:- module(topsort, [topsort/2, topsort/3, reversed_topsort/2]). :- use_module(library(rbtrees), [new/1, lookup/3, insert/4]). :- use_module(library(lists), [reverse/2]). /* simple implementation of a topological sorting algorithm */ /* graph is as Node-[Parents] */ topsort(Graph0, Sorted) :- new(RB), topsort(Graph0, [], RB, Sorted). topsort(Graph0, Sorted0, Sorted) :- new(RB), topsort(Graph0, Sorted0, RB, Sorted). % % Have children first in the list % reversed_topsort(Graph0, RSorted) :- new(RB), topsort(Graph0, [], RB, Sorted), reverse(Sorted, RSorted). topsort([], Sort, _, Sort) :- !. topsort(Graph0, Sort0, Found0, Sort) :- add_nodes(Graph0, Found0, SortI, NewGraph, Found, Sort), topsort(NewGraph, Sort0, Found, SortI). add_nodes([], Found, Sort, [], Found, Sort). add_nodes([N-Ns|Graph0], Found0, SortI, NewGraph, Found, NSort) :- (N=1600 -> write(Ns), nl ; true), delete_nodes(Ns, Found0, NNs), ( NNs == [] -> NewGraph = IGraph, NSort = [N|Sort], insert(Found0, N, '$', FoundI) ; NewGraph = [N-NNs|IGraph], NSort = Sort, FoundI = Found0 ), add_nodes(Graph0, FoundI, SortI, IGraph, Found, Sort). delete_nodes([], _, []). delete_nodes([N|Ns], Found, NNs) :- lookup(N,'$',Found), !, delete_nodes(Ns, Found, NNs). delete_nodes([N|Ns], Found, [N|NNs]) :- delete_nodes(Ns, Found, NNs). % % add the first elements found by topsort to the end of the list, so we % have: a-> [], b -> [], c->[a,b], d ->[b,c] gives [d,c,a,b|Sorted0] % reversed_topsort([], Sorted, Sorted) :- !. reversed_topsort(Graph0, Sorted0, Sorted) :- add_parentless(Graph0, [], SortedRest, New, Graph1, Sorted0), delete_parents(Graph1, New, NoParents), reversed_topsort(NoParents, SortedRest, Sorted). add_parentless([], New, Sorted, New, [], Sorted). add_parentless([Node-Parents|Graph0], New, Sorted, Included, Graph1, SortedRest) :- % Parents = [], !, ord_subtract(Parents,New,[]), !, ord_insert(New, Node, NNew), add_parentless(Graph0, NNew, Sorted, Included, Graph1, [Node|SortedRest]). add_parentless([Node|Graph0], New, Sorted, Included, [Node|Graph1], SortedRest) :- add_parentless(Graph0, New, Sorted, Included, Graph1, SortedRest). delete_parents([], _, []). delete_parents([Node-Parents|Graph1], Included, [Node-NewParents|NoParents]) :- ord_subtract(Parents, Included, NewParents), delete_parents(Graph1, Included, NoParents).