminating..." ; cout << endl; } cout << endl; } runned_ = true; } void BpSolver::createLinks (void) { const FacNodes& facNodes = fg_->facNodes(); for (size_t i = 0; i < facNodes.size(); i++) { const VarNodes& neighbors = facNodes[i]->neighbors(); for (size_t j = 0; j < neighbors.size(); j++) { links_.push_back (new SpLink (facNodes[i], neighbors[j])); } } } void BpSolver::maxResidualSchedule (void) { if (nIters_ == 1) { for (size_t i = 0; i < links_.size(); i++) { calculateMessage (links_[i]); SortedOrder::iterator it = sortedOrder_.insert (links_[i]); linkMap_.insert (make_pair (links_[i], it)); } return; } for (size_t c = 0; c < links_.size(); c++) { if (Globals::verbosity > 1) { cout << "current residuals:" << endl; for (SortedOrder::iterator it = sortedOrder_.begin(); it != sortedOrder_.end(); it ++) { cout << " " << setw (30) << left << (*it)->toString(); cout << "residual = " << (*it)->getResidual() << endl; } } SortedOrder::iterator it = sortedOrder_.begin(); SpLink* link = *it; if (link->getResidual() < BpOptions::accuracy) { return; } updateMessage (link); link->clearResidual(); sortedOrder_.erase (it); linkMap_.find (link)->second = sortedOrder_.insert (link); // update the messages that depend on message source --> destin const FacNodes& factorNeighbors = link->getVariable()->neighbors(); for (size_t i = 0; i < factorNeighbors.size(); i++) { if (factorNeighbors[i] != link->getFactor()) { const SpLinkSet& links = ninf(factorNeighbors[i])->getLinks(); for (size_t j = 0; j < links.size(); j++) { if (links[j]->getVariable() != link->getVariable()) { calculateMessage (links[j]); SpLinkMap::iterator iter = linkMap_.find (links[j]); sortedOrder_.erase (iter->second); iter->second = sortedOrder_.insert (links[j]); } } } } if (Globals::verbosity > 1) { Util::printDashedLine(); } } } void BpSolver::calculateFactor2VariableMsg (SpLink* link) { FacNode* src = link->getFactor(); const VarNode* dst = link->getVariable(); const SpLinkSet& links = ninf(src)->getLinks(); // calculate the product of messages that were sent // to factor `src', except from var `dst' unsigned msgSize = 1; for (size_t i = 0; i < links.size(); i++) { msgSize *= links[i]->getVariable()->range(); } unsigned repetitions = 1; Params msgProduct (msgSize, LogAware::multIdenty()); if (Globals::logDomain) { for (int i = links.size() - 1; i >= 0; i--) { if (links[i]->getVariable() != dst) { if (Constants::SHOW_BP_CALCS) { cout << " message from " << links[i]->getVariable()->label(); cout << ": " ; } Util::add (msgProduct, getVar2FactorMsg (links[i]), repetitions); repetitions *= links[i]->getVariable()->range(); if (Constants::SHOW_BP_CALCS) { cout << endl; } } else { unsigned range = links[i]->getVariable()->range(); Util::add (msgProduct, Params (range, 0.0), repetitions); repetitions *= range; } } } else { for (int i = links.size() - 1; i >= 0; i--) { if (links[i]->getVariable() != dst) { if (Constants::SHOW_BP_CALCS) { cout << " message from " << links[i]->getVariable()->label(); cout << ": " ; } Util::multiply (msgProduct, getVar2FactorMsg (links[i]), repetitions); repetitions *= links[i]->getVariable()->range(); if (Constants::SHOW_BP_CALCS) { cout << endl; } } else { unsigned range = links[i]->getVariable()->range(); Util::multiply (msgProduct, Params (range, 1.0), repetitions); repetitions *= range; } } } Factor result (src->factor().arguments(), src->factor().ranges(), msgProduct); result.multiply (src->factor()); if (Constants::SHOW_BP_CALCS) { cout << " message product: " << msgProduct << endl; cout << " original factor: " << src->factor().params() << endl; cout << " factor product: " << result.params() << endl; } result.sumOutAllExcept (dst->varId()); if (Constants::SHOW_BP_CALCS) { cout << " marginalized: " << result.params() << endl; } link->getNextMessage() = result.params(); LogAware::normalize (link->getNextMessage()); if (Constants::SHOW_BP_CALCS) { cout << " curr msg: " << link->getMessage() << endl; cout << " next msg: " << link->getNextMessage() << endl; } } Params BpSolver::getVar2FactorMsg (const SpLink* link) const { const VarNode* src = link->getVariable(); const FacNode* dst = link->getFactor(); Params msg; if (src->hasEvidence()) { msg.resize (src->range(), LogAware::noEvidence()); msg[src->getEvidence()] = LogAware::withEvidence(); } else { msg.resize (src->range(), LogAware::one()); } if (Constants::SHOW_BP_CALCS) { cout << msg; } const SpLinkSet& links = ninf (src)->getLinks(); if (Globals::logDomain) { SpLinkSet::const_iterator it; for (it = links.begin(); it != links.end(); ++ it) { msg += (*it)->getMessage(); if (Constants::SHOW_BP_CALCS) { cout << " x " << (*it)->getMessage(); } } msg -= link->getMessage(); } else { for (size_t i = 0; i < links.size(); i++) { if (links[i]->getFactor() != dst) { msg *= links[i]->getMessage(); if (Constants::SHOW_BP_CALCS) { cout << " x " << links[i]->getMessage(); } } } } if (Constants::SHOW_BP_CALCS) { cout << " = " << msg; } return msg; } Params BpSolver::getJointByConditioning (const VarIds& jointVarIds) const { VarNodes jointVars; for (size_t i = 0; i < jointVarIds.size(); i++) { assert (fg_->getVarNode (jointVarIds[i])); jointVars.push_back (fg_->getVarNode (jointVarIds[i])); } FactorGraph* fg = new FactorGraph (*fg_); BpSolver solver (*fg); solver.runSolver(); Params prevBeliefs = solver.getPosterioriOf (jointVarIds[0]); VarIds observedVids = {jointVars[0]->varId()}; for (size_t i = 1; i < jointVarIds.size(); i++) { assert (jointVars[i]->hasEvidence() == false); Params newBeliefs; Vars observedVars; Ranges observedRanges; for (size_t j = 0; j < observedVids.size(); j++) { observedVars.push_back (fg->getVarNode (observedVids[j])); observedRanges.push_back (observedVars.back()->range()); } StatesIndexer idx (observedRanges, false); while (idx.valid()) { for (size_t j = 0; j < observedVars.size(); j++) { observedVars[j]->setEvidence (idx[j]); } ++ idx; BpSolver solver (*fg); solver.runSolver(); Params beliefs = solver.getPosterioriOf (jointVarIds[i]); for (size_t k = 0; k < beliefs.size(); k++) { newBeliefs.push_back (beliefs[k]); } } int count = -1; for (size_t j = 0; j < newBeliefs.size(); j++) { if (j % jointVars[i]->range() == 0) { count ++; } newBeliefs[j] *= prevBeliefs[count]; } prevBeliefs = newBeliefs; observedVids.push_back (jointVars[i]->varId()); } return prevBeliefs; } void BpSolver::initializeSolver (void) { const VarNodes& varNodes = fg_->varNodes(); varsI_.reserve (varNodes.size()); for (size_t i = 0; i < varNodes.size(); i++) { varsI_.push_back (new SPNodeInfo()); } const FacNodes& facNodes = fg_->facNodes(); facsI_.reserve (facNodes.size()); for (size_t i = 0; i < facNodes.size(); i++) { facsI_.push_back (new SPNodeInfo()); } createLinks(); for (size_t i = 0; i < links_.size(); i++) { FacNode* src = links_[i]->getFactor(); VarNode* dst = links_[i]->getVariable(); ninf (dst)->addSpLink (links_[i]); ninf (src)->addSpLink (links_[i]); } } bool BpSolver::converged (void) { if (links_.size() == 0) { return true; } if (nIters_ == 0) { return false; } if (Globals::verbosity > 2) { cout << endl; } if (nIters_ == 1) { if (Globals::verbosity > 1) { cout << "no residuals" << endl << endl; } return false; } bool converged = true; if (BpOptions::schedule == BpOptions::Schedule::MAX_RESIDUAL) { double maxResidual = (*(sortedOrder_.begin()))->getResidual(); if (maxResidual > BpOptions::accuracy) { converged = false; } else { converged = true; } } else { for (size_t i = 0; i < links_.size(); i++) { double residual = links_[i]->getResidual(); if (Globals::verbosity > 1) { cout << links_[i]->toString() + " residual = " << residual << endl; } if (residual > BpOptions::accuracy) { converged = false; if (Globals::verbosity < 2) { break; } } } if (Globals::verbosity > 1) { cout << endl; } } return converged; } void BpSolver::printLinkInformation (void) const { for (size_t i = 0; i < links_.size(); i++) { SpLink* l = links_[i]; cout << l->toString() << ":" << endl; cout << " curr msg = " ; cout << l->getMessage() << endl; cout << " next msg = " ; cout << l->getNextMessage() << endl; cout << " residual = " << l->getResidual() << endl; } }