/************************************************ BDDs in CLP(BN) A variable is represented by the N possible cases it can take V = v(Va, Vb, Vc) The generic formula is V <- X, Y Va <- P*X1*Y1 + Q*X2*Y2 + ... **************************************************/ :- module(clpbn_bdd, [bdd/3, set_solver_parameter/2, init_bdd_solver/4, run_bdd_solver/3, finalize_bdd_solver/1, check_if_bdd_done/1 ]). :- use_module(library('clpbn/dists'), [dist/4, get_dist_domain/2, get_dist_domain_size/2, get_dist_all_sizes/2, get_dist_params/2 ]). :- use_module(library('clpbn/display'), [clpbn_bind_vals/3]). :- use_module(library('clpbn/aggregates'), [check_for_agg_vars/2]). :- use_module(library(atts)). :- use_module(library(hacks)). :- use_module(library(lists)). :- use_module(library(dgraphs)). :- use_module(library(bdd)). :- use_module(library(ddnnf)). :- use_module(library(simpbool)). :- use_module(library(rbtrees)). :- use_module(library(bhash)). :- use_module(library(matrix)). :- dynamic network_counting/1. :- attribute order/1. :- dynamic bdds/1. %bdds(ddnnf). bdds(bdd). check_if_bdd_done(_Var). bdd([[]],_,_) :- !. bdd([QueryVars], AllVars, AllDiffs) :- init_bdd_solver(_, AllVars, _, BayesNet), run_bdd_solver([QueryVars], LPs, BayesNet), finalize_bdd_solver(BayesNet), clpbn_bind_vals([QueryVars], [LPs], AllDiffs). init_bdd_solver(_, AllVars0, _, bdd(Term, Leaves, Tops)) :- % check_for_agg_vars(AllVars0, AllVars1), AllVars0 = AllVars1, sort_vars(AllVars1, AllVars, Leaves), order_vars(AllVars, 0), rb_new(Vars0), rb_new(Pars0), init_tops(Leaves,Tops), get_vars_info(AllVars, Vars0, _Vars, Pars0, _Pars, Leaves, Tops, Term, []). order_vars([], _). order_vars([V|AllVars], I0) :- put_atts(V, [order(I0)]), I is I0+1, order_vars(AllVars, I). init_tops([],[]). init_tops(_.Leaves,_.Tops) :- init_tops(Leaves,Tops). sort_vars(AllVars0, AllVars, Leaves) :- dgraph_new(Graph0), build_graph(AllVars0, Graph0, Graph), dgraph_leaves(Graph, Leaves), dgraph_top_sort(Graph, AllVars). build_graph([], Graph, Graph). build_graph(V.AllVars0, Graph0, Graph) :- clpbn:get_atts(V, [dist(_DistId, Parents)]), !, dgraph_add_vertex(Graph0, V, Graph1), add_parents(Parents, V, Graph1, GraphI), build_graph(AllVars0, GraphI, Graph). build_graph(_V.AllVars0, Graph0, Graph) :- build_graph(AllVars0, Graph0, Graph). add_parents([], _V, Graph, Graph). add_parents(V0.Parents, V, Graph0, GraphF) :- dgraph_add_edge(Graph0, V0, V, GraphI), add_parents(Parents, V, GraphI, GraphF). get_vars_info([], Vs, Vs, Ps, Ps, _, _) --> []. get_vars_info([V|MoreVs], Vs, VsF, Ps, PsF, Lvs, Outs) --> { clpbn:get_atts(V, [dist(DistId, Parents)]) }, !, %{writeln(v:DistId:Parents)}, [DIST], { get_var_info(V, DistId, Parents, Vs, Vs2, Ps, Ps1, Lvs, Outs, DIST) }, get_vars_info(MoreVs, Vs2, VsF, Ps1, PsF, Lvs, Outs). get_vars_info([_|MoreVs], Vs0, VsF, Ps0, PsF, VarsInfo, Lvs, Outs) :- get_vars_info(MoreVs, Vs0, VsF, Ps0, PsF, VarsInfo, Lvs, Outs). % % let's have some fun with avg % get_var_info(V, avg(Domain), Parents, Vs, Vs2, Ps, Ps, Lvs, Outs, DIST) :- !, length(Domain, DSize), % run_though_avg(V, DSize, Domain, Parents, Vs, Vs2, Lvs, Outs, DIST). % top_down_with_tabling(V, DSize, Domain, Parents, Vs, Vs2, Lvs, Outs, DIST). bup_avg(V, DSize, Domain, Parents, Vs, Vs2, Lvs, Outs, DIST). % standard random variable get_var_info(V, DistId, Parents0, Vs, Vs2, Ps, Ps1, Lvs, Outs, DIST) :- % clpbn:get_atts(V, [key(K)]), writeln(V:K:DistId:Parents), reorder_vars(Parents0, Parents, Map), check_p(DistId, Map, Parms, _ParmVars, Ps, Ps1), unbound_parms(Parms, ParmVars), check_v(V, DistId, DIST, Vs, Vs1), DIST = info(V, Tree, Ev, Values, Formula, ParmVars, Parms), % get a list of form [[P00,P01], [P10,P11], [P20,P21]] get_parents(Parents, PVars, Vs1, Vs2), cross_product(Values, Ev, PVars, ParmVars, Formula0), % (numbervars(Formula0,0,_),writeln(formula0:Ev:Formula0), fail ; true), get_evidence(V, Tree, Ev, Formula0, Formula, Lvs, Outs). %, (numbervars(Formula,0,_),writeln(formula:Formula), fail ; true) % % reorder all variables and make sure we get a % map of how the transfer was done. % % position zero is output % reorder_vars(Vs, OVs, Map) :- add_pos(Vs, 1, PVs), keysort(PVs, SVs), remove_key(SVs, OVs, Map). add_pos([], _, []). add_pos([V|Vs], I0, [K-(I0,V)|PVs]) :- get_atts(V,[order(K)]), I is I0+1, add_pos(Vs, I, PVs). remove_key([], [], []). remove_key([_-(I,V)|SVs], [V|OVs], [I|Map]) :- remove_key(SVs, OVs, Map). %%%%%%%%%%%%%%%%%%%%%%%%% % % use top-down to generate average % run_though_avg(V, 3, Domain, Parents0, Vs, Vs2, Lvs, Outs, DIST) :- reorder_vars(Parents0, Parents, _Map), check_v(V, avg(Domain,Parents0), DIST, Vs, Vs1), DIST = info(V, Tree, Ev, [V0,V1,V2], Formula, [], []), get_parents(Parents, PVars, Vs1, Vs2), length(Parents, N), generate_3tree(F00, PVars, 0, 0, 0, N, N0, N1, N2, R, (N1+2*N2 =< N/2), (N1+2*(N2+R) =< N/2)), simplify_exp(F00, F0), % generate_3tree(F1, PVars, 0, 0, 0, N, N0, N1, N2, R, ((N1+2*(N2+R) > N/2, N1+2*N2 < (3*N)/2))), generate_3tree(F20, PVars, 0, 0, 0, N, N0, N1, N2, R, (N1+2*(N2+R) >= (3*N)/2), N1+2*N2 >= (3*N)/2), % simplify_exp(F20, F2), F20=F2, Formula0 = [V0=F0*Ev0,V2=F2*Ev2,V1=not(F0+F2)*Ev1], Ev = [Ev0,Ev1,Ev2], get_evidence(V, Tree, Ev, Formula0, Formula, Lvs, Outs). generate_3tree(OUT, _, I00, I10, I20, IR0, N0, N1, N2, R, _Exp, ExpF) :- IR is IR0-1, satisf(I00, I10, I20, IR, N0, N1, N2, R, ExpF), !, OUT = 1. generate_3tree(OUT, [[P0,P1,P2]], I00, I10, I20, IR0, N0, N1, N2, R, Exp, _ExpF) :- IR is IR0-1, ( satisf(I00+1, I10, I20, IR, N0, N1, N2, R, Exp) -> L0 = [P0|L1] ; L0 = L1 ), ( satisf(I00, I10+1, I20, IR, N0, N1, N2, R, Exp) -> L1 = [P1|L2] ; L1 = L2 ), ( satisf(I00, I10, I20+1, IR, N0, N1, N2, R, Exp) -> L2 = [P2] ; L2 = [] ), to_disj(L0, OUT). generate_3tree(OUT, [[P0,P1,P2]|Ps], I00, I10, I20, IR0, N0, N1, N2, R, Exp, ExpF) :- IR is IR0-1, ( satisf(I00+1, I10, I20, IR, N0, N1, N2, R, Exp) -> I0 is I00+1, generate_3tree(O0, Ps, I0, I10, I20, IR, N0, N1, N2, R, Exp, ExpF) -> L0 = [P0*O0|L1] ; L0 = L1 ), ( satisf(I00, I10+1, I20, IR0, N0, N1, N2, R, Exp) -> I1 is I10+1, generate_3tree(O1, Ps, I00, I1, I20, IR, N0, N1, N2, R, Exp, ExpF) -> L1 = [P1*O1|L2] ; L1 = L2 ), ( satisf(I00, I10, I20+1, IR0, N0, N1, N2, R, Exp) -> I2 is I20+1, generate_3tree(O2, Ps, I00, I10, I2, IR, N0, N1, N2, R, Exp, ExpF) -> L2 = [P2*O2] ; L2 = [] ), to_disj(L0, OUT). satisf(I0, I1, I2, IR, N0, N1, N2, R, Exp) :- \+ \+ ( I0 = N0, I1=N1, I2=N2, IR=R, call(Exp) ). not_satisf(I0, I1, I2, IR, N0, N1, N2, R, Exp) :- \+ ( I0 = N0, I1=N1, I2=N2, IR=R, call(Exp) ). %%%%%%%%%%%%%%%%%%%%%%%%% % % use top-down to generate average % top_down_with_tabling(V, Size, Domain, Parents0, Vs, Vs2, Lvs, Outs, DIST) :- reorder_vars(Parents0, Parents, _Map), check_v(V, avg(Domain,Parents), DIST, Vs, Vs1), DIST = info(V, Tree, Ev, OVs, Formula, [], []), get_parents(Parents, PVars, Vs1, Vs2), length(Parents, N), Max is (Size-1)*N, % This should be true avg_borders(0, Size, Max, Borders), b_hash_new(H0), avg_trees(0, Max, PVars, Size, F1, 0, Borders, OVs, Ev, H0, H), generate_avg_code(H, Formula, F), % Formula0 = [V0=F0*Ev0,V2=F2*Ev2,V1=not(F0+F2)*Ev1], % Ev = [Ev0,Ev1,Ev2], get_evidence(V, Tree, Ev, F1, F, Lvs, Outs). avg_trees(Size, _, _, Size, F0, _, F0, [], [], H, H) :- !. avg_trees(I0, Max, PVars, Size, [V=O*E|F0], Im, [IM|Borders], [V|OVs], [E|Ev], H0, H) :- I is I0+1, avg_tree(PVars, 0, Max, Im, IM, Size, O, H0, HI), Im1 is IM+1, avg_trees(I, Max, PVars, Size, F0, Im1, Borders, OVs, Ev, HI, H). avg_tree( _PVars, P, _, Im, IM, _Size, O, H0, H0) :- b_hash_lookup(k(P,Im,IM), O=_Exp, H0), !. avg_tree([], _P, _Max, _Im, _IM, _Size, 1, H, H). avg_tree([Vals|PVars], P, Max, Im, IM, Size, O, H0, HF) :- b_hash_insert(H0, k(P,Im,IM), O=Simp*1, HI), MaxI is Max-(Size-1), avg_exp(Vals, PVars, 0, P, MaxI, Size, Im, IM, HI, HF, Exp), simplify_exp(Exp, Simp). avg_exp([], _, _, _P, _Max, _Size, _Im, _IM, H, H, 0). avg_exp([Val|Vals], PVars, I0, P0, Max, Size, Im, IM, HI, HF, O) :- (Vals = [] -> O=O1 ; O = Val*O1+not(Val)*O2 ), Im1 is max(0, Im-I0), IM1 is IM-I0, ( IM1 < 0 -> O1 = 0, H2 = HI; /* we have exceed maximum */ Im1 > Max -> O1 = 0, H2 = HI; /* we cannot make to minimum */ Im1 = 0, IM1 > Max -> O1 = 1, H2 = HI; /* we cannot exceed maximum */ P is P0+1, avg_tree(PVars, P, Max, Im1, IM1, Size, O1, HI, H2) ), I is I0+1, avg_exp(Vals, PVars, I, P0, Max, Size, Im, IM, H2, HF, O2). generate_avg_code(H, Formula, Formula0) :- b_hash_to_list(H,L), sort(L, S), strip_and_add(S, Formula0, Formula). strip_and_add([], F, F). strip_and_add([_-Exp|S], F0, F) :- strip_and_add(S, [Exp|F0], F). %%%%%%%%%%%%%%%%%%%%%%%%% % % use bottom-up dynamic programming to generate average % bup_avg(V, Size, Domain, Parents0, Vs, Vs2, Lvs, Outs, DIST) :- reorder_vars(Parents0, Parents, _), check_v(V, avg(Domain,Parents), DIST, Vs, Vs1), DIST = info(V, Tree, Ev, OVs, Formula, [], []), get_parents(Parents, PVars, Vs1, Vs2), length(Parents, N), Max is (Size-1)*N, % This should be true ArraySize is Max+1, functor(Protected, protected, ArraySize), avg_domains(0, Size, 0, Max, LDomains), Domains =.. [d|LDomains], Reach is (Size-1), generate_sums(PVars, Size, Max, Reach, Protected, Domains, ArraySize, Sums, F0), % bin_sums(PVars, Sums, F00), % reverse(F00,F0), % easier to do recursion on lists Sums =.. [_|LSums], generate_avg(0, Size, 0, Max, LSums, OVs, Ev, F1, []), reverse(F0, RF0), get_evidence(V, Tree, Ev, F1, F2, Lvs, Outs), append(RF0, F2, Formula). % % use binary approach, like what is standard % bin_sums(Vs, Sums, F) :- vs_to_sums(Vs, Sums0), bin_sums(Sums0, Sums, F, []). vs_to_sums([], []). vs_to_sums([V|Vs], [Sum|Sums0]) :- Sum =.. [sum|V], vs_to_sums(Vs, Sums0). bin_sums([Sum], Sum) --> !. bin_sums(LSums, Sum) --> { halve(LSums, Sums1, Sums2) }, bin_sums(Sums1, Sum1), bin_sums(Sums2, Sum2), sum(Sum1, Sum2, Sum). halve(LSums, Sums1, Sums2) :- length(LSums, L), Take is L div 2, head(Take, LSums, Sums1, Sums2). head(0, L, [], L) :- !. head(Take, [H|L], [H|Sums1], Sum2) :- Take1 is Take-1, head(Take1, L, Sums1, Sum2). sum(Sum1, Sum2, Sum) --> { functor(Sum1, _, M1), functor(Sum2, _, M2), Max is M1+M2-2, Max1 is Max+1, Max0 is M2-1, functor(Sum, sum, Max1), Sum1 =.. [_|PVals] }, expand_sums(PVals, 0, Max0, Max1, M2, Sum2, Sum). % % bottom up step by step % % generate_sums([PVals], Size, Max, _, _Protected, _Domains, _, Sum, []) :- !, Max is Size-1, Sum =.. [sum|PVals]. generate_sums([PVals|Parents], Size, Max, Reach, Protected, Domains, ASize, NewSums, F) :- NewReach is Reach+(Size-1), generate_sums(Parents, Size, Max0, NewReach, Protected, Domains, ASize, Sums, F0), Max is Max0+(Size-1), Max1 is Max+1, functor(NewSums, sum, Max1), protect_avg(0, Max0, Protected, Domains, ASize, Reach), expand_sums(PVals, 0, Max0, Max1, Size, Sums, Protected, NewSums, F, F0). protect_avg(Max0,Max0,_Protected, _Domains, _ASize, _Reach) :- !. protect_avg(I0, Max0, Protected, Domains, ASize, Reach) :- I is I0+1, Top is I+Reach, ( Top > ASize ; arg(I, Domains, CD), arg(Top, Domains, CD) ), !, arg(I, Protected, yes), protect_avg(I, Max0, Protected, Domains, ASize, Reach). protect_avg(I0, Max0, Protected, Domains, ASize, Reach) :- I is I0+1, protect_avg(I, Max0, Protected, Domains, ASize, Reach). % % outer loop: generate array of sums at level j= Sum[j0...jMax] % expand_sums(_Parents, Max, _, Max, _Size, _Sums, _P, _NewSums, F0, F0) :- !. expand_sums(Parents, I0, Max0, Max, Size, Sums, Prot, NewSums, [O=SUM*1|F], F0) :- I is I0+1, arg(I, Prot, P), var(P), !, arg(I, NewSums, O), sum_all(Parents, 0, I0, Max0, Sums, List), to_disj(List, SUM), expand_sums(Parents, I, Max0, Max, Size, Sums, Prot, NewSums, F, F0). expand_sums(Parents, I0, Max0, Max, Size, Sums, Prot, NewSums, F, F0) :- I is I0+1, arg(I, Sums, O), arg(I, NewSums, O), expand_sums(Parents, I, Max0, Max, Size, Sums, Prot, NewSums, F, F0). % %inner loop: find all parents that contribute to A_ji, % that is generate Pk*Sum_(j-1)l and k+l st k+l = i % sum_all([], _, _, _, _, []). sum_all([V|Vs], Pos, I, Max0, Sums, [O|List]) :- J is I-Pos, J >= 0, J =< Max0, !, J1 is J+1, arg(J1, Sums, S0), ( J < I -> O = V*S0 ; O = S0*V ), Pos1 is Pos+1, sum_all(Vs, Pos1, I, Max0, Sums, List). sum_all([_V|Vs], Pos, I, Max0, Sums, List) :- Pos1 is Pos+1, sum_all(Vs, Pos1, I, Max0, Sums, List). gen_arg(J, Sums, Max, S0) :- gen_arg(0, Max, J, Sums, S0). gen_arg(Max, Max, J, Sums, S0) :- !, I is Max+1, arg(I, Sums, A), ( Max = J -> S0 = A ; S0 = not(A)). gen_arg(I0, Max, J, Sums, S) :- I is I0+1, arg(I, Sums, A), ( I0 = J -> S = A*S0 ; S = not(A)*S0), gen_arg(I, Max, J, Sums, S0). avg_borders(Size, Size, _Max, []) :- !. avg_borders(I0, Size, Max, [J|Vals]) :- I is I0+1, Border is (I*Max)/Size, J is integer(round(Border)), avg_borders(I, Size, Max, Vals). avg_domains(Size, Size, _J, _Max, []). avg_domains(I0, Size, J0, Max, Vals) :- I is I0+1, Border is (I*Max)/Size, fetch_domain_for_avg(J0, Border, J, I0, Vals, ValsI), avg_domains(I, Size, J, Max, ValsI). fetch_domain_for_avg(J, Border, J, _, Vals, Vals) :- J > Border, !. fetch_domain_for_avg(J0, Border, J, I0, [I0|LVals], RLVals) :- J1 is J0+1, fetch_domain_for_avg(J1, Border, J, I0, LVals, RLVals). generate_avg(Size, Size, _J, _Max, [], [], [], F, F). generate_avg(I0, Size, J0, Max, LSums, [O|OVs], [Ev|Evs], [O=Disj*Ev|F], F0) :- I is I0+1, Border is (I*Max)/Size, fetch_for_avg(J0, Border, J, LSums, MySums, RSums), to_disj(MySums, Disj), generate_avg(I, Size, J, Max, RSums, OVs, Evs, F, F0). fetch_for_avg(J, Border, J, RSums, [], RSums) :- J > Border, !. fetch_for_avg(J0, Border, J, [S|LSums], [S|MySums], RSums) :- J1 is J0+1, fetch_for_avg(J1, Border, J, LSums, MySums, RSums). to_disj([], 0). to_disj([V], V). to_disj([V,V1|Vs], Out) :- to_disj2([V1|Vs], V, Out). to_disj2([V], V0, V0+V). to_disj2([V,V1|Vs], V0, Out) :- to_disj2([V1|Vs], V0+V, Out). % % look for parameters in the rb-tree, or add a new. % distid is the key % check_p(DistId, Map, Parms, ParmVars, Ps, Ps) :- rb_lookup(DistId-Map, theta(Parms, ParmVars), Ps), !. check_p(DistId, Map, Parms, ParmVars, Ps, PsF) :- get_dist_params(DistId, Parms0), get_dist_all_sizes(DistId, Sizes), swap_parms(Parms0, Sizes, [0|Map], Parms1), length(Parms1, L0), get_dist_domain_size(DistId, Size), L1 is L0 div Size, L is L0-L1, initial_maxes(L1, Multipliers), copy(L, Multipliers, NextMults, NextMults, Parms1, Parms, ParmVars), %writeln(t:Size:Parms0:Parms:ParmVars), rb_insert(Ps, DistId-Map, theta(Parms, ParmVars), PsF). swap_parms(Parms0, Sizes, Map, Parms1) :- matrix_new(floats, Sizes, Parms0, T0), matrix_shuffle(T0,Map,TF), matrix_to_list(TF, Parms1). % % we are using switches by two % initial_maxes(0, []) :- !. initial_maxes(Size, [1.0|Multipliers]) :- !, Size1 is Size-1, initial_maxes(Size1, Multipliers). copy(0, [], [], _, _Parms0, [], []) :- !. copy(N, [], [], Ms, Parms0, Parms, ParmVars) :-!, copy(N, Ms, NewMs, NewMs, Parms0, Parms, ParmVars). copy(N, D.Ds, ND.NDs, New, El.Parms0, NEl.Parms, V.ParmVars) :- N1 is N-1, (El == 0.0 -> NEl = 0, V = NEl, ND = D ;El == 1.0 -> NEl = 1, V = NEl, ND = 0.0 ;El == 0 -> NEl = 0, V = NEl, ND = D ;El =:= 1 -> NEl = 1, V = NEl, ND = 0.0, V = NEl ; NEl is El/D, ND is D-El, V = NEl ), copy(N1, Ds, NDs, New, Parms0, Parms, ParmVars). unbound_parms([], []). unbound_parms(_.Parms, _.ParmVars) :- unbound_parms(Parms, ParmVars). check_v(V, _, INFO, Vs, Vs) :- rb_lookup(V, INFO, Vs), !. check_v(V, DistId, INFO, Vs0, Vs) :- get_dist_domain_size(DistId, Size), length(Values, Size), length(Ev, Size), INFO = info(V, _Tree, Ev, Values, _Formula, _, _), rb_insert(Vs0, V, INFO, Vs). get_parents([], [], Vs, Vs). get_parents(V.Parents, Values.PVars, Vs0, Vs) :- clpbn:get_atts(V, [dist(DistId, _)]), check_v(V, DistId, INFO, Vs0, Vs1), INFO = info(V, _Parent, _Ev, Values, _, _, _), get_parents(Parents, PVars, Vs1, Vs). % % construct the formula, this is the key... % cross_product(Values, Ev, PVars, ParmVars, Formulas) :- arrangements(PVars, Arranges), apply_parents_first(Values, Ev, ParmCombos, ParmCombos, Arranges, Formulas, ParmVars). % % if we have the parent variables with two values, we get % [[XP,YP],[XP,YN],[XN,YP],[XN,YN]] % arrangements([], [[]]). arrangements([L1|Ls],O) :- arrangements(Ls, LN), expand(L1, LN, O, []). expand([], _LN) --> []. expand([H|L1], LN) --> concatenate_all(H, LN), expand(L1, LN). concatenate_all(_H, []) --> []. concatenate_all(H, L.LN) --> [[H|L]], concatenate_all(H, LN). % % core of algorithm % % Values -> Output Vars for BDD % Es -> Evidence variables % Previous -> top of difference list with parameters used so far % P0 -> end of difference list with parameters used so far % Pvars -> Parents % Eqs -> Output Equations % Pars -> Output Theta Parameters % apply_parents_first([Value], [E], Previous, [], PVars, [Value=Disj*E], Parameters) :- !, apply_last_parent(PVars, Previous, Disj), flatten(Previous, Parameters). apply_parents_first([Value|Values], [E|Ev], Previous, P0, PVars, (Value=Disj*E).Formulas, Parameters) :- P0 = [TheseParents|End], apply_first_parent(PVars, Disj, TheseParents), apply_parents_second(Values, Ev, Previous, End, PVars, Formulas, Parameters). apply_parents_second([Value], [E], Previous, [], PVars, [Value=Disj*E], Parameters) :- !, apply_last_parent(PVars, Previous, Disj), flatten(Previous, Parameters). apply_parents_second([Value|Values], [E|Ev], Previous, P0, PVars, (Value=Disj*E).Formulas, Parameters) :- apply_middle_parent(PVars, Previous, Disj, TheseParents), % this must be done after applying middle parents because of the var % test. P0 = [TheseParents|End], apply_parents_second(Values, Ev, Previous, End, PVars, Formulas, Parameters). apply_first_parent([Parents], Conj, [Theta]) :- !, parents_to_conj(Parents,Theta,Conj). apply_first_parent(Parents.PVars, Conj+Disj, Theta.TheseParents) :- parents_to_conj(Parents,Theta,Conj), apply_first_parent(PVars, Disj, TheseParents). apply_middle_parent([Parents], Other, Conj, [ThetaPar]) :- !, skim_for_theta(Other, Theta, _, ThetaPar), parents_to_conj(Parents,Theta,Conj). apply_middle_parent(Parents.PVars, Other, Conj+Disj, ThetaPar.TheseParents) :- skim_for_theta(Other, Theta, Remaining, ThetaPar), parents_to_conj(Parents,(Theta),Conj), apply_middle_parent(PVars, Remaining, Disj, TheseParents). apply_last_parent([Parents], Other, Conj) :- !, parents_to_conj(Parents,(Theta),Conj), skim_for_theta(Other, Theta, _, _). apply_last_parent(Parents.PVars, Other, Conj+Disj) :- parents_to_conj(Parents,(Theta),Conj), skim_for_theta(Other, Theta, Remaining, _), apply_last_parent(PVars, Remaining, Disj). % % % simplify stuff, removing process that is cancelled by 0s % parents_to_conj([], Theta, Theta) :- !. parents_to_conj(Ps, Theta, Theta*Conj) :- parents_to_conj2(Ps, Conj). parents_to_conj2([P],P) :- !. parents_to_conj2(P.Ps,P*Conj) :- parents_to_conj2(Ps,Conj). % % first case we haven't reached the end of the list so we need % to create a new parameter variable % skim_for_theta([[P|Other]|V], not(P)*New, [Other|_], New) :- var(V), !. % % last theta, it is just negation of the other ones % skim_for_theta([[P|Other]], not(P), [Other], _) :- !. % % recursive case, build-up % skim_for_theta([[P|Other]|More], not(P)*Ps, [Other|Left], New ) :- skim_for_theta(More, Ps, Left, New ). get_evidence(V, Tree, Ev, F0, F, Leaves, Finals) :- clpbn:get_atts(V, [evidence(Pos)]), !, zero_pos(0, Pos, Ev), insert_output(Leaves, V, Finals, Tree, Outs, SendOut), get_outs(F0, F, SendOut, Outs). % hidden deterministic node, can be removed. get_evidence(V, _Tree, Ev, F0, [], _Leaves, _Finals) :- clpbn:get_atts(V, [key(K)]), functor(K, Name, 2), ( Name = 'AVG' ; Name = 'MAX' ; Name = 'MIN' ), !, one_list(Ev), eval_outs(F0). %% no evidence !!! get_evidence(V, Tree, _Values, F0, F1, Leaves, Finals) :- insert_output(Leaves, V, Finals, Tree, Outs, SendOut), get_outs(F0, F1, SendOut, Outs). zero_pos(_, _Pos, []). zero_pos(Pos, Pos, 1.Values) :- !, I is Pos+1, zero_pos(I, Pos, Values). zero_pos(I0, Pos, 0.Values) :- I is I0+1, zero_pos(I, Pos, Values). one_list([]). one_list(1.Ev) :- one_list(Ev). % % insert a node with the disj of all alternatives, this is only done if node ends up to be in the output % insert_output([], _V, [], _Out, _Outs, []). insert_output(V._Leaves, V0, [Top|_], Top, Outs, [Top = Outs]) :- V == V0, !. insert_output(_.Leaves, V, _.Finals, Top, Outs, SendOut) :- insert_output(Leaves, V, Finals, Top, Outs, SendOut). get_outs([V=F], [V=NF|End], End, V) :- !, % writeln(f0:F), simplify_exp(F,NF). get_outs((V=F).Outs, (V=NF).NOuts, End, (F0 + V)) :- % writeln(f0:F), simplify_exp(F,NF), get_outs(Outs, NOuts, End, F0). eval_outs([]). eval_outs((V=F).Outs) :- simplify_exp(F,NF), V = NF, eval_outs(Outs). run_bdd_solver([[V]], LPs, bdd(Term, _Leaves, Nodes)) :- build_out_node(Nodes, Node), findall(Prob, get_prob(Term, Node, V, Prob),TermProbs), sumlist(TermProbs, Sum), normalise(TermProbs, Sum, LPs). build_out_node([_Top], []). build_out_node([T,T1|Tops], [Top = T*Top]) :- build_out_node2(T1.Tops, Top). build_out_node2([Top], Top). build_out_node2([T,T1|Tops], T*Top) :- build_out_node2(T1.Tops, Top). get_prob(Term, _Node, V, SP) :- bdds(ddnnf), !, all_cnfs(Term, CNF, IVs, Indics, V, AllParms, AllParmValues), build_cnf(CNF, IVs, Indics, AllParms, AllParmValues, SP). get_prob(Term, Node, V, SP) :- bdds(bdd), !, bind_all(Term, Node, Bindings, V, AllParms, AllParmValues), % reverse(AllParms, RAllParms), term_variables(AllParms, NVs), build_bdd(Bindings, NVs, AllParms, AllParmValues, Bdd), bdd_to_probability_sum_product(Bdd, SP), bdd_close(Bdd). build_bdd(Bindings, NVs, VTheta, Theta, Bdd) :- bdd_from_list(Bindings, NVs, Bdd), % bdd_size(Bdd, Len), % number_codes(Len,Codes), % atom_codes(Name,Codes), % bdd_print(Bdd, Name), % writeln(length=Len), VTheta = Theta. bind_all([], End, End, _V, [], []). bind_all([info(V, _Tree, Ev, _Values, Formula, ParmVars, Parms)|Term], End, BindsF, V0, ParmVars.AllParms, Parms.AllTheta) :- V0 == V, !, set_to_one_zeros(Ev), bind_formula(Formula, BindsF, BindsI), bind_all(Term, End, BindsI, V0, AllParms, AllTheta). bind_all([info(_V, _Tree, Ev, _Values, Formula, ParmVars, Parms)|Term], End, BindsF, V0, ParmVars.AllParms, Parms.AllTheta) :- set_to_ones(Ev),!, bind_formula(Formula, BindsF, BindsI), bind_all(Term, End, BindsI, V0, AllParms, AllTheta). % evidence: no need to add any stuff. bind_all([info(_V, _Tree, _Ev, _Values, Formula, ParmVars, Parms)|Term], End, BindsF, V0, ParmVars.AllParms, Parms.AllTheta) :- bind_formula(Formula, BindsF, BindsI), bind_all(Term, End, BindsI, V0, AllParms, AllTheta). bind_formula([], L, L). bind_formula(B.Formula, B.BsF, Bs0) :- bind_formula(Formula, BsF, Bs0). set_to_one_zeros([1|Values]) :- set_to_zeros(Values). set_to_one_zeros([0|Values]) :- set_to_one_zeros(Values). set_to_zeros([]). set_to_zeros(0.Values) :- set_to_zeros(Values). set_to_ones([]). set_to_ones(1.Values) :- set_to_ones(Values). normalise([], _Sum, []). normalise(P.TermProbs, Sum, NP.LPs) :- NP is P/Sum, normalise(TermProbs, Sum, LPs). finalize_bdd_solver(_). all_cnfs([], [], [], [], _V, [], []). all_cnfs([info(V, Tree, Ev, Values, Formula, ParmVars, Parms)|Term], BindsF, IVars, Indics, V0, AllParmsF, AllThetaF) :- %writeln(f:Formula), V0 == V, !, set_to_one_zeros(Ev), all_indicators(Values, BindsF, Binds0), indicators(Values, [], Ev, IVars, IVarsI, Indics, IndicsI, Binds0, Binds1), parms( ParmVars, Parms, AllParmsF, AllThetaF, AllParms, AllTheta), parameters(Formula, Tree, Binds1, BindsI), all_cnfs(Term, BindsI, IVarsI, IndicsI, V0, AllParms, AllTheta). all_cnfs([info(_V, Tree, Ev, Values, Formula, ParmVars, Parms)|Term], BindsF, IVars, Indics, V0, AllParmsF, AllThetaF) :- set_to_ones(Ev),!, all_indicators(Values, BindsF, Binds0), indicators(Values, [], Ev, IVars, IVarsI, Indics, IndicsI, Binds0, Binds1), parms( ParmVars, Parms, AllParmsF, AllThetaF, AllParms, AllTheta), parameters(Formula, Tree, Binds1, BindsI), all_cnfs(Term, BindsI, IVarsI, IndicsI, V0, AllParms, AllTheta). % evidence: no need to add any stuff. all_cnfs([info(_V, Tree, Ev, Values, Formula, ParmVars, Parms)|Term], BindsF, IVars, Indics, V0, AllParmsF, AllThetaF) :- all_indicators(Values, BindsF, Binds0), indicators(Values, [], Ev, IVars, IVarsI, Indics, IndicsI, Binds0, Binds1), parms( ParmVars, Parms, AllParmsF, AllThetaF, AllParms, AllTheta), parameters(Formula, Tree, Binds1, BindsI), all_cnfs(Term, BindsI, IVarsI, IndicsI, V0, AllParms, AllTheta). all_indicators(Values) --> { values_to_disj(Values, Disj) }, [Disj]. values_to_disj([V], V) :- !. values_to_disj([V|Values], V+Disj) :- values_to_disj(Values, Disj). indicators([V|Vars], SeenVs, [E|Ev], [V|IsF], IsI, [E|Inds], Inds0) --> generate_exclusions(SeenVs, V), indicators(Vars, [V|SeenVs], Ev, IsF, IsI, Inds, Inds0). indicators([], _SeenVs, [], IsF, IsF, Inds, Inds) --> []. parms([], [], AllParms, AllTheta, AllParms, AllTheta). parms([V|ParmVars], [P|Parms], [V|AllParmsF], [P|AllThetaF], AllParms, AllTheta) :- parms( ParmVars, Parms, AllParmsF, AllThetaF, AllParms, AllTheta). parameters([], _) --> []. % ignore disj, only useful to BDDs parameters([(T=_)|Formula], Tree) --> { Tree == T }, !, parameters(Formula, Tree). parameters([(V0=Disj*_I0)|Formula], Tree) --> conj(Disj, V0), parameters(Formula, Tree). % transform V0<- A*B+C*(D+not(E)) % [V0+not(A)+not(B),V0+not(C)+not(D),V0+not(C)+E] conj(Disj, V0) --> { conj2(Disj, [[V0]], LVs) }, to_disjs(LVs). conj2(A, L0, LF) :- var(A), !, add(not(A), L0, LF). conj2((A*B), L0, LF) :- conj2(A, L0, LI), conj2(B, LI, LF). conj2((A+B), L0, LF) :- conj2(A, L0, L1), conj2(B, L0, L2), append(L1, L2, LF). conj2(not(A), L0, LF) :- add(A, L0, LF). add(_, [], []). add(Head, [H|L], [[Head|H]|NL]) :- add(Head, L, NL). to_disjs([]) --> []. to_disjs([[H|L]|LVs]) --> mkdisj(L, H), to_disjs(LVs). mkdisj([], Disj) --> [Disj]. mkdisj([H|L], Disj) --> mkdisj(L, (H+Disj)). % % add formula for V \== V0 -> V or V0 and not(V) or not(V0) % generate_exclusions([], _V) --> []. generate_exclusions([V0|SeenVs], V) --> [(not(V0)+not(V))], generate_exclusions(SeenVs, V). build_cnf(CNF, IVs, Indics, AllParms, AllParmValues, Val) :- %(numbervars(CNF,1,_), writeln(cnf_to_ddnnf(CNF, Vars, IVs, [], F)), fail ; true ), cnf_to_ddnnf(CNF, AllParms, F), AllParms = AllParmValues, IVs = Indics, term_variables(CNF, Extra), set_to_ones(Extra), ddnnf_is(F, Val).