/* yap2swi.c */ /* * Project: jpl for Yap Prolog * Author: Steve Moyle and Vitor Santos Costa * Email: steve.moyle@comlab.ox.ac.uk * Date: 21 January 2002 * Copyright (c) 2002 Steve Moyle. All rights reserved. */ //=== includes =============================================================== #include #include #include #include #include #include #include #include #include #if HAVE_MATH_H #include #endif #if HAVE_ERRNO_H #include #endif #define PL_KERNEL 1 #include #include #include #ifdef USE_GMP #include #endif #ifdef __WIN32__ /* Windows */ #include #endif #define BUF_SIZE 256 #define TMP_BUF_SIZE 2*BUF_SIZE #define BUF_RINGS 16 /* Required by PL_error */ #define ERR_NO_ERROR 0 #define ERR_INSTANTIATION 1 /* void */ #define ERR_TYPE 2 /* atom_t expected, term_t value */ #define ERR_DOMAIN 3 /* atom_t domain, term_t value */ #define ERR_REPRESENTATION 4 /* atom_t what */ #define ERR_MODIFY_STATIC_PROC 5 /* predicate_t proc */ #define ERR_EVALUATION 6 /* atom_t what */ #define ERR_AR_TYPE 7 /* atom_t expected, Number value */ #define ERR_NOT_EVALUABLE 8 /* functor_t func */ #define ERR_DIV_BY_ZERO 9 /* void */ #define ERR_FAILED 10 /* predicate_t proc */ #define ERR_FILE_OPERATION 11 /* atom_t action, atom_t type, term_t */ #define ERR_PERMISSION 12 /* atom_t type, atom_t op, term_t obj*/ #define ERR_NOT_IMPLEMENTED 13 /* const char *what */ #define ERR_EXISTENCE 14 /* atom_t type, term_t obj */ #define ERR_STREAM_OP 15 /* atom_t action, term_t obj */ #define ERR_RESOURCE 16 /* atom_t resource */ #define ERR_NOMEM 17 /* void */ #define ERR_SYSCALL 18 /* void */ #define ERR_SHELL_FAILED 19 /* term_t command */ #define ERR_SHELL_SIGNALLED 20 /* term_t command, int signal */ #define ERR_AR_UNDEF 21 /* void */ #define ERR_AR_OVERFLOW 22 /* void */ #define ERR_AR_UNDERFLOW 23 /* void */ #define ERR_UNDEFINED_PROC 24 /* Definition def */ #define ERR_SIGNALLED 25 /* int sig, char *name */ #define ERR_CLOSED_STREAM 26 /* IOSTREAM * */ #define ERR_BUSY 27 /* mutexes */ #define ERR_PERMISSION_PROC 28 /* op, type, Definition */ #define ERR_DDE_OP 29 /* op, error */ #define ERR_SYNTAX 30 /* what */ #define ERR_SHARED_OBJECT_OP 31 /* op, error */ #define ERR_TIMEOUT 32 /* op, object */ #define ERR_NOT_IMPLEMENTED_PROC 33 /* name, arity */ #define ERR_FORMAT 34 /* message */ #define ERR_FORMAT_ARG 35 /* seq, term */ #define ERR_OCCURS_CHECK 36 /* Word, Word */ #define ERR_CHARS_TYPE 37 /* char *, term */ #define ERR_MUST_BE_VAR 38 /* int argn, term_t term */ #define addr_hash(V) (((CELL) (V)) >> 4 & (N_SWI_HASH-1)) static void add_to_hash(Int i, ADDR key) { UInt h = addr_hash(key); while (SWI_ReverseHash[h].key) { h = (h+1)%N_SWI_HASH; } SWI_ReverseHash[h].key = key; SWI_ReverseHash[h].pos = i; } static atom_t in_hash(ADDR key) { UInt h = addr_hash(key); while (SWI_ReverseHash[h].key) { if (SWI_ReverseHash[h].key == key) return SWI_ReverseHash[h].pos; h = (h+1)%N_SWI_HASH; } return 0; } static inline atom_t AtomToSWIAtom(Atom at) { atom_t ats; if ((ats = in_hash((ADDR)at))) return ats; return (atom_t)at; } static inline Atom SWIAtomToAtom(atom_t at) { if ((CELL)at & 1) return SWI_Atoms[at>>1]; return (Atom)at; } static inline Term SWIModuleToModule(module_t m) { if (m) return (CELL)m; if (CurrentModule) return CurrentModule; return USER_MODULE; } static inline functor_t FunctorToSWIFunctor(Functor at) { atom_t ats; if ((ats = in_hash((ADDR)at))) return (functor_t)ats; return (functor_t)at; } static inline Functor SWIFunctorToFunctor(functor_t at) { if (IsAtomTerm(at)) return (Functor)at; if (IsApplTerm(at)) return SWI_Functors[((CELL)RepAppl((CELL)at))/sizeof(CELL)]; return (Functor)at; } void Yap_InitSWIHash(void) { int i, j; memset(SWI_ReverseHash, 0, N_SWI_HASH*sizeof(swi_rev_hash)); for (i=0; i < N_SWI_ATOMS; i++) { add_to_hash(i*2+1, (ADDR)SWI_Atoms[i]); } for (j=0; j < N_SWI_FUNCTORS; j++) { add_to_hash(AbsAppl((CELL *)(j*sizeof(CELL))), (ADDR)SWI_Functors[j]); } } static void PredicateInfo(void *p, Atom* a, unsigned long int* arity, Term* m) { PredEntry *pd = (PredEntry *)p; if (pd->ArityOfPE) { *arity = pd->ArityOfPE; *a = NameOfFunctor(pd->FunctorOfPred); } else { *arity = 0; *a = (Atom)(pd->FunctorOfPred); } if (pd->ModuleOfPred) *m = pd->ModuleOfPred; else *m = TermProlog; } static void UserCPredicate(char *a, CPredicate def, unsigned long int arity, Term mod, int flags) { PredEntry *pe; Term cm = CurrentModule; /* fprintf(stderr,"doing %s:%s/%d\n", RepAtom(AtomOfTerm(mod))->StrOfAE, a,arity); */ CurrentModule = mod; Yap_InitCPred(a, arity, def, UserCPredFlag); if (arity == 0) { Atom at; while ((at = Yap_LookupAtom(a)) == NULL) { if (!Yap_growheap(FALSE, 0L, NULL)) { Yap_Error(OUT_OF_HEAP_ERROR, TermNil, Yap_ErrorMessage); return; } } pe = RepPredProp(PredPropByAtom(at,mod)); } else { Atom at; Functor f; while ((at = Yap_LookupAtom(a)) == NULL) { if (!Yap_growheap(FALSE, 0L, NULL)) { Yap_Error(OUT_OF_HEAP_ERROR, TermNil, Yap_ErrorMessage); return; } } f = Yap_MkFunctor(at, arity); pe = RepPredProp(PredPropByFunc(f,mod)); } pe->PredFlags |= (CArgsPredFlag|flags); CurrentModule = cm; } char buffers[TMP_BUF_SIZE+BUF_SIZE*BUF_RINGS]; static int buf_index = 0; static char * alloc_ring_buf(void) { int ret = buf_index; buf_index++; if (buf_index == BUF_RINGS) buf_index = 0; return buffers+(TMP_BUF_SIZE+ret*BUF_SIZE); } /* SWI: void PL_agc_hook(void) */ X_API PL_agc_hook_t PL_agc_hook(PL_agc_hook_t entry) { return (PL_agc_hook_t)YAP_AGCRegisterHook((YAP_agc_hook)entry); } /* SWI: char* PL_atom_chars(atom_t atom) YAP: char* AtomName(Atom) */ X_API char* PL_atom_chars(atom_t a) /* SAM check type */ { return RepAtom(SWIAtomToAtom(a))->StrOfAE; } X_API int PL_chars_to_term(const char *s, term_t term) { YAP_Term t,error; if ( (t=YAP_ReadBuffer(s,&error))==0L ) { Yap_PutInSlot(term, error); return 0L; } Yap_PutInSlot(term,t); return 1L; } /* SWI: term_t PL_copy_term_ref(term_t from) YAP: NO EQUIVALENT */ /* SAM TO DO */ X_API term_t PL_copy_term_ref(term_t from) { return YAP_InitSlot(Yap_GetFromSlot(from)); } X_API term_t PL_new_term_ref(void) { term_t to = Yap_NewSlots(1); return to; } X_API term_t PL_new_term_refs(int n) { term_t to = Yap_NewSlots(n); return to; } X_API void PL_reset_term_refs(term_t after) { term_t new = Yap_NewSlots(1); YAP_RecoverSlots(after-new); } /* begin PL_get_* functions =============================*/ /* SWI: int PL_get_arg(int index, term_t t, term_t a) YAP: YAP_Term YAP_ArgOfTerm(int argno, YAP_Term t)*/ X_API int PL_get_arg(int index, term_t ts, term_t a) { YAP_Term t = Yap_GetFromSlot(ts); if ( !YAP_IsApplTerm(t) ) { if (YAP_IsPairTerm(t)) { if (index == 1){ Yap_PutInSlot(a,YAP_HeadOfTerm(t)); return 1; } else if (index == 2) { Yap_PutInSlot(a,YAP_TailOfTerm(t)); return 1; } } return 0; } Yap_PutInSlot(a,YAP_ArgOfTerm(index, t)); return 1; } /* SWI: int PL_get_arg(int index, term_t t, term_t a) YAP: YAP_Term YAP_ArgOfTerm(int argno, YAP_Term t)*/ X_API int _PL_get_arg(int index, term_t ts, term_t a) { YAP_Term t = Yap_GetFromSlot(ts); if ( !YAP_IsApplTerm(t) ) { if (YAP_IsPairTerm(t)) { if (index == 1){ Yap_PutInSlot(a,YAP_HeadOfTerm(t)); return 1; } else if (index == 2) { Yap_PutInSlot(a,YAP_TailOfTerm(t)); return 1; } } return 0; } Yap_PutInSlot(a,YAP_ArgOfTerm(index, t)); return 1; } /* SWI: int PL_get_atom(term_t t, YAP_Atom *a) YAP: YAP_Atom YAP_AtomOfTerm(Term) */ X_API int PL_get_atom(term_t ts, atom_t *a) { YAP_Term t = Yap_GetFromSlot(ts); if ( !IsAtomTerm(t)) return 0; *a = AtomToSWIAtom(AtomOfTerm(t)); return 1; } /* SWI: int PL_get_atom(term_t t, YAP_Atom *a) YAP: YAP_Atom YAP_AtomOfTerm(Term) */ X_API int PL_get_intptr(term_t ts, intptr_t *a) { Term t = Yap_GetFromSlot(ts); if ( !IsIntegerTerm(t) ) return 0; *a = (intptr_t)(IntegerOfTerm(t)); return 1; } /* SWI: int PL_get_atom_chars(term_t t, char **s) YAP: char* AtomName(Atom) */ X_API int PL_get_atom_chars(term_t ts, char **a) /* SAM check type */ { Term t = Yap_GetFromSlot(ts); if (!IsAtomTerm(t)) return 0; *a = RepAtom(AtomOfTerm(t))->StrOfAE; return 1; } /* int PL_get_chars(term_t +t, char **s, unsigned flags) Convert the argument term t to a 0-terminated C-string. flags is a bitwise disjunction from two groups of constants. The first specifies which term-types should converted and the second how the argument is stored. Below is a specification of these constants. BUF_RING implies, if the data is not static (as from an atom), the data is copied to the next buffer from a ring of sixteen (16) buffers. This is a convenient way of converting multiple arguments passed to a foreign predicate to C-strings. If BUF_MALLOC is used, the data must be freed using free() when not needed any longer. CVT_ATOM Convert if term is an atom CVT_STRING Convert if term is a string CVT_LIST Convert if term is a list of integers between 1 and 255 CVT_INTEGER Convert if term is an integer (using %d) CVT_FLOAT Convert if term is a float (using %f) CVT_NUMBER Convert if term is a integer or float CVT_ATOMIC Convert if term is atomic CVT_VARIABLE Convert variable to print-name CVT_ALL Convert if term is any of the above, except for variables BUF_DISCARDABLE Data must copied immediately BUF_RING Data is stored in a ring of buffers BUF_MALLOC Data is copied to a new buffer returned by malloc(3) */ static int CvtToStringTerm(YAP_Term t, char *buf, char *buf_max) { *buf++ = '\"'; while (YAP_IsPairTerm(t)) { YAP_Term hd = YAP_HeadOfTerm(t); long int i; if (!YAP_IsIntTerm(hd)) return 0; i = YAP_IntOfTerm(hd); if (i <= 0 || i >= 255) return 0; if (!YAP_IsIntTerm(hd)) return 0; *buf++ = i; if (buf == buf_max) return 0; t = YAP_TailOfTerm(t); } if (t != TermNil) return 0; if (buf+1 == buf_max) return 0; buf[0] = '\"'; buf[1] = '\0'; return 1; } char *bf, *bf_lim; static void buf_writer(int c) { if (bf == bf_lim) { return; } *bf++ = c; } #if !HAVE_SNPRINTF #define snprintf(X,Y,Z,A) sprintf(X,Z,A) #endif /* This does not understand UNICODE yet */ static int do_yap_putc(int sno, wchar_t ch) { if (putc_curp < putc_cur_lim) { *putc_curp++ = ch; return TRUE; } else if (putc_cur_flags & BUF_MALLOC) { /* handle overflow by using realloc(); */ UInt bufsize = putc_cur_lim-putc_cur_buf; UInt bufpos = putc_curp-putc_cur_buf; if (!(putc_cur_buf = realloc(putc_cur_buf, bufsize+BUF_SIZE))) { /* we can+t go forever */ return FALSE; } putc_curp = putc_cur_buf+bufpos; putc_cur_lim = putc_cur_buf+(bufsize+BUF_SIZE); return do_yap_putc(sno, ch); } return FALSE; } X_API int PL_get_chars(term_t l, char **sp, unsigned flags) { YAP_Term t = Yap_GetFromSlot(l); char *tmp; if ((flags & BUF_RING)) { tmp = alloc_ring_buf(); } else if ((flags & BUF_MALLOC)) { tmp = malloc(BUF_SIZE); } else { tmp = buffers; } *sp = tmp; if (flags & (CVT_WRITE|CVT_WRITE_CANONICAL)) { Int write_flags; putc_cur_buf = putc_curp = tmp; putc_cur_flags = flags; if (flags & CVT_WRITE_CANONICAL) { write_flags = (Quote_illegal_f|Ignore_ops_f); } else { write_flags = 0; } if ((flags & BUF_RING)) { putc_cur_lim = tmp+(TMP_BUF_SIZE-1); } else { putc_cur_lim = tmp+(BUF_SIZE-1); } Yap_plwrite(t, do_yap_putc, write_flags, 1200); *putc_curp = '\0'; /* may have changed due to overflows */ *sp = putc_cur_buf; return TRUE; } if (IsAtomTerm(t)) { Atom at = AtomOfTerm(t); if (!(flags & (CVT_ATOM|CVT_ATOMIC|CVT_ALL))) return 0; if (IsWideAtom(at)) /* will this always work? */ snprintf(*sp,BUF_SIZE,"%ls",RepAtom(at)->WStrOfAE); else *sp = RepAtom(at)->StrOfAE; return 1; } else if (YAP_IsIntTerm(t)) { if (!(flags & (CVT_INTEGER|CVT_NUMBER|CVT_ATOMIC|CVT_ALL))) return 0; #if _WIN64 snprintf(tmp,BUF_SIZE,"%I64d",YAP_IntOfTerm(t)); #else snprintf(tmp,BUF_SIZE,"%ld",YAP_IntOfTerm(t)); #endif } else if (YAP_IsFloatTerm(t)) { if (!(flags & (CVT_FLOAT|CVT_ATOMIC|CVT_NUMBER|CVT_ALL))) return 0; snprintf(tmp,BUF_SIZE,"%f",YAP_FloatOfTerm(t)); } else if (flags & CVT_STRING) { if (CvtToStringTerm(t,tmp,tmp+BUF_SIZE) == 0) return 0; } else { bf = tmp; bf_lim = tmp+(BUF_SIZE-1); YAP_Write(t,buf_writer,0); if (bf == bf_lim) return 0; *bf = '\0'; } if (flags & BUF_MALLOC) { char *nbf = YAP_AllocSpaceFromYap(strlen(tmp)+1); if (nbf == NULL) return 0; strncpy(nbf,tmp,BUF_SIZE); *sp = nbf; } return 1; } X_API int PL_get_nchars(term_t l, size_t *len, char **sp, unsigned flags) { int out = PL_get_chars(l, sp, flags); if (!out) return out; if (len) *len = strlen(*sp); return out; } /* same as get_chars, but works on buffers of wide chars */ X_API int PL_get_wchars(term_t l, size_t *len, wchar_t **wsp, unsigned flags) { Term t = Yap_GetFromSlot(l); if (IsVarTerm(t)) { if (flags & CVT_EXCEPTION) YAP_Error(0, 0L, "PL_get_wchars"); return 0; } if (flags & CVT_ATOM) { if (IsAtomTerm(t)) { Atom at = AtomOfTerm(t); if (!(flags & (CVT_ATOM|CVT_ATOMIC|CVT_ALL))) return 0; if (IsWideAtom(at)) { /* will this always work? */ *wsp = RepAtom(at)->WStrOfAE; } else { char *sp = RepAtom(at)->StrOfAE; size_t sz; sz = strlen(sp); if (flags & BUF_MALLOC) { int i; wchar_t *nbf = (wchar_t *)YAP_AllocSpaceFromYap((sz+1)*sizeof(wchar_t)); if (nbf == NULL) { if (flags & CVT_EXCEPTION) YAP_Error(0, 0L, "PL_get_wchars: lack of memory"); return 0; } *wsp = nbf; for (i=0; i<= sz; i++) *nbf++ = *sp++; } else if (flags & BUF_DISCARDABLE) { wchar_t *buf = (wchar_t *)buffers; int i; if ((sz+1)*sizeof(wchar_t) >= BUF_SIZE) { if (flags & CVT_EXCEPTION) YAP_Error(0, 0L, "PL_get_wchars: wcstombs"); return 0; } *wsp = buf; for (i=0; i<= sz; i++) *buf++ = *sp++; } else { wchar_t *tmp = (wchar_t *)alloc_ring_buf(); int i; if ((sz+1)*sizeof(wchar_t) >= BUF_SIZE) { if (flags & CVT_EXCEPTION) YAP_Error(0, 0L, "PL_get_wchars: wcstombs"); return 0; } *wsp = tmp; for (i=0; i<= sz; i++) *tmp++ = *sp++; } return 1; } } } if (flags & CVT_EXCEPTION) YAP_Error(0, 0L, "PL_get_wchars"); return 0; } /* SWI: int PL_get_functor(term_t t, functor_t *f) YAP: YAP_Functor YAP_FunctorOfTerm(Term) */ X_API int PL_get_functor(term_t ts, functor_t *f) { Term t = Yap_GetFromSlot(ts); if ( IsAtomTerm(t)) { *f = t; } else { *f = FunctorToSWIFunctor(FunctorOfTerm(t)); } return 1; } /* SWI: int PL_get_float(term_t t, double *f) YAP: double YAP_FloatOfTerm(Term) */ X_API int PL_get_float(term_t ts, double *f) /* SAM type check*/ { YAP_Term t = Yap_GetFromSlot(ts); if ( !YAP_IsFloatTerm(t)) return 0; *f = YAP_FloatOfTerm(t); return 1; } X_API int PL_get_head(term_t ts, term_t h) { YAP_Term t = Yap_GetFromSlot(ts); if (!YAP_IsPairTerm(t) ) { return 0; } Yap_PutInSlot(h,YAP_HeadOfTerm(t)); return 1; } /* SWI: int PL_get_integer(term_t t, int *i) YAP: long int YAP_IntOfTerm(Term) */ X_API int PL_get_integer(term_t ts, int *i) { YAP_Term t = Yap_GetFromSlot(ts); if (!YAP_IsIntTerm(t) ) return 0; *i = YAP_IntOfTerm(t); return 1; } /* SWI: int PL_get_bool(term_t t, int *i) YAP: long int YAP_AtomOfTerm(Term) */ X_API int PL_get_bool(term_t ts, int *i) { YAP_Term t = Yap_GetFromSlot(ts); Atom at; if (!IsAtomTerm(t) ) return 0; at = AtomOfTerm(t); if (at == AtomTrue) { *i = TRUE; return 1; } if (at == AtomFalse) { *i = FALSE; return 1; } return 0; } X_API int PL_get_long(term_t ts, long *i) { YAP_Term t = Yap_GetFromSlot(ts); if (!YAP_IsIntTerm(t) ) { if (YAP_IsFloatTerm(t)) { double dbl = YAP_FloatOfTerm(t); if (dbl - (long)dbl == 0.0) { *i = (long)dbl; return 1; } } return 0; } *i = YAP_IntOfTerm(t); return 1; } X_API int PL_get_int64(term_t ts, int64_t *i) { #if SIZE_OF_LONG_INT==8 return PL_get_long(ts, (long *)i); #else YAP_Term t = Yap_GetFromSlot(ts); if (!YAP_IsIntTerm(t) ) { if (YAP_IsFloatTerm(t)) { double dbl = YAP_FloatOfTerm(t); if (dbl - (int64_t)dbl == 0.0) { *i = (int64_t)dbl; return 1; } #if USE_GMP } else if (YAP_IsBigNumTerm(t)) { MP_INT g; char s[64]; YAP_BigNumOfTerm(t, (void *)&g); if (mpz_sizeinbase(&g,2) > 64) { return 0; } mpz_get_str (s, 10, &g); #ifdef _WIN32 sscanf(s, "%I64d", (long long int *)i); #else sscanf(s, "%lld", (long long int *)i); #endif return 1; #endif } return 0; } *i = YAP_IntOfTerm(t); return 1; #endif } X_API int PL_get_list(term_t ts, term_t h, term_t tl) { YAP_Term t = Yap_GetFromSlot(ts); if (IsVarTerm(t) || !IsPairTerm(t) ) { return 0; } Yap_PutInSlot(h,HeadOfTerm(t)); Yap_PutInSlot(tl,TailOfTerm(t)); return 1; } X_API int PL_get_list_chars(term_t l, char **sp, unsigned flags) { if (flags & (CVT_ATOM|CVT_STRING|CVT_INTEGER|CVT_FLOAT|CVT_NUMBER|CVT_ATOMIC|CVT_VARIABLE|CVT_ALL)) return 0; return PL_get_chars(l, sp, CVT_LIST|flags); } /* SWI: int PL_get_module(term_t t, module_t *m) */ X_API int PL_get_module(term_t ts, module_t *m) { YAP_Term t = Yap_GetFromSlot(ts); if (!IsAtomTerm(t) ) return FALSE; *m = (module_t)t; return TRUE; } /* SWI: int PL_new_module(term_t t, module_t *m) */ X_API module_t PL_new_module(atom_t swiat) { Atom at = SWIAtomToAtom(swiat); Term t; WRITE_LOCK(RepAtom(at)->ARWLock); t = Yap_Module(MkAtomTerm(at)); WRITE_UNLOCK(RepAtom(at)->ARWLock); return (module_t)t; } /* SWI: int PL_get_atom(term_t t, YAP_Atom *a) YAP: YAP_Atom YAP_AtomOfTerm(Term) */ X_API int PL_get_name_arity(term_t ts, atom_t *name, int *arity) { YAP_Term t = Yap_GetFromSlot(ts); if (IsAtomTerm(t)) { *name = AtomToSWIAtom(AtomOfTerm(t)); *arity = 0; return 1; } if (YAP_IsApplTerm(t)) { Functor f = FunctorOfTerm(t); *name = AtomToSWIAtom(NameOfFunctor(f)); *arity = ArityOfFunctor(f); return 1; } if (YAP_IsPairTerm(t)) { *name = AtomToSWIAtom(AtomDot); *arity = 2; return 1; } return 0; } /* SWI: int PL_get_atom(term_t t, YAP_Atom *a) YAP: YAP_Atom YAP_AtomOfTerm(Term) */ X_API int PL_get_nil(term_t ts) { Term t = Yap_GetFromSlot(ts); return ( t == TermNil ); } /* SWI: int PL_get_pointer(term_t t, int *i) YAP: NO EQUIVALENT */ /* SAM TO DO */ X_API int PL_get_pointer(term_t ts, void **i) { YAP_Term t = Yap_GetFromSlot(ts); if (!YAP_IsIntTerm(t) ) return 0; *i = (void *)YAP_IntOfTerm(t); return 1; } /* SWI: int PL_get_atom_chars(term_t t, char **s) YAP: char* AtomName(Atom) */ X_API int PL_get_string(term_t ts, char **sp, int *lenp) /* SAM check type */ { YAP_Term t = Yap_GetFromSlot(ts); char *to; int len; if (!YAP_IsPairTerm(t)) return 0; if (!YAP_StringToBuffer(t, buffers, TMP_BUF_SIZE)) return(FALSE); len = strlen(buffers); to = (char *)Yap_NewSlots((len/sizeof(YAP_Term))+1); strncpy(to, buffers, TMP_BUF_SIZE); *sp = to; return 1; } X_API int PL_get_tail(term_t ts, term_t tl) { YAP_Term t = Yap_GetFromSlot(ts); if (!YAP_IsPairTerm(t) ) { return 0; } Yap_PutInSlot(tl,YAP_TailOfTerm(t)); return 1; } /* end PL_get_* functions =============================*/ /* begin PL_new_* functions =============================*/ /* SWI: atom_t PL_new_atom(const char *) YAP: YAP_Atom LookupAtom(char *) */ /* SAM should the following be used instead? YAP_Atom FullLookupAtom(char *) */ X_API atom_t PL_new_atom(const char *c) { Atom at; while ((at = Yap_LookupAtom((char *)c)) == NULL) { if (!Yap_growheap(FALSE, 0L, NULL)) { Yap_Error(OUT_OF_HEAP_ERROR, TermNil, Yap_ErrorMessage); return 0L; } } Yap_AtomIncreaseHold(at); return AtomToSWIAtom(at); } X_API atom_t PL_new_atom_wchars(int len, const wchar_t *c) { atom_t at; int i; for (i=0;i 255) break; } if (i!=len) { Atom at0; wchar_t *nbf; while (!(nbf = (wchar_t *)YAP_AllocSpaceFromYap((len+1)*sizeof(wchar_t)))) { if (!Yap_growheap(FALSE, 0L, NULL)) { Yap_Error(OUT_OF_HEAP_ERROR, TermNil, Yap_ErrorMessage); return 0; } } for (i=0;iWStrOfAE; *sp = wcslen(c); return (char *)c; } else { char *c = RepAtom(at)->StrOfAE; *sp = strlen(c); return c; } } X_API wchar_t *PL_atom_wchars(atom_t name, size_t *sp) { Atom at = SWIAtomToAtom(name); if (!IsWideAtom(at)) return NULL; *sp = wcslen(RepAtom(at)->WStrOfAE); return RepAtom(at)->WStrOfAE; } X_API functor_t PL_new_functor(atom_t name, int arity) { functor_t f; Atom at = SWIAtomToAtom(name); if (arity == 0) { f = FunctorToSWIFunctor((Functor)MkAtomTerm(at)); } else { f = FunctorToSWIFunctor(Yap_MkFunctor(at,arity)); } return f; } X_API atom_t PL_functor_name(functor_t f) { if (IsAtomTerm(f)) { return AtomToSWIAtom(AtomOfTerm((Term)SWIFunctorToFunctor(f))); } else { return AtomToSWIAtom(NameOfFunctor(SWIFunctorToFunctor(f))); } } X_API int PL_functor_arity(functor_t f) { if (IsAtomTerm(f)) { return 0; } else { return ArityOfFunctor(SWIFunctorToFunctor(f)); } } /* end PL_new_* functions =============================*/ /* begin PL_put_* functions =============================*/ X_API int PL_cons_functor(term_t d, functor_t f,...) { va_list ap; int arity, i; Term *tmp = (Term *)buffers; Functor ff = SWIFunctorToFunctor(f); if (IsAtomTerm((Term)ff)) { Yap_PutInSlot(d, (YAP_Term)f); return TRUE; } arity = ArityOfFunctor(ff); if (arity > TMP_BUF_SIZE/sizeof(YAP_CELL)) { fprintf(stderr,"PL_cons_functor: arity too large (%d)\n", arity); return FALSE; } va_start (ap, f); for (i = 0; i < arity; i++) { tmp[i] = Yap_GetFromSlot(va_arg(ap, term_t)); } va_end (ap); if (arity == 2 && ff == FunctorDot) Yap_PutInSlot(d,MkPairTerm(tmp[0],tmp[1])); else Yap_PutInSlot(d,Yap_MkApplTerm(ff,arity,tmp)); if (Unsigned(H) > Unsigned(ASP)-CreepFlag) { if (!Yap_gc(0, ENV, CP)) { return FALSE; } } return TRUE; } X_API int PL_cons_functor_v(term_t d, functor_t f,term_t a0) { int arity; Functor ff = SWIFunctorToFunctor(f); if (IsAtomTerm((Term)ff)) { Yap_PutInSlot(d,(Term)ff); return TRUE; } arity = ArityOfFunctor(ff); if (arity == 2 && ff == FunctorDot) Yap_PutInSlot(d,MkPairTerm(Yap_GetFromSlot(a0),Yap_GetFromSlot(a0+1))); else Yap_PutInSlot(d,Yap_MkApplTerm(ff,arity,Yap_AddressFromSlot(a0))); if (Unsigned(H) > Unsigned(ASP)-CreepFlag) { if (!Yap_gc(0, ENV, CP)) { return FALSE; } } return TRUE; } X_API int PL_cons_list(term_t d, term_t h, term_t t) { Yap_PutInSlot(d,YAP_MkPairTerm(Yap_GetFromSlot(h),Yap_GetFromSlot(t))); return TRUE; } X_API int PL_put_atom(term_t t, atom_t a) { Yap_PutInSlot(t,MkAtomTerm(SWIAtomToAtom(a))); return TRUE; } X_API int PL_put_atom_chars(term_t t, const char *s) { Atom at; while (!(at = Yap_LookupAtom((char *)s))) { if (!Yap_growheap(FALSE, 0L, NULL)) { Yap_Error(OUT_OF_HEAP_ERROR, TermNil, Yap_ErrorMessage); return FALSE; } } Yap_PutInSlot(t,MkAtomTerm(at)); return TRUE; } X_API int PL_put_float(term_t t, double fl) { Yap_PutInSlot(t,YAP_MkFloatTerm(fl)); return TRUE; } X_API int PL_put_functor(term_t t, functor_t f) { long int arity; Functor ff = SWIFunctorToFunctor(f); if (IsAtomTerm((Term)ff)) { Yap_PutInSlot(t,(Term)ff); } else { arity = ArityOfFunctor(ff); if (arity == 2 && ff == FunctorDot) Yap_PutInSlot(t,YAP_MkNewPairTerm()); else Yap_PutInSlot(t,YAP_MkNewApplTerm((YAP_Functor)ff,arity)); if (Unsigned(H) > Unsigned(ASP)-CreepFlag) { if (!Yap_gc(0, ENV, CP)) { return FALSE; } } } return TRUE; } X_API int PL_put_integer(term_t t, long n) { Yap_PutInSlot(t,YAP_MkIntTerm(n)); return TRUE; } X_API int PL_put_int64(term_t t, int64_t n) { #if USE_GMP char s[64]; MP_INT rop; #ifdef _WIN32 snprintf(s, 64, "%I64d", (long long int)n); #elif HAVE_SNPRINTF snprintf(s, 64, "%lld", (long long int)n); #else sprintf(s, "%lld", (long long int)n); #endif mpz_init_set_str (&rop, s, 10); Yap_PutInSlot(t,YAP_MkBigNumTerm((void *)&rop)); return TRUE; #else return FALSE; #endif } X_API int PL_put_list(term_t t) { Yap_PutInSlot(t,YAP_MkNewPairTerm()); if (Unsigned(H) > Unsigned(ASP)-CreepFlag) { if (!Yap_gc(0, ENV, CP)) { return FALSE; } } return TRUE; } X_API int PL_put_list_chars(term_t t, const char *s) { Yap_PutInSlot(t,YAP_BufferToString((char *)s)); if (Unsigned(H) > Unsigned(ASP)-CreepFlag) { if (!Yap_gc(0, ENV, CP)) { return FALSE; } } return TRUE; } X_API void PL_put_nil(term_t t) { Yap_PutInSlot(t,TermNil); } /* SWI: void PL_put_pointer(term_t -t, void *ptr) YAP: NO EQUIVALENT */ /* SAM TO DO */ X_API int PL_put_pointer(term_t t, void *ptr) { YAP_Term tptr = YAP_MkIntTerm((YAP_Int)ptr); Yap_PutInSlot(t,tptr); return TRUE; } X_API int PL_put_string_chars(term_t t, const char *s) { Yap_PutInSlot(t,YAP_BufferToString((char *)s)); return TRUE; } X_API int PL_put_term(term_t d, term_t s) { Yap_PutInSlot(d,Yap_GetFromSlot(s)); return TRUE; } X_API int PL_put_variable(term_t t) { Yap_PutInSlot(t,MkVarTerm()); return TRUE; } /* end PL_put_* functions =============================*/ /* SWI: int PL_raise_exception(term_t exception) YAP: NO EQUIVALENT */ /* SAM TO DO */ X_API int PL_raise_exception(term_t exception) { YAP_Throw(Yap_GetFromSlot(exception)); return 0; } static char * OsError(void) { #ifdef HAVE_STRERROR #ifdef __WINDOWS__ return NULL; #else return strerror(errno); #endif #else /*HAVE_STRERROR*/ static char errmsg[64]; #ifdef __unix__ extern int sys_nerr; #if !EMX extern char *sys_errlist[]; #endif extern int errno; if ( errno < sys_nerr ) return sys_errlist[errno]; #endif Ssprintf(errmsg, "Unknown Error (%d)", errno); return errmsg; #endif /*HAVE_STRERROR*/ } X_API int PL_warning(const char *msg, ...) { va_list args; va_start(args, msg); // just print the warning message and return? fprintf(stderr,"[Warning:"); fprintf(stderr,msg,args); fprintf(stderr,"]\n"); va_end(args); PL_fail; } X_API int PL_error(const char *pred, int arity, const char *msg, int id, ...) { term_t formal, swi, predterm, msgterm, except; va_list args; formal = PL_new_term_ref(); swi = PL_new_term_ref(); predterm = PL_new_term_ref(); msgterm = PL_new_term_ref(); except = PL_new_term_ref(); if ( msg == ((char *)(-1)) ) { if ( errno == EPLEXCEPTION ) return FALSE; msg = OsError(); } /* This would really require having pl-error.c, but we'll make do so as */ va_start(args, id); switch(id) { case ERR_INSTANTIATION: err_instantiation: PL_unify_atom(formal, ATOM_instantiation_error); break; case ERR_TYPE: /* ERR_INSTANTIATION if var(actual) */ { atom_t expected = va_arg(args, atom_t); term_t actual = va_arg(args, term_t); if ( PL_is_variable(actual) && expected != ATOM_variable ) goto err_instantiation; PL_unify_term(formal, PL_FUNCTOR, FUNCTOR_type_error2, PL_ATOM, expected, PL_TERM, actual); break; } case ERR_DOMAIN: /* ERR_INSTANTIATION if var(arg) */ { atom_t domain = va_arg(args, atom_t); term_t arg = va_arg(args, term_t); if ( PL_is_variable(arg) ) goto err_instantiation; PL_unify_term(formal, PL_FUNCTOR, FUNCTOR_domain_error2, PL_ATOM, domain, PL_TERM, arg); break; } case ERR_REPRESENTATION: { atom_t what = va_arg(args, atom_t); PL_unify_term(formal, PL_FUNCTOR, FUNCTOR_representation_error1, PL_ATOM, what); break; } case ERR_NOT_IMPLEMENTED_PROC: { const char *name = va_arg(args, const char *); int arity = va_arg(args, int); PL_unify_term(formal, PL_FUNCTOR, FUNCTOR_not_implemented2, PL_ATOM, ATOM_procedure, PL_FUNCTOR, FUNCTOR_divide2, PL_CHARS, name, PL_INT, arity); break; } case ERR_EXISTENCE: { atom_t type = va_arg(args, atom_t); term_t obj = va_arg(args, term_t); PL_unify_term(formal, PL_FUNCTOR, FUNCTOR_existence_error2, PL_ATOM, type, PL_TERM, obj); break; } case ERR_PERMISSION: { atom_t type = va_arg(args, atom_t); atom_t op = va_arg(args, atom_t); term_t obj = va_arg(args, term_t); PL_unify_term(formal, PL_FUNCTOR, FUNCTOR_permission_error3, PL_ATOM, type, PL_ATOM, op, PL_TERM, obj); break; } case ERR_SYSCALL: { const char *op = va_arg(args, const char *); if ( !msg ) msg = op; switch(errno) { case ENOMEM: PL_unify_term(formal, PL_FUNCTOR, FUNCTOR_resource_error1, PL_ATOM, ATOM_no_memory); break; default: PL_unify_atom(formal, ATOM_system_error); break; } break; } case ERR_TIMEOUT: { atom_t op = va_arg(args, atom_t); term_t obj = va_arg(args, term_t); PL_unify_term(formal, PL_FUNCTOR, FUNCTOR_timeout_error2, PL_ATOM, op, PL_TERM, obj); break; } case ERR_FILE_OPERATION: { atom_t action = va_arg(args, atom_t); atom_t type = va_arg(args, atom_t); term_t file = va_arg(args, term_t); switch(errno) { case EACCES: PL_unify_term(formal, PL_FUNCTOR, FUNCTOR_permission_error3, PL_ATOM, action, PL_ATOM, type, PL_TERM, file); break; case EMFILE: case ENFILE: PL_unify_term(formal, PL_FUNCTOR, FUNCTOR_resource_error1, PL_ATOM, ATOM_max_files); break; #ifdef EPIPE case EPIPE: if ( !msg ) msg = "Broken pipe"; /*FALLTHROUGH*/ #endif default: /* what about the other cases? */ PL_unify_term(formal, PL_FUNCTOR, FUNCTOR_existence_error2, PL_ATOM, type, PL_TERM, file); break; } break; } case ERR_NOMEM: { PL_unify_term(formal, PL_FUNCTOR, FUNCTOR_resource_error1, PL_ATOM, ATOM_no_memory); break; } case ERR_EVALUATION: { atom_t what = va_arg(args, atom_t); PL_unify_term(formal, PL_FUNCTOR, FUNCTOR_evaluation_error1, PL_ATOM, what); break; } default: fprintf(stderr, "unimplemented SWI error %d\n",id); goto err_instantiation; } va_end(args); if ( pred ) { PL_unify_term(predterm, PL_FUNCTOR, FUNCTOR_divide2, PL_CHARS, pred, PL_INT, arity); } if ( msg ) { PL_put_atom_chars(msgterm, msg); } PL_unify_term(swi, PL_FUNCTOR, FUNCTOR_context2, PL_TERM, predterm, PL_TERM, msgterm); PL_unify_term(except, PL_FUNCTOR, FUNCTOR_error2, PL_TERM, formal, PL_TERM, swi); return PL_raise_exception(except); } /* begin PL_unify_* functions =============================*/ X_API int PL_unify(term_t t1, term_t t2) { return YAP_Unify(Yap_GetFromSlot(t1),Yap_GetFromSlot(t2)); } /* SWI: int PL_unify_atom(term_t ?t, atom *at) YAP long int unify(YAP_Term* a, Term* b) */ X_API int PL_unify_atom(term_t t, atom_t at) { YAP_Term cterm = MkAtomTerm(SWIAtomToAtom(at)); return YAP_Unify(Yap_GetFromSlot(t),cterm); } /* SWI: int PL_unify_atom_chars(term_t ?t, const char *chars) YAP long int unify(YAP_Term* a, Term* b) */ X_API int PL_unify_atom_chars(term_t t, const char *s) { Atom catom; Term cterm; while (!(catom = Yap_LookupAtom((char *)s))) { if (!Yap_growheap(FALSE, 0L, NULL)) { Yap_Error(OUT_OF_HEAP_ERROR, TermNil, Yap_ErrorMessage); return FALSE; } } cterm = MkAtomTerm(catom); return Yap_unify(Yap_GetFromSlot(t),cterm); } /* SWI: int PL_unify_atom_chars(term_t ?t, const char *chars) YAP long int unify(YAP_Term* a, Term* b) */ X_API int PL_unify_atom_nchars(term_t t, size_t len, const char *s) { Atom catom; YAP_Term cterm; char *buf = (char *)YAP_AllocSpaceFromYap(len+1); if (!buf) return FALSE; strncpy(buf, s, len); buf[len] = '\0'; while (!(catom = Yap_LookupAtom(buf))) { if (!Yap_growheap(FALSE, 0L, NULL)) { Yap_Error(OUT_OF_HEAP_ERROR, TermNil, Yap_ErrorMessage); return FALSE; } } free(buf); cterm = MkAtomTerm(catom); return YAP_Unify(Yap_GetFromSlot(t),cterm); } /* SWI: int PL_unify_float(term_t ?t, double f) YAP long int unify(YAP_Term* a, Term* b) */ X_API int PL_unify_float(term_t t, double f) { YAP_Term fterm = YAP_MkFloatTerm(f); return YAP_Unify(Yap_GetFromSlot(t),fterm); } /* SWI: int PL_unify_integer(term_t ?t, long n) YAP long int unify(YAP_Term* a, Term* b) */ X_API int PL_unify_integer(term_t t, long n) { Term iterm = MkIntegerTerm(n); return Yap_unify(Yap_GetFromSlot(t),iterm); } /* SWI: int PL_unify_integer(term_t ?t, long n) YAP long int unify(YAP_Term* a, Term* b) */ X_API int PL_unify_functor(term_t t, functor_t f) { YAP_Term tt = Yap_GetFromSlot(t); Functor ff = SWIFunctorToFunctor(f); if (Unsigned(H) > Unsigned(ASP)-CreepFlag) { if (!Yap_gc(0, ENV, CP)) { return FALSE; } } if (YAP_IsVarTerm(tt)) return YAP_Unify(tt, YAP_MkNewApplTerm((YAP_Functor)ff,YAP_ArityOfFunctor((YAP_Functor)f))); if (YAP_IsPairTerm(tt)) return ff == FunctorDot; if (!YAP_IsApplTerm(tt)) return FALSE; return ff == FunctorOfTerm(tt); } /* SWI: int PL_unify_integer(term_t ?t, long n) YAP long int unify(YAP_Term* a, Term* b) */ X_API int PL_unify_int64(term_t t, int64_t n) { #if USE_GMP YAP_Term iterm; char s[64]; MP_INT rop; #ifdef _WIN32 snprintf(s, 64, "%I64d", (long long int)n); #elif HAVE_SNPRINTF snprintf(s, 64, "%lld", (long long int)n); #else sprintf(s, "%lld", (long long int)n); #endif mpz_init_set_str (&rop, s, 10); iterm = YAP_MkBigNumTerm((void *)&rop); return YAP_Unify(Yap_GetFromSlot(t),iterm); #else return FALSE; #endif } /* SWI: int PL_unify_list(term_t ?t, term_t +h, term_t -t) YAP long int unify(YAP_Term* a, Term* b) */ X_API int PL_unify_list(term_t tt, term_t h, term_t tail) { Term t; if (Unsigned(H) > Unsigned(ASP)-CreepFlag) { if (!Yap_gc(0, ENV, CP)) { return FALSE; } } t = Deref(Yap_GetFromSlot(tt)); if (IsVarTerm(t)) { Term pairterm = Yap_MkNewPairTerm(); Yap_unify(t, pairterm); /* avoid calling deref */ t = pairterm; } else if (!IsPairTerm(t)) { return FALSE; } Yap_PutInSlot(h,HeadOfTerm(t)); Yap_PutInSlot(tail,TailOfTerm(t)); return TRUE; } /* SWI: int PL_unify_list(term_t ?t, term_t +h, term_t -t) YAP long int unify(YAP_Term* a, Term* b) */ X_API int PL_unify_arg(int index, term_t tt, term_t arg) { Term t = Deref(Yap_GetFromSlot(tt)), to; if (index < 0) return FALSE; if (IsVarTerm(t) || IsAtomOrIntTerm(t)) { return FALSE; } else if (IsPairTerm(t)) { if (index == 1) to = HeadOfTerm(t); else if (index == 2) to = TailOfTerm(t); else return FALSE; } else { Functor f = FunctorOfTerm(t); if (IsExtensionFunctor(f)) return FALSE; if (index > ArityOfFunctor(f)) return FALSE; to = ArgOfTerm(index, t); } return Yap_unify(Yap_GetFromSlot(t),to); } /* SWI: int PL_unify_list(term_t ?t, term_t +h, term_t -t) YAP long int unify(YAP_Term* a, Term* b) */ X_API int PL_unify_list_chars(term_t t, const char *chars) { YAP_Term chterm; if (Unsigned(H) > Unsigned(ASP)-CreepFlag) { if (!Yap_gc(0, ENV, CP)) { return FALSE; } } chterm = YAP_BufferToString((char *)chars); return YAP_Unify(Yap_GetFromSlot(t), chterm); } /* SWI: int PL_unify_nil(term_t ?l) YAP long int unify(YAP_Term* a, Term* b) */ X_API int PL_unify_nil(term_t l) { YAP_Term nilterm = TermNil; return YAP_Unify(Yap_GetFromSlot(l), nilterm); } /* SWI: int PL_unify_pointer(term_t ?t, void *ptr) YAP: NO EQUIVALENT */ /* SAM TO DO */ X_API int PL_unify_pointer(term_t t, void *ptr) { YAP_Term ptrterm = YAP_MkIntTerm((YAP_Int)ptr); return YAP_Unify(Yap_GetFromSlot(t), ptrterm); } /* SWI: int PL_unify_list(term_t ?t, term_t +h, term_t -t) YAP long int unify(YAP_Term* a, Term* b) */ X_API int PL_unify_string_chars(term_t t, const char *chars) { YAP_Term chterm; if (Unsigned(H) > Unsigned(ASP)-CreepFlag) { if (!Yap_gc(0, ENV, CP)) { return FALSE; } } chterm = YAP_BufferToString((char *)chars); return YAP_Unify(Yap_GetFromSlot(t), chterm); } /* SWI: int PL_unify_wchars(term_t ?t, int type, size_t len,, const pl_wchar_t *s) */ X_API int PL_unify_wchars(term_t t, int type, size_t len, const pl_wchar_t *chars) { YAP_Term chterm; if (len == (size_t)-1) len = wcslen(chars); if (Unsigned(H) > Unsigned(ASP)-CreepFlag) { if (!Yap_gc(0, ENV, CP)) { return FALSE; } } switch (type) { case PL_ATOM: { Atom at; while ((at = Yap_LookupMaybeWideAtomWithLength((wchar_t *)chars, len)) == NULL) { if (!Yap_growheap(FALSE, 0L, NULL)) { Yap_Error(OUT_OF_HEAP_ERROR, TermNil, Yap_ErrorMessage); return FALSE; } } chterm = MkAtomTerm(at); } break; case PL_STRING: case PL_CODE_LIST: chterm = YAP_NWideBufferToString(chars, len); break; case PL_CHAR_LIST: chterm = YAP_NWideBufferToAtomList(chars, len); break; default: /* should give error?? */ return FALSE; } return YAP_Unify(Yap_GetFromSlot(t), chterm); } /* SWI: int PL_unify_wchars(term_t ?t, int type, size_t len,, const pl_wchar_t *s) */ X_API int PL_unify_wchars_diff(term_t t, term_t tail, int type, size_t len, const pl_wchar_t *chars) { YAP_Term chterm; if (Unsigned(H) > Unsigned(ASP)-CreepFlag) { if (!Yap_gc(0, ENV, CP)) { return FALSE; } } if (len == (size_t)-1) len = wcslen(chars); switch (type) { case PL_STRING: case PL_CODE_LIST: chterm = YAP_NWideBufferToDiffList(chars, Yap_GetFromSlot(tail), len); break; case PL_CHAR_LIST: chterm = YAP_NWideBufferToAtomDiffList(chars, Yap_GetFromSlot(tail), len); break; default: /* should give error?? */ return FALSE; } return YAP_Unify(Yap_GetFromSlot(t), chterm); } typedef struct { int type; union { functor_t f; term_t t; atom_t a; long l; int i; double dbl; char *s; struct { size_t n; char *s; } ns; struct { size_t n; wchar_t *w; } nw; void *p; wchar_t *w; } arg; } arg_types; static Atom LookupMaxAtom(size_t n, char *s) { Atom catom; char *buf = (char *)Yap_AllocCodeSpace(n+1); if (!buf) return FALSE; strncpy(buf, s, n); buf[n] = '\0'; while (!(catom = Yap_LookupAtom(buf))) { if (!Yap_growheap(FALSE, 0L, NULL)) { Yap_Error(OUT_OF_HEAP_ERROR, TermNil, Yap_ErrorMessage); return NULL; } } Yap_FreeCodeSpace(buf); return catom; } static Atom LookupMaxWideAtom(size_t n, wchar_t *s) { Atom catom; wchar_t *buf = (wchar_t *)Yap_AllocCodeSpace((n+1)*sizeof(wchar_t)); if (!buf) return FALSE; wcsncpy(buf, s, n); buf[n] = '\0'; while (!(catom = Yap_LookupMaybeWideAtom(buf))) { if (!Yap_growheap(FALSE, 0L, NULL)) { Yap_Error(OUT_OF_HEAP_ERROR, TermNil, Yap_ErrorMessage); return NULL; } } Yap_FreeAtomSpace((ADDR)buf); return catom; } static YAP_Term MkBoolTerm(int b) { if (b) return MkAtomTerm(AtomTrue); else return MkAtomTerm(AtomFalse); } #define MAX_DEPTH 64 typedef struct { int nels; CELL *ptr; } stack_el; /* SWI: int PL_unify_term(term_t ?t1, term_t ?t2) YAP long int YAP_Unify(YAP_Term* a, Term* b) */ X_API int PL_unify_term(term_t l,...) { va_list ap; int type; int nels = 1; int depth = 1; Term a[1], *pt; stack_el stack[MAX_DEPTH]; if (Unsigned(H) > Unsigned(ASP)-CreepFlag) { if (!Yap_gc(0, ENV, CP)) { return FALSE; } } va_start (ap, l); pt = a; while (depth > 0) { while (nels > 0) { type = va_arg(ap, int); nels--; switch(type) { case PL_VARIABLE: *pt++ = MkVarTerm(); break; case PL_BOOL: *pt++ = MkBoolTerm(va_arg(ap, int)); break; case PL_ATOM: *pt++ = MkAtomTerm(SWIAtomToAtom(va_arg(ap, atom_t))); break; case PL_INTEGER: *pt++ = MkIntegerTerm(va_arg(ap, long)); break; case PL_SHORT: *pt++ = MkIntegerTerm(va_arg(ap, int)); break; case PL_INT: *pt++ = MkIntegerTerm(va_arg(ap, int)); break; case PL_FLOAT: *pt++ = MkFloatTerm(va_arg(ap, double)); break; case PL_STRING: *pt++ = YAP_BufferToString(va_arg(ap, char *)); break; case PL_CHARS: { Atom at; char *s = va_arg(ap, char *); while (!(at = Yap_LookupAtom(s))) { if (!Yap_growheap(FALSE, 0L, NULL)) { Yap_Error(OUT_OF_HEAP_ERROR, TermNil, Yap_ErrorMessage); return FALSE; } } *pt++ = MkAtomTerm(at); } break; case PL_NCHARS: { size_t sz = va_arg(ap, size_t); *pt++ = MkAtomTerm(LookupMaxAtom(sz,va_arg(ap, char *))); } break; case PL_NWCHARS: { size_t sz = va_arg(ap, size_t); wchar_t * arg = va_arg(ap, wchar_t *); *pt++ = MkAtomTerm(LookupMaxWideAtom(sz,arg)); } break; case PL_TERM: { Term t = Yap_GetFromSlot(va_arg(ap, size_t)); if (IsVarTerm(t) && VarOfTerm(t) >= ASP && VarOfTerm(t) < LCL0) { Yap_unify(*pt++, t); } else { *pt++ = t; } } break; case PL_POINTER: *pt++ = MkIntegerTerm((Int)va_arg(ap, void *)); break; case PL_INT64: #if SIZE_OF_LONG_INT==8 *pt++ = MkIntegerTerm((Int)va_arg(ap, long int)); #elif USE_GMP { char s[64]; MP_INT rop; #ifdef _WIN32 snprintf(s, 64, "%I64d", va_arg(ap, long long int)); #elif HAVE_SNPRINTF snprintf(s, 64, "%lld", va_arg(ap, long long int)); #else sprintf(s, "%lld", va_arg(ap, long long int)); #endif mpz_init_set_str (&rop, s, 10); *pt++ = YAP_MkBigNumTerm((void *)&rop); } #else fprintf(stderr, "PL_unify_term: PL_int64 not supported\n"); exit(1); #endif break; case PL_FUNCTOR: { functor_t f = va_arg(ap, functor_t); Functor ff = SWIFunctorToFunctor(f); UInt arity = ArityOfFunctor(ff); if (!arity) { *pt++ = MkAtomTerm((Atom)f); } else { Term t = Yap_MkNewApplTerm(ff, arity); if (nels) { if (depth == MAX_DEPTH) { fprintf(stderr,"ERROR: very deep term in PL_unify_term, change MAX_DEPTH from %d\n", MAX_DEPTH); return FALSE; } stack[depth-1].nels = nels; stack[depth-1].ptr = pt+1; depth++; } *pt = t; if (ff == FunctorDot) pt = RepPair(t); else pt = RepAppl(t)+1; nels = arity; } } break; case PL_FUNCTOR_CHARS: { char *fname = va_arg(ap, char *); size_t arity = va_arg(ap, size_t); if (!arity) { Atom at; while (!(at = Yap_LookupAtom(fname))) { if (!Yap_growheap(FALSE, 0L, NULL)) { Yap_Error(OUT_OF_HEAP_ERROR, TermNil, Yap_ErrorMessage); return FALSE; } } *pt++ = MkAtomTerm(at); } else { Atom at; Functor ff; Term t; while (!(at = Yap_LookupAtom(fname))) { if (!Yap_growheap(FALSE, 0L, NULL)) { Yap_Error(OUT_OF_HEAP_ERROR, TermNil, Yap_ErrorMessage); return FALSE; } } ff = Yap_MkFunctor(at,arity); t = Yap_MkNewApplTerm(ff, arity); if (nels) { if (depth == MAX_DEPTH) { fprintf(stderr,"very deep term in PL_unify_term\n"); return FALSE; } stack[depth-1].nels = nels; stack[depth-1].ptr = pt+1; depth++; } *pt = t; if (ff == FunctorDot) pt = RepPair(t); else pt = RepAppl(t)+1; nels = arity; } } break; case PL_LIST: { Term t = Yap_MkNewPairTerm(); if (nels) { if (depth == MAX_DEPTH) { fprintf(stderr,"very deep term in PL_unify_term\n"); return FALSE; } stack[depth-1].nels = nels; stack[depth].ptr = pt+1; depth++; } *pt = t; pt = RepPair(t); nels = 2; } break; default: fprintf(stderr, "PL_unify_term: %d not supported\n", type); exit(1); } } depth--; if (depth) { pt = stack[depth-1].ptr; nels = stack[depth-1].nels; } } va_end (ap); return YAP_Unify(Yap_GetFromSlot(l),a[0]); } /* end PL_unify_* functions =============================*/ /* SWI: void PL_register_atom(atom_t atom) */ X_API void PL_register_atom(atom_t atom) { Yap_AtomIncreaseHold(SWIAtomToAtom(atom)); } /* SWI: void PL_unregister_atom(atom_t atom) */ X_API void PL_unregister_atom(atom_t atom) { Yap_AtomDecreaseHold(SWIAtomToAtom(atom)); } X_API int PL_get_string_chars(term_t t, char **s, int *len) { /* there are no such objects in Prolog */ return FALSE; } X_API int PL_term_type(term_t t) { /* YAP_ does not support strings as different objects */ YAP_Term v = Yap_GetFromSlot(t); if (YAP_IsVarTerm(v)) { return PL_VARIABLE; } else if (IsAtomTerm(v)) { return PL_ATOM; } else if (YAP_IsIntTerm(v)) { return PL_INTEGER; } else if (YAP_IsFloatTerm(v)) { return PL_FLOAT; } else { return PL_TERM; } } X_API int PL_is_atom(term_t t) { return IsAtomTerm(Yap_GetFromSlot(t)); } X_API int PL_is_ground(term_t t) { return Yap_IsGroundTerm(Yap_GetFromSlot(t)); } X_API int PL_is_atomic(term_t ts) { YAP_Term t = Yap_GetFromSlot(ts); return !YAP_IsVarTerm(t) || !YAP_IsApplTerm(t) || !YAP_IsPairTerm(t); } X_API int PL_is_compound(term_t ts) { YAP_Term t = Yap_GetFromSlot(ts); return (YAP_IsApplTerm(t) || YAP_IsPairTerm(t)); } X_API int PL_is_functor(term_t ts, functor_t f) { YAP_Term t = Yap_GetFromSlot(ts); Functor ff = SWIFunctorToFunctor(f); if (YAP_IsApplTerm(t)) { return FunctorOfTerm(t) == (Functor)ff; } else if (YAP_IsPairTerm(t)) { return FunctorOfTerm(t) == FunctorDot; } else return 0; } X_API int PL_is_float(term_t ts) { YAP_Term t = Yap_GetFromSlot(ts); return YAP_IsFloatTerm(t); } X_API int PL_is_integer(term_t ts) { YAP_Term t = Yap_GetFromSlot(ts); return YAP_IsIntTerm(t); } X_API int PL_is_list(term_t ts) { YAP_Term t = Yap_GetFromSlot(ts); return Yap_IsListTerm(t); } X_API int PL_is_number(term_t ts) { YAP_Term t = Yap_GetFromSlot(ts); return YAP_IsIntTerm(t) || YAP_IsFloatTerm(t); } X_API int PL_is_string(term_t ts) { YAP_Term t = Yap_GetFromSlot(ts); while (YAP_IsPairTerm(t)) { YAP_Term hd = YAP_HeadOfTerm(t); long int i; if (!YAP_IsIntTerm(hd)) return 0; i = YAP_IntOfTerm(hd); if (i <= 0 || i >= 255) return 0; if (!YAP_IsIntTerm(hd)) return 0; t = YAP_TailOfTerm(t); } if (t != TermNil) return 0; return FALSE; } X_API int PL_is_variable(term_t ts) { YAP_Term t = Yap_GetFromSlot(ts); return YAP_IsVarTerm(t); } X_API int PL_compare(term_t ts1, term_t ts2) { YAP_Term t1 = Yap_GetFromSlot(ts1); YAP_Term t2 = Yap_GetFromSlot(ts2); return YAP_CompareTerms(t1, t2); } X_API record_t PL_record(term_t ts) { Term t = Yap_GetFromSlot(ts); return (record_t)Yap_StoreTermInDB(t, 0); } X_API int PL_recorded(record_t db, term_t ts) { Term t = Yap_FetchTermFromDB((DBTerm *)db); if (t == 0L) return FALSE; Yap_PutInSlot(ts,t); return TRUE; } X_API void PL_erase(record_t db) { Yap_ReleaseTermFromDB((DBTerm *)db); } X_API void PL_halt(int e) { YAP_Halt(e); } X_API int PL_action(int action,...) { va_list ap; va_start (ap, action); switch (action) { case PL_ACTION_TRACE: fprintf(stderr, "PL_ACTION_TRACE not supported\n"); break; case PL_ACTION_DEBUG: fprintf(stderr, "PL_ACTION_DEBUG not supported\n"); break; case PL_ACTION_BACKTRACE: fprintf(stderr, "PL_ACTION_BACKTRACE not supported\n"); break; case PL_ACTION_HALT: { int halt_arg = va_arg(ap, int); YAP_Halt(halt_arg); } break; case PL_ACTION_ABORT: { YAP_Throw(MkAtomTerm(Yap_LookupAtom("abort"))); } break; case PL_ACTION_BREAK: fprintf(stderr, "PL_ACTION_BREAK not supported\n"); break; case PL_ACTION_GUIAPP: fprintf(stderr, "PL_ACTION_GUIAPP not supported\n"); break; case PL_ACTION_WRITE: fprintf(stderr, "PL_ACTION_WRITE not supported\n"); break; case PL_ACTION_FLUSH: fprintf(stderr, "PL_ACTION_WRITE not supported\n"); break; case PL_ACTION_ATTACH_CONSOLE: fprintf(stderr, "PL_ACTION_WRITE not supported\n"); break; } va_end (ap); return 0; } X_API fid_t PL_open_foreign_frame(void) { return (fid_t)ASP; } X_API void PL_close_foreign_frame(fid_t f) { } X_API void PL_rewind_foreign_frame(fid_t f) { } X_API void PL_discard_foreign_frame(fid_t f) { /* Missing: undo Trail!! */ } X_API term_t PL_exception(qid_t q) { YAP_Term t; if (YAP_GoalHasException(&t)) { term_t to = Yap_NewSlots(1); Yap_PutInSlot(to,t); return to; } else { return 0L; } } X_API void PL_clear_exception(void) { EX = 0L; } X_API int PL_initialise(int myargc, char **myargv) { YAP_init_args init_args; memset((void *)&init_args,0,sizeof(init_args)); init_args.Argv = myargv; init_args.Argc = myargc; init_args.SavedState = "startup.yss"; init_args.YapLibDir = NULL; init_args.YapPrologBootFile = NULL; init_args.HaltAfterConsult = FALSE; init_args.FastBoot = FALSE; init_args.NumberWorkers = 1; init_args.SchedulerLoop = 10; init_args.DelayedReleaseLoad = 3; Yap_PL_Argc = myargc; Yap_PL_Argv = myargv; Yap_InitialisedFromPL = TRUE; return YAP_Init(&init_args); } X_API int PL_is_initialised(int *argcp, char ***argvp) { if (Yap_InitialisedFromPL) { if (argcp) *argcp = Yap_PL_Argc; if (argvp) *argvp = Yap_PL_Argv; } return Yap_InitialisedFromPL; } X_API module_t PL_context(void) { return (module_t)YAP_CurrentModule(); } X_API int PL_strip_module(term_t raw, module_t *m, term_t plain) { YAP_Term t = YAP_StripModule(Yap_GetFromSlot(raw),(YAP_Term *)m); if (!t) return FALSE; Yap_PutInSlot(plain, t); return TRUE; } X_API atom_t PL_module_name(module_t m) { Term t; Atom at = AtomOfTerm((Term)m); WRITE_LOCK(RepAtom(at)->ARWLock); t = Yap_Module(MkAtomTerm(at)); WRITE_UNLOCK(RepAtom(at)->ARWLock); return AtomToSWIAtom(at); } X_API predicate_t PL_pred(functor_t f, module_t m) { Functor ff = SWIFunctorToFunctor(f); Term mod = SWIModuleToModule(m); if (IsAtomTerm((Term)f)) { return YAP_Predicate(YAP_AtomOfTerm((Term)f),0,mod); } else { return YAP_Predicate((YAP_Atom)NameOfFunctor(ff),ArityOfFunctor(ff),mod); } } X_API predicate_t PL_predicate(const char *name, int arity, const char *m) { Term mod; Atom at; if (m == NULL) { mod = CurrentModule; if (!mod) mod = USER_MODULE; } else { Atom at; while (!(at = Yap_LookupAtom((char *)m))) { if (!Yap_growheap(FALSE, 0L, NULL)) { Yap_Error(OUT_OF_HEAP_ERROR, TermNil, Yap_ErrorMessage); return NULL; } } mod = MkAtomTerm(at); } while (!(at = Yap_LookupAtom((char *)name))) { if (!Yap_growheap(FALSE, 0L, NULL)) { Yap_Error(OUT_OF_HEAP_ERROR, TermNil, Yap_ErrorMessage); return NULL; } } return YAP_Predicate((YAP_Atom)at, arity, mod); } X_API void PL_predicate_info(predicate_t p,atom_t *name, int *arity, module_t *m) { PredEntry *pd = (PredEntry *)p; Atom aname; if (pd->ArityOfPE) { *arity = pd->ArityOfPE; aname = NameOfFunctor(pd->FunctorOfPred); } else { *arity = 0; aname = (Atom)(pd->FunctorOfPred); } if (pd->ModuleOfPred) *m = (module_t)pd->ModuleOfPred; else *m = (module_t)TermProlog; *name = AtomToSWIAtom(aname); } typedef struct open_query_struct { int open; int state; YAP_Term g; } open_query; open_query execution; X_API qid_t PL_open_query(module_t ctx, int flags, predicate_t p, term_t t0) { Atom yname; unsigned long int arity; Term t[2], m; /* ignore flags and module for now */ if (execution.open != 0) { YAP_Error(0, 0L, "only one query at a time allowed\n"); } execution.open=1; execution.state=0; PredicateInfo((PredEntry *)p, &yname, &arity, &m); t[0] = SWIModuleToModule(ctx); if (arity == 0) { t[1] = MkAtomTerm(yname); } else { Functor f = Yap_MkFunctor(yname, arity); t[1] = Yap_MkApplTerm(f,arity,Yap_AddressFromSlot(t0)); } execution.g = Yap_MkApplTerm(FunctorModule,2,t); return &execution; } X_API int PL_next_solution(qid_t qi) { int result; if (qi->open != 1) return 0; if (qi->state == 0) { result = YAP_RunGoal(qi->g); } else { result = YAP_RestartGoal(); } qi->state = 1; if (result == 0) { qi->open = 0; } return result; } X_API void PL_cut_query(qid_t qi) { if (qi->open != 1) return; YAP_PruneGoal(); YAP_cut_up(); qi->open = 0; } X_API void PL_close_query(qid_t qi) { /* need to implement backtracking here */ if (qi->open != 1) return; YAP_PruneGoal(); YAP_RestartGoal(); qi->open = 0; } X_API int PL_call_predicate(module_t ctx, int flags, predicate_t p, term_t t0) { qid_t qi = PL_open_query(ctx, flags, p, t0); int ret = PL_next_solution(qi); PL_cut_query(qi); return ret; } X_API int PL_toplevel(void) { return YAP_RunGoal(MkAtomTerm(Yap_FullLookupAtom("$live"))); } X_API int PL_call(term_t tp, module_t m) { int out; BACKUP_B(); BACKUP_H(); Term t[2], g; t[0] = SWIModuleToModule(m); t[1] = Yap_GetFromSlot(tp); g = Yap_MkApplTerm(FunctorModule,2,t); out = YAP_RunGoal(g); RECOVER_H(); RECOVER_B(); return out; } X_API void PL_register_foreign_in_module(const char *module, const char *name, int arity, pl_function_t function, int flags) { Term tmod; Int nflags = 0; if (flags & (PL_FA_NOTRACE|PL_FA_CREF)) { fprintf(stderr,"PL_register_foreign_in_module called with non-implemented flag %x when creating predicate %s:%s/%d\n", flags, module, name, arity); } if (module == NULL) { tmod = CurrentModule; } else { tmod = MkAtomTerm(Yap_LookupAtom((char *)module)); } if (flags & PL_FA_VARARGS) { nflags = SWIEnvPredFlag; } if (flags & PL_FA_TRANSPARENT) { nflags |= ModuleTransparentPredFlag; } else { nflags |= CArgsPredFlag; } if (flags & PL_FA_NONDETERMINISTIC) { Yap_InitCPredBackCut((char *)name, arity, sizeof(struct foreign_context)/sizeof(CELL), (CPredicate)function, (CPredicate)function, (CPredicate)function, UserCPredFlag|nflags); } else { UserCPredicate((char *)name,(CPredicate)function,arity,tmod,nflags); } } X_API void PL_register_extensions(const PL_extension *ptr) { PL_load_extensions(ptr); } X_API void PL_register_foreign(const char *name, int arity, pl_function_t function, int flags) { PL_register_foreign_in_module(NULL, name, arity, function, flags); } X_API void PL_load_extensions(const PL_extension *ptr) { /* ignore flags for now */ while(ptr->predicate_name != NULL) { PL_register_foreign_in_module(NULL, ptr->predicate_name, ptr->arity, ptr->function, ptr->flags); ptr++; } } X_API int PL_is_inf(term_t st) { Term t = Deref(Yap_GetFromSlot(st)); Float fl; if (IsVarTerm(t)) return FALSE; if (!IsFloatTerm(t)) return FALSE; fl = FloatOfTerm(t); #if HAVE_ISINF return isinf(fl); #elif HAVE_FPCLASS return (fpclass(fl) == FP_NINF || fpclass(fl) == FP_PINF); #else return FALSE; #endif } X_API int PL_thread_self(void) { return YAP_ThreadSelf(); } X_API int PL_thread_attach_engine(const PL_thread_attr_t *attr) { int wid = YAP_ThreadSelf(); if (wid < 0) { /* we do not have an engine */ if (attr) { YAP_thread_attr yapt; int wid; yapt.ssize = attr->local_size; yapt.tsize = attr->global_size; yapt.alias = (YAP_Term)attr->alias; yapt.cancel = attr->cancel; wid = YAP_ThreadCreateEngine(&yapt); } else { wid = YAP_ThreadCreateEngine(NULL); } if (wid < 0) return -1; if (YAP_ThreadAttachEngine(wid)) { return wid; } return -1; } else { /* attach myself again */ YAP_ThreadAttachEngine(wid); return wid; } } X_API int PL_thread_destroy_engine(void) { int wid = YAP_ThreadSelf(); if (wid < 0) { /* we do not have an engine */ return FALSE; } YAP_ThreadDetachEngine(wid); return YAP_ThreadDestroyEngine(wid); } X_API int PL_thread_at_exit(void (*function)(void *), void *closure, int global) { /* don't do nothing for now */ fprintf(stderr,"%% YAP ERROR: PL_thread_at_exit not implemented yet\n"); return TRUE; } X_API PL_engine_t PL_create_engine(const PL_thread_attr_t *attr) { if (attr) { YAP_thread_attr yapt; yapt.ssize = attr->local_size; yapt.tsize = attr->global_size; yapt.alias = (YAP_Term)attr->alias; yapt.cancel = attr->cancel; return (PL_engine_t)YAP_ThreadCreateEngine(&yapt); } else { return (PL_engine_t)YAP_ThreadCreateEngine(NULL); } } X_API int PL_destroy_engine(PL_engine_t e) { return YAP_ThreadDestroyEngine((YAP_Int)e); } X_API int PL_set_engine(PL_engine_t engine, PL_engine_t *old) { YAP_Int cwid = YAP_ThreadSelf(); if (*old) *old = (PL_engine_t)cwid; if (engine == PL_ENGINE_CURRENT) return PL_ENGINE_SET; if (engine < 0) /* should really check if engine does not exist */ return PL_ENGINE_INVAL; if (!(YAP_ThreadAttachEngine((YAP_Int)engine))) { return PL_ENGINE_INUSE; } return PL_ENGINE_SET; } X_API void * PL_malloc(int sz) { return (void *)Yap_AllocCodeSpace((long unsigned int)sz); } X_API void * PL_realloc(void *ptr, int sz) { return Yap_ReallocCodeSpace((char *)ptr,(long unsigned int)sz); } X_API void PL_free(void *obj) { return Yap_FreeCodeSpace((char *)obj); } X_API int PL_eval_expression_to_int64_ex(term_t t, int64_t *val) { Term res = Yap_Eval(Yap_GetFromSlot(t)); if (!res) { return FALSE; } if (IsIntegerTerm(res)) { *val = IntegerOfTerm(res); return TRUE; #if SIZEOF_LONG_INT==4 && USE_GMP } else if (YAP_IsBigNumTerm(res)) { MP_INT g; char s[64]; YAP_BigNumOfTerm(t, (void *)&g); if (mpz_sizeinbase(&g,2) > 64) { return PL_error(NULL,0,NULL, ERR_EVALUATION, AtomToSWIAtom(Yap_LookupAtom("int_overflow"))); } mpz_get_str (s, 10, &g); #ifdef _WIN32 sscanf(s, "%I64d", (long long int *)val); #else sscanf(s, "%lld", (long long int *)val); #endif return 1; #endif } PL_error(NULL,0,NULL, ERR_TYPE, AtomToSWIAtom(Yap_LookupAtom("integer_expression"))); return FALSE; } foreign_t _PL_retry(intptr_t n) { /* first we need to get the pointer to the predicate */ PredEntry *pe = B->cp_ap->u.OtapFs.p; struct foreign_context *ctx = (struct foreign_context *)(&EXTRA_CBACK_ARG(pe->ArityOfPE,1)); ctx->context = n; return LCL0-(CELL *)ctx; } foreign_t _PL_retry_address(void *addr) { /* first we need to get the pointer to the predicate */ PredEntry *pe = B->cp_ap->u.OtapFs.p; struct foreign_context *ctx = (struct foreign_context *)(&EXTRA_CBACK_ARG(pe->ArityOfPE,1)); ctx->context = (intptr_t)addr; return LCL0-(CELL *)ctx; } int PL_foreign_control(control_t ctx) { switch (ctx->control) { case FRG_REDO: return PL_REDO; case FRG_FIRST_CALL: return PL_FIRST_CALL; default: return PL_CUTTED; } } intptr_t PL_foreign_context(control_t ctx) { switch (ctx->control) { case FRG_FIRST_CALL: return 0L; default: return (intptr_t)(ctx->context); } } void * PL_foreign_context_address(control_t ctx) { switch (ctx->control) { case FRG_FIRST_CALL: return NULL; default: return (void *)(ctx->context); } } static int SWI_ctime(void) { #if HAVE_CTIME time_t tim; #endif YAP_Term t1 = YAP_ARG1; if (YAP_IsVarTerm(t1)) { YAP_Error(0,t1,"bad argumento to ctime"); return FALSE; } #if HAVE_CTIME if (YAP_IsIntTerm(t1)) tim = (time_t)YAP_IntOfTerm(t1); else if (YAP_IsFloatTerm(t1)) tim = (time_t)YAP_FloatOfTerm(t1); else return FALSE; return YAP_Unify(YAP_BufferToString(ctime(&tim)), YAP_ARG2); #else YAP_Error(0,0L,"convert_time requires ctime"); return FALSE; #endif } void Yap_swi_install(void); void Yap_swi_install(void) { YAP_UserCPredicate("ctime", SWI_ctime, 2); } #ifdef _WIN32 #include int WINAPI PROTO(win_yap2swi, (HANDLE, DWORD, LPVOID)); int WINAPI win_yap2swi(HANDLE hinst, DWORD reason, LPVOID reserved) { switch (reason) { case DLL_PROCESS_ATTACH: break; case DLL_PROCESS_DETACH: break; case DLL_THREAD_ATTACH: break; case DLL_THREAD_DETACH: break; } return 1; } #endif