TaskModelSetElement Element constraints GECODE_SET_EXPORT void GECODE_SET_EXPORT void Gecode::element (Home home, SetOpType op, const SetVarArgs &x, SetVar y, SetVar z, const IntSet &u=IntSet(Set::Limits::min, Set::Limits::max)) element Home home SetOpType op const SetVarArgs & x SetVar y SetVar z const IntSet & u IntSet(Set::Limits::min, Set::Limits::max) Post propagator for $ z=\diamond_{\mathit{op}}\langle x_0,\dots,x_{n-1}\rangle[y] $. If y is the empty set, the usual conventions for set operations apply: an empty union is empty, while an empty intersection is the universe, which can be given as the optional parameter u.The indices for y start at 0. GECODE_SET_EXPORT void GECODE_SET_EXPORT void Gecode::element (Home home, SetOpType op, const IntVarArgs &x, SetVar y, SetVar z, const IntSet &u=IntSet(Set::Limits::min, Set::Limits::max)) element Home home SetOpType op const IntVarArgs & x SetVar y SetVar z const IntSet & u IntSet(Set::Limits::min, Set::Limits::max) Post propagator for $ z=\diamond_{\mathit{op}}\langle \{x_0\},\dots,\{x_{n-1}\}\rangle[y] $. If y is the empty set, the usual conventions for set operations apply: an empty union is empty, while an empty intersection is the universe, which can be given as the optional parameter u.The indices for y start at 0. GECODE_SET_EXPORT void GECODE_SET_EXPORT void Gecode::element (Home home, SetOpType op, const IntSetArgs &x, SetVar y, SetVar z, const IntSet &u=IntSet(Set::Limits::min, Set::Limits::max)) element Home home SetOpType op const IntSetArgs & x SetVar y SetVar z const IntSet & u IntSet(Set::Limits::min, Set::Limits::max) Post propagator for $ z=\diamond_{\mathit{op}}\langle x_0,\dots,x_{n-1}\rangle[y] $. If y is the empty set, the usual conventions for set operations apply: an empty union is empty, while an empty intersection is the universe, which can be given as the optional parameter u.The indices for y start at 0. GECODE_SET_EXPORT void GECODE_SET_EXPORT void Gecode::element (Home home, SetOpType op, const IntArgs &x, SetVar y, SetVar z, const IntSet &u=IntSet(Set::Limits::min, Set::Limits::max)) element Home home SetOpType op const IntArgs & x SetVar y SetVar z const IntSet & u IntSet(Set::Limits::min, Set::Limits::max) Post propagator for $ z=\diamond_{\mathit{op}}\langle \{x_0\},\dots,\{x_{n-1}\}\rangle[y] $. If y is the empty set, the usual conventions for set operations apply: an empty union is empty, while an empty intersection is the universe, which can be given as the optional parameter u.The indices for y start at 0. GECODE_SET_EXPORT void GECODE_SET_EXPORT void Gecode::element (Home home, const SetVarArgs &x, IntVar y, SetVar z) element Home home const SetVarArgs & x IntVar y SetVar z Post propagator for $ z=\langle x_0,\dots,x_{n-1}\rangle[y] $. The indices for y start at 0. GECODE_SET_EXPORT void GECODE_SET_EXPORT void Gecode::element (Home home, const IntSetArgs &s, IntVar y, SetVar z) element Home home const IntSetArgs & s IntVar y SetVar z Post propagator for $ z=\langle s_0,\dots,s_{n-1}\rangle[y] $. The indices for y start at 0. GECODE_SET_EXPORT void GECODE_SET_EXPORT void Gecode::element (Home home, const IntSetArgs &a, IntVar x, int w, IntVar y, int h, SetVar z) element Home home const IntSetArgs & a IntVar x int w IntVar y int h SetVar z Post propagator for $ a_{x+w\cdot y}=z$. Throws an exception of type Set::ArgumentSizeMismatch, if $ w\cdot h\neq|a|$. GECODE_SET_EXPORT void GECODE_SET_EXPORT void Gecode::element (Home home, const SetVarArgs &a, IntVar x, int w, IntVar y, int h, SetVar z) element Home home const SetVarArgs & a IntVar x int w IntVar y int h SetVar z Post propagator for $ a_{x+w\cdot y}=z$. Throws an exception of type Set::ArgumentSizeMismatch, if $ w\cdot h\neq|a|$. An element constraint selects zero, one or more elements out of a sequence. We write $ \langle x_0,\dots, x_{n-1} \rangle $ for the sequence, and $ [y] $ for the index variable.Set element constraints are closely related to the element constraint on integer variables.